NOTES ON PROJECTIVE STRUCTURES WITH TORSION
TARO ASUKE

ABSTRACT. We show that projective structures with torsion are related to con-
nections in a parallel way to the torsion-free ones. This is done in terms of Cartan
connections by following Kobayashi and Nagano. For this purpose, we make use
of a bundle of formal frames, which is a generalization of a bundle of frames.
We will also describe projective structures in terms of Thomas—Whitehead con-
nections by following Roberts. In particular, we formulate normal projective con-
nections and show the fundamental theorem for Thomas—Whitehead connections
regardless the triviality of the torsion. We will study some examples of projective
structures of which the torsion is non-trivial while the curvature is trivial. In this
article, projective structures are considered to be the same if they have the same
geodesics and the same torsions.

INTRODUCTION

Projective structures are quite well-studied. They can be described by Cartan
connections and frame bundles, as studied by Kobayashi and Nagano [3], et. al.
Projective structures can be also described in terms of Thomas—Whitehead connec-
tions (TW-connections for short) which are linear connections on a certain line bun-
dle [7]]. Associated with projective structures are torsions, which are 2-forms. If the
torsion of a projective structure vanishes, then the structure is said to be forsion-free
or without torsion. Actually, the above-mentioned studies are done in the torsion-
free case. One of the most fundamental results is the existence of normal projective
connections [5, Proposition 3] which is a Cartan connection of special kind. A
corresponding result for TW-connections is known as the Fundamental theorem for
TW-connections [7]. On the other hand, linear connections always induce projec-
tive structures even if they are with torsions. In this article, we study how linear
connections with torsions induce projective structures. Indeed, we will study pro-
jective structures with torsion and show that they can be treated in a parallel way
to the torsion-free case. For this purpose, we need a notion of formal frame bun-
dles [1]] which is a generalization of frame bundles. Usually, a 2-frame at a point is
given by a pair (a’;, a};) € GL,(R) x R™ such that a’;; = a’y;. The symmetricity
condition is quite related with torsion-freeness and we have to drop this condition
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in order to deal with torsions. This leads us to formal frames. A formal 2-frame at a
point is a pair (a';, a;,) € GL,(R) x R"’. We refer to [1] for the precise definition
and details of formal frames. Expecting a better understanding of the torsion, we
will study some examples of projective structures of which the torsion is non-trivial
while the curvature is trivial. Finally, we remark that a slightly different approach
to projective structures with torsion is presented in [[6, Section 7].

In this article, projective structures are considered to be the same if they have the
same (unparameterized) geodesics and the same torsions except last part of Sec-
tion 2. Throughout this article, (U, ¢) and (U, @) denote charts, and ¢ denotes the
transition function. Representing (local) tensors, we make use of the Einstein con-
vention. For example, a‘,b® jk means aiab;%“k. The range of o will be from 1 to
dim M or from 1 to dim M + 1. We basically retain notations of [5] and [7]. Finally,
the order of lower indices of the Christoffel symbols are reversed in this article (see

Notation [2.15]).

1. CARTAN CONNECTIONS

We recall basics of Cartan connections after [4]. We will work in the real cate-
gory, however, we can work in the complex category (not necessarily the holomor-
phic category) after obvious modifications.

Let G be a Lie group and H a closed subgroup of G. We assume that P is a
principal H-bundle over M. In what follows, the Lie algebra is represented by the
corresponding lower German letter, e.g., g will denote the Lie algebra of G.

Definition 1.1. A Cartan connection is a 1-form w on P with values in g which
satisfies the following conditions:
1) w(A*) = A forany A € h, where A* denotes the fundamental vector field
associated with A.
2) R,*w = Ad,~1wforanya € H.
3) w(X) # 0 for any non-zero vector X on P.

Notation 1.2. In what follows, we assume that G = PGL,,1(R) = GL,;1(R)/Z,
where Z = {1 | A # 0}. Let [2° : --- : 2] be the homogeneous coordinates
for RP", and H C G the isotopy group of [0 : --- : 0 : 1]. Finally we set m = R",
which is understood as a space of column vectors, and let m* denote its dual.

adet A = 1}/2,

G, = {(Ig‘ ?) € GL,11(R) ‘ & Gm*}.

Definition 1.3. We set
Go = {(? 0) € L1 (R)

a
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Note that (7 is naturally a subgroup of G and GGy. We have

({1
()

()

g=9-1Dgo Do
12 m, go = gl,(R)and g; = m* sothat g = m @ gl,(R) & m*. We
= gl (R) & m*. The identifications are given by

trA+a—0},

If we set

then we have

~

We have g_
also have b

SR
2 o

)Ego —U=A-—ual, € gl,(R),

(2 0) SN r—>§€m*.

U 0 1
0 o)~ n—H(tr U)I,+1. Under these
identifications, the Lie brackets are given as follows. Let u, v € m, v*,v* € m* and

U,V € gl,(R). Then, we have

Note that U € gl,,(R) corresponds to

In what follows, we always make use of these identifications. If w is a Cartan
connection on P, then we represent w = (w', w’;, w;) according to the identification
g=mo gl,(R) ®m"

Remark 1.4. Each element g of PGL,.1(R) admits a representative of the form
A &
&1

nates for PGL,, 11 (R). With respect to these coordinates, we have H = {(0,a’;, a;)}.

Leto=1[0:---:0: 1] denote H € PGL,11(R)/H. If h = (0,d";,a;) € H and if

. By associating g with (£, A, £*), we can consider (a',d';, a;) as coordi-
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- a™ 1 1] is close enough to o, then we have
h.x = ﬂ
ajr? + 1
= aijxj — aijxjaka:k +oee
=a'j2’ — %(aijak +a'paj) ok oo
Definition 1.5. Let w = (w', w’;,w;) be a Cartan connection on P. We set
Q= dw' + Wiy A WP,
Q' =dw'j + W' Aw" + w0 Awj — 6w AW,
Q; = dw; + wy AWk
We call Q' the torsion and (Q'}, ;) the curvature of w, respectively.

We refer to (Q7;) as the curvature matrix of w and consider trace of it.
We have the following

Proposition 1.6 ([5, Proposition 2]). . We can represent the torsion and the curva-
ture as

0 = §sz1w] ANF Ky = =K'y,
i~ % JRIW AW, jlk = ki
1
Q = K" Ao, K = —Kjn,

2
where Ky, Kijkl and Ky, are functions on P.

Remark 1.7. If w is a Cartan connection on P, then we have the following:
a) w'(A*) =0andw';(A*) = A'j forany A = (A", A;) € h = gl (R)dm*.
b) R, (w',w';) = Ady-1(w',w';) for any a € H.
¢) Let X € TP. We have w'(X) = 0 if and only if X is vertical, namely,
tangent to a fiber of P — M.

Proposition 3 in [5]] holds in the following form. A point is that we do not need
the condition €; = 0. See also Remark[2.6]

Proposition 1.8. Let w' and w'; satisfy the conditions in Remark[1.7] Then, there
is a Cartan connection of the form w = (W',w';,w;). If n > 2, there uniquely
exists a Cartan connection such that K ijil = 0, that is, w is Ricci-flat. If moreover
n > 3 and if w is torsion-free, then Q'; = 0, namely, the curvature matrix (Q';) is
trace-free.

Proof. First we show the existence of a Cartan connection. Let {U,} be a locally
finite open covering of M and {f,} a partition of unity subordinate to {U,}. Let
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m: P — M is the projection. Suppose that for each «, there is a Cartan connection
we on 7 (Uy,) such that w, = (w', w';, w; ) for some w'; . If we setw = > (f, 0
T)Wa, then w is a Cartan connection of the form (w’,w’;,w;). On the other hand,
we may assume that 7 (U,) is trivial. We fix a trivialization 7= (U,) = U, x H.
If (z,h) € U, x Handif Y € T(z,n) P, then we can represent Y as Y = X + A,
where Y € T, M and A € b. If we set w, (V) = Ady-1(w'(X),w’;(X),0) + A,
then w, is a Cartan connection of the form (w’, w';, w;q)-

From now on, we assume that n > 2. We show the uniqueness. Suppose that w =
(W', w'j,w;) and W' = (W', w';,w)) are Cartan connections as in the proposition. By
the conditions a) and c¢), we have w; — w} = Ajkwk for some functions A;; on P.
We have

O — Q) =w' A (wy — wf) — 0 (wr — wp) Aw™.
It follows that
Kl — Ky = =81 A + 8 Ay + 85 A — 0% A
Therefore, we have
Kijil - K/ijil = —(5ilAji + 6iiAjl + 51’in1 - (SijAlZ'
= (n = 1)Aj + (Aj — Ay)
= nAjl — Alj-
It follows that
1
Since w and w’ are Ricci-flat, we have A, = 0.
Next, we show that the existence of a Cartan connection which is Ricci-flat. Let

w' be a Cartan connection of the form (w’, w';, wj) which is not necessarily Ricci-
flat. If w is a Cartan connection which is Ricci-flat, then we have by (1.8a)) that

(1.8b) Ajp = — (K" i + K" ).

1
n?—1
If we conversely define A;; by the equality and set w; = wj + Ajrw*, then
(w',w';,w;) is a desired Cartan connection.

Finally, we assume that w is torsion-free. Then Q; = 0 by Proposition
provided that dim M > 3. OJ

Proposition 1.9. Suppose thatn > 3 and let w = (W', w";,w;) be a Cartan connec-
tion. Then, we have the following:

1) If dQF + wij A QU = 0, then we have Kijkl + Kiklj + Kiljk =0.

2) If dQ + W'y ANQY = 0and if K'jy = 0, then Q; = 0.

3) If Q' = 0 and if ¥'; = 0, then we have K + Ky + Kiji, = 0.

4) If Q' =0andif Q'; =0, then Q; = 0.
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Proof. First we will show 1). We have Q' = dw’ 4+ w'; A w’. Hence we have
dV +w'; A Y
= dwij AW — wij A dw’ + wij A (dw? + Wi A wk)
= dwij Aw? +wij Awlp AWk
=0 AW

1. .
= §K2jklwk N wl A w.

It follows that Kz + K% + K, = 0 if dQ" + w'; A Q7 = 0. Next, we show
2). Suppose in addition that K*;; = 0. Then, we have 0 = K% + K'yy =
Ky — K'yy = K" Next, we show 3). We have
inj = dw';, A wkj — Wi A dwkj + dw' A wj — Wt A dw; — 6ij(dwk A wP — wp A dw®)
= () — W A W — W A wg + 0wy A wl) A ij
— W A (ij — WA wlj — WA w; + (5kjwl A wh)
+ (=W AWF) Awj — W A () — wi Awh))
— 0L (U A — wp Awly) AwP —wp A (QF + wF A W)
= QikAwkj — Wi, /\ij —i—Qi/\wj —wi/\Qj —(5ij~(Qly€/\wl€ —wp AQF).
Taking the trace, we obtain
dQ' = (n+1)(Q Aw; —w' A Q).
If Q' = 0 and if Q°; = 0, then we have w’ A Q; = 0. Hence K3 + Ky + Kiji = 0.

Finally, we show 4). If Q' = 0 and if Q'; = 0, then we have w’ A Q; = 0 by 3). As
n > 3, we have €2; = 0. L]

2. CARTAN CONNECTIONS, AFFINE CONNECTIONS AND PROJECTIVE
STRUCTURES

We follow the arguments in [3]], taking torsions into account.

First, we briefly recall bundles of formal frames P" (M) and groups G which act
on P"(M) on the right [[1], where r = 1, 2.

Let M be a manifold, and P" (M) and G" the bundle of r-frames and the group
of r-jets [4].

Definition 2.1. 1) We set P1(M) = P'(M) and G! = G* = GL,(R).

2) We set G> = GL,(R) x R", where the multiplication law is given by
(a'j,ar) (b, 0% ) = (ayib';, aybl + a'p,b' ;™) which is the same as the
one in G%. Indeed, G* = {(a’;,a’;x) € G* | a'jx = a'k; }.

The group G2 consists of the 1-jets of certain bundle homomorphisms, and the

bundle ﬁQ(M ) is a principal G2-bundle which also consists of the 1-jets of certain
bundle homomorphisms. We have P?(M) = P?(M) x g2 G
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In view of Remark [T.4] we introduce the following

Definition 2.2. We define a subgroup H? of G2 by setting
H? ={(da'j,a';) € G? | Jas, a' i = —(a'jar + aja'y)}.
We regard (a’;, a;) as coordinates for H2.

It is easy to see that H? is indeed a subgroup of G2 isomorphic to A and satisfies
G'=G'< H*< G* < G

Definition 2.3. 1) A projective structure on M is a subbundle P of P2(M) with
structure group H?2.

2) A projective connection associated with a projective structure P is a Cartan
connection w = (w',w’;, w;) on P such that w’ coincides with the restriction
of the canonical form of order 0 to P. In order to distinguish from TW-
connections, we refer to projective connections also as Cartan projective
connections.

Remark 2.4. Let (0,0';) be the canonical form on P*(M). We set ©' = df +
6'; A\ 07. Then we have o*Q)' = 0*©". We have ©" = 0 on P*(M). Indeed, this is
just the structural equation. See 1] for details.

Theorem 2.5 (cf. [[6, Theorem 7]). For each projective structure P of a manifold
M, there is a projective connection w = (W', w";,w;) with the projective structure
P. If n > 2, then there exists a unique w with the following properties:

1) (w',w';) coincides with the restriction of the canonical form on P2(M) to P.
2) Kijz‘l = 0
If moreover w is torsion-free, namely, if Q' = 0, then Q'; = 0, or equivalently,
Kiikl - 0

Proof. This is a consequence of Proposition Indeed, the restriction of the
canonical form satisfies the conditions in Remark If n = 2, then the last part
will be later shown as Lemma ]

Remark 2.6. Theorem |2.5|is well-known in the torsion-free case. Since we do not
assume projective structures to be torsion-free, we need canonical forms on ﬁZ(M )
which realize torsions. A point is that the condition Q)'; = 0 is not needed for the
uniqueness in Proposition[1.8

Remark 2.7. Let (U, ) be a chart. Then, v € P*(M)|y naturally corresponds
to (u',u';, u';p) € R x GL,(R) x R™, which are called the natural coordinates
(I3, p. 225], [1, Definition 1.8]). If u € P*(M) and if u is represented by f: R™ —
M, then (u',u';,u' ;) = (f*(0), DF";(0), D*F*;x(0)). The canonical form (6°,0")
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is represented as
6°, = v',du®,
0, = Uiaduo‘j — viauajgvﬁwdu”’,
where (v';) = (u’;)~%
Definition 2.8. Let n > 2. The projective connection given by Theorem [2.5] is
called the normal projective connection associated with P.

The following is clear.

Proposition 2.9. 1) There is a one-to-one correspondence between the follow-
ing objects:
a) Sections from M to P2(M) /G
b) Sections from P (M) to P*(M) equivariant under the G-action.
c) Affine connections on M.
2) There is a one-to-one correspondence between the following objects:
a) Sections from M to P*(M)/H?>.
b) Projective structures on M.

If V is an affine connection, then V corresponds to a section from M to P2(M) /G
Since G' = G is a subgroup of H2, V induces a section from M to P%(M)/H?,
namely, a projective structure. Conversely, given a projective structure, we can find
an affine connection which induces the projective structure because H?/ G is con-
tractible.

We introduce the following definition after [4] (see also Tanaka [9], Weyl [11]).

Definition 2.10. Let V and V'’ be linear connections on 7'M. Let w and w’ be the
connection forms of associated connection on P!(M). We say that V and V' are
projectively equivalent if there is an m*-valued function, say p, on P'(M) such that

W' —w=10,p],
where 6 denotes the canonical form on P'(M).

Note that p necessarily satisty R,*p = pg, where g € GL,(R).

Remark 2.11. The torsion is invariant under the projective equivalences in the
sense of Definition On the other hand, we can consider the usual equiva-
lence relation based on unparameterized geodesics, then any affine connection is
equivalent to a torsion-free one. See Corollary and Remark 2.27]

Lemma 2.12. Linear connections V and V' on T'M are projectively equivalent if
and only if there is a 1-form, say p, on M such that V' — V = p ® id + id ® p.

Proof. 1If V and V' are projectively equivalent, then there is an m*-valued function
psuchthatw’ —w = [0, p|. If € M and if v € T, M, then we fix a frame u of T, M
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and represent v = uw. We set p,(v) = p(u)w, and we have V' —V = p®id+id®p.
Conversely if V' — V = p®1id + id ® p holds for a 1-form p. Let u = (eq, ..., e,)

be a frame and (¢!, ..., e") its dual. We represent p as p = pie! + -+ + p,e” and
set p(u) = (p1,-..,pn). Then we have w’ —w = [0, p|. O
1 . 0 0
Remark 2.13. Let (z',. .. 2™) be local coordinates and choose | —, ..., —
Ox! oxn

as a frame. If we represent p as p = p;dx’, then we have
(p®id)'jk = 0';pr,
(id @ p)'jk = 0'kpy,
1, =7,
0, i#J
Lemma 2.14. Ifwe have V' —V = p®id+id®p = p' ®id+1d ® o/, then p' = p.

where 5ij = {

Proof. We have (p®id+id®p)(e;, e;) = 2p(e;). Hence p(e;) = 0if p@id+id®@p =
0. U

We will make use of the Christoffel symbols reversing the order of lower indices.
This is convenient when formal frames are considered.

, ‘ 0
Notation 2.15. We set I'*;;, = dx* (V 9 —)
9ok 01

Lemma 2.16. Affine connections V and V' induce the same projective structure if
and only if they are projectively equivalent.

Proof. Let T";; and T"";;, be the Christoffel symbols for V and V', respectively.
Then, V corresponds to a section from M to P2(M)/G* represented by z
oy(z) = (x,6";,—T";;). Then, sections oy and oy determine the same projec-
tive structure if and only if there is an H?-valued function, say a = (a;, —(a’;ax, +
a;ja'y)) such that oy.a = oy This condition is equivalent to that

(2,0’ ~Tima'ja™x — (a'jax + aja's)) = (2,8%, =T" ).
holds in P2(M)/G". The left hand side is equal to (, 5';, =T, — (8% a4 0'a;) ).
Hence V and V' correspond to the same projective structure if and only if we have
[ = T, + 0%ay + 6'gaj, that is, V and V' are projectively equivalent. O

Remark 2.17. Affine connections decide geodesics and hence projective structures.
The most standard projective structure is the one on RP" and equivalences should
be described in terms of linear fractional transformations even if we allow torsions.
This leads to above definitions. Recall that projective structures are considered
to be the same if they have the same (unparameterized) geodesics and the same
torsions in this article.
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Let V be an affine connection. We will describe the projective structure given by
V and the associated normal projective connection. For this purpose, we introduce
the following

Definition 2.18. Let V be an affine connection and {I";;.} the Christoffel symbols

with respect to a chart. We define one-forms y and v by setting p1; = %(F“aj —I'%.)

and v; = —m(l“aaj +1'%;,). We refer to p as the reduced torsion of V.

Remark 2.19. 1) The differential form T ,;dz? is the connection form of the
connection on E(M) induced by N. The other differential form T'*y,dx*
also correspond to a connection on E(M). These connections are the same
if V is torsion-free.

2) The differential form —u = —pu;da’ is a kind of the Ricci tensor of the tor-
sion.

Cartan connections can be found as follows.

Lemma 2.20. Let (w',w';,w;) be a Cartan connection on P. Let o: U — P be a
section, and set ' = o*w' = 1I';d2?, ', = o*w'; = I jpdx® and ; = o*w; =
I1;rda*. Let (a';, a;) be the coordinates for H? as in Definition2.2)and (z*, a';, a;)
be the product coordinates for P|yy = U x H?, where the identification is given by
o. If we set (b';) = (a';)", then we have
wi — bia¢a
= biaHagdl’B,
w'y = bada®; + 000" + batp®aj + 8 jaab% gy
= b oda®; + b, 11%,a" jdx? + b 11%ga;da’ + 6% janb11°  da™
w; =da; — aabagdaf — anb® 5P ,a7 ;4 haa®; — agb®sPa;
=da; — aabagdaf - aab"‘gﬂﬁwgcﬂjdx(S + Hagao‘jdxﬁ — aabo‘gﬂﬁ,yajde

Let U be a chart of M and 2 the local coordinates on U.

Proposition 2.21. Suppose that n > 2 and let w = (w',w';j,w;) be the normal
projective connection for the projective structure P determined by V. Then, there
is a unique section o: U — P with the following properties:
1) We have o*w' = dz'.
2) If we set a*wij = \Ifij = Hijkdxk, then we have 11%;;, = juy..
We have moreover that
2’) Hijz’ = —Hj
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and

Hijk = Fijk + (5ijyk + 5iij

i 1 i « « 7 « «
erk—m(fsj(r ok +1%a) + 0"k (T%; + T'%a)),
—1 aHZ]k aﬂ] e @ B
e = oy (o (Tt + Gt el = 0
8Hikj 8Mk
- - — aHa i — Ha Hﬁa )
* ( oxt + oI a k3 O ed

where {I" .} denote the Christoffel symbols and o*w; = ¥; = ijda:k’. Finally, we
can exchange conditions 2) and 2’).

Proof. Let o be the section from M to p? (M)/ G given by the connection, namely,
oo(z) = (2,0";,—T";x). Let 5y denote the section from M to P*(M)/H? in-
duced by 0g. By the condition 1), ¢ should be of the form &y.h, where h =
(0%, = (6" + 6%514)) for some vj. If o(x) = (z%,0%;, —IT';), then we have
My = Ffjk + 64, + 6"k} (see Remark . Suppose that v/} can be so cho-
sen that II*;, = py, or II';; = —p;. Then, we accordingly have

M = lek = F,L,Lk + (Tl + 1>V]I€, or

—py =1 =T + (n + Dy,
The both conditions are equivalent to
1
(n+ 1)y, = —§(F0‘ak + %)

Hence we have v/ = v in the both cases. The uniqueness also holds. Conversely,
if we define IT';; as in the statement and if we set o(z) = (z*,6";, —II";1.), then &
induces a section to P?(M)/H? by Lemma below. We have o*w’ = dz' and
o*w'; = W', If we set U; = o*w;, then we have

(2.21a) o* Q= dU; + U AR, 4+ da AT — 650 A da”

If we define k' ;;, by the conditions that 0*Q; = 2k jda® A da! and k' jpy + k' jyy =

0, then (2.21a)) is equivalent to

i oI’y I’y i @ i 1T i i i
E'jw = 87’5 - axi + 11" 11y — T o 11 i 4+ 0" 1L — 6" IL5 — 6°5 (T — Igy).
Since w is a normal projective connection, we have
0= kji
aHZ L 81_[2 i ) «a ) «
- 8xl] - 8—91:5 + H m’H gl — H alH ji + nHﬂ — Hjl — (Hlj — Hjl)
oIty Ou; .
=t T pall®j — IT' 1% j; 4 nlly — IL;.

ox’ ox!
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Regarding this equality as an equation with respect to II,;, we see that 11 is given
as in the statement. 0

Remark 2.22. Ifwe replace v; by — +1) (al'*y; +0I',) in Deﬁmtlon then
Proposition 2.21) holds after replacmg the conditions by
a

b
e, — (1 _ —> T, — -T%...

b
e, = _graak + (1 - 5) .

These are proportional to the reduced torsion if and only if a + b = 2. We choose
a = b = 1 as the simplest case, taking symmetricity into account. The situation is
similar in Theorem

As in the classical case, we have the following. We choose a branch of the loga-
rithmic function in the complex category.

Lemma 2.23. Let (U, ) and (U, $) be charts. We assume that U = U and set
W = poy Lt If o and G denote the sections given by Proposition then we
have

Puo = a'(aij’ _<ajai7€ + akaij)%

1 JlogJy
—_— = D).
I 0w with Jv = det D)

where a'; = Dy'; and a; = —
Proof. We have

D' = (DY) o HY® g + (DY) 6T g, DY DYy,
where D denotes the derivative and H denotes the Hessian. It follows that

', = (DY) o Hy® s + (DY) 0T, DY? Dy

1 ; OlogJ =, 8 OlogJ =,
—2(n+1)53(( Dk + 1D k>+< 9 + T, DY k))

1 ; OlogJ =, 5 OlogJ =, -
m(gk(( O +T aﬂquZ)j)_{—( O7i +T WOC‘ij

= (DY) HY i+ (DY) oT1 3, DY DYy

1 - dlog J - Odlog J
— o o ,
n+1 ( a0 g ) ’
from which the lemma follows. O

If V is torsion-free, then Hijk and 11, are well-known as follows [5, Proposi-
tion 17], [7, Fundamental theorem for TW-connections].
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Lemma 2.24. If V is torsion-free, then we have pi; = 0 and 1" jj, = 11';;. We have
H'L i — 1—\74 e — ———— 61 Fa k _"_ 51]{;1—‘06 i
i ] (0% ai);

1 RII
Mjp = Iy = ——— ( (%gk - Haa‘ﬂnﬁak> ~

Moreover, 0, = 0.

Proof. The first part is straightforward. To show that Q)'; is trace-free, it suffices to
show that k%;;; = 0. We have

oIy Oy,

Kligg = —— — I o 115 — T g TT% + Ty — TLy, — (Tl — 1T
M= 5k o7l + Warll ™y g + gy i — n(Iy, k)
Oy O
— — — 1)1y — 10
Dk D7 + (n + )( Kl lk)

= . D

In this article, we are working with projective structures keeping torsion invariant.
If we allow to modify torsions, we have the following lemma and corollary [11], [6}
Lemma 11]. We include a sketch of a proof for completeness.

Lemma 2.25. Let V and V be connections of which the Christoffel symbols are
(T} and {T";i.}. Then, the unparameterized geodesics of V and ¥V are the same
if and only if fijk =T + 0" 51 + O'kp; + a'jp, where {pr} are components of
a 1-form of M, and {a';;} are components of T M-valued 2-form on M such that
azkj = —a’jk.

Proof. We follow the proof of [5, Proposition 12]. We only show that the geodesic
equation of V and V are equivalent. Let s and 5 be parameters of geodesic of V
and V, respectively. Writing down the geodesic equation, we have

_ ' —i dd daF

0= "l
(&P ri dz? dz* ds\?  dat de?  d*s ; dx? dx”
= ( P j’“%%) <d_) s (2%'% * d_) LTI
(&P [ de? dz*\ (ds\? ~ da de?  d*s
= ( P J‘%E) <d_) s (Q%‘E * d_) !
because a’y; = —a'j;. Hence, it suffices to solve the equation 2¢j%+% =0. U

Corollary 2.26. Given an affine connection V, we can find a torsion-free affine
connection NV of which the geodesics are the same.

Proof. Let T be the torsion of V. It suffices to set V = V + %T . O
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Remark 2.27. A projective connection similar to the normal projective connection
as in Theorem[2.5|is given by Hlavaty [2]|. We refer to this connection as the Hlavaty
connection. The components of the Hlavary connection is given by

(6ij(Faka — nF”‘ak) + 5ik(F°‘aj — nfo‘ja)).

7k T

We have ®*,, = 0 and ®°;, = 0. The Hlavaty connection can be obtained as
follows. First consider an affine connection N of which the Christoffel symbols
{T%.} are given by

1 i i

1 (0% = 0kpty).

Dy =T —
The geodesics of NV and N are the same. On the other hand, if T and T denote the
torsion of V and V, then we have Tijk = Tijk + %((leik — 5ik,uj). We have

_ 1
I =1 %% — i = §(Faak +1%a) = —(n+ Dy,

T a 1 a a
[a =0+ 1y = 5 (M%) + %) = —(n + ;.

Hecne we have

- 1 To To

:ujzﬁ(r aj_F ja):()a

— 1 To T

vj = _m@ oj +1%a) = vj.

By some straightforward calculations, we see that 1T j;, = ®'};.. Note that we have
iy — I = T — Ty = =25 (81, — 0'epu). As iy = 0, we have

Wip = —— <n< axf — I jﬁnﬂak) + ( 83:1'] —1I kﬁﬂﬁaj)> :

3. GEODESICS AND COMPLETENESS, FLATNESS OF PROJECTIVE STRUCTURES

Carefully examining arguments in [5, Sections 7 and 8], we see that results pre-
sented there remain valid for projective structures with torsion. We always consider
equivalences in the sense of Definition [2.10}, namely, we require the geodesics to be
the same and also the torsions are the same.

As mentioned in the previous section, we have the following

Proposition 3.1 ([11], [S, Proposition 12]). Let P be a projective structure of M
and V an affine connection which belongs to P. If we disregard parametrizations,
then geodesics of V are geodesics of P and vice versa.

Definition 3.2. 1) Let M and M’ be manifolds with projective structures P and
P'. A diffeomorphism f: M — M’ is said to be a projective isomorphism if
f«: P?*(M) — P?*(M’) induces a bundle isomorphism from P to P'.
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2) Let M and M’ be manifolds with projective structures P and P’. A mapping
f: M — M’ is said to be a projective morphism if for each p € M, there
exists an open neighborhood U of p such that the restriction of f to U is a
projective isomorphism to its image.

3) A projective structure P on a manifold M is said to be flat, if foreachp € M,
there exists an open neighborhood U of p and a projective isomorphism from
U to an open subset of RP", where n = dim M.

If a projective structure P is flat, then the normal projective connection is torsion-
free. Hence we are in the classical settings so that we have the following.

Theorem 3.3 ([5, Theorem 15]). A projective structure P of a manifold M is flat if
and only if the torsion and the curvature of the normal projective connection vanish.

Remark 3.4. We also have estimates of the dimension of transformation groups
which concern projective structures. The results are parallel to Theorems 13 and
14 of [5].

4. THOMAS—WHITEHEAD CONNECTIONS

We follow arguments by Roberts [7]. Projective structures are described by
means of connections on bundle of volumes. Such connections are called Thomas—
Whitehead connections.

Definition 4.1. Let M be a manifold of dimension n. If M is orientable, then let
E(M) be the principal R o-bundle associated with A" T'M. If M is non-orientable,
we consider £(M)/{£1}. We equip an R-action on £(M) by setting va = ve® for
v € E(M)and a € R. We call £(M) the bundle of volume elements over M.

Lemma 4.2. The bundle of volume elements E(M) is a principal R-bundle.

Proof. If M 1is orientable, then we only consider charts compatible with the orien-
. o 0
tation. Let (U, ) be a chart. Then, 7'M | is trivialized by {(9_} so that £(M)|v
xl
e 0 0 . .
is trivialized by € = By Ao A gt Indeed, if p € U and if v, € &,(M),
T "
then we have v, = ae, for some a > 0. Hence we can associate with v, a pair
(€p,1oga). In other words, the inverse of the mapping (z',z?, ..., 2" 2")

(o (.. 2™, epi(ar,. ame” ) is a local trivialization of E(M). If (U, )
is another chart and if 1) is the transition function from U to U , then we have
€det Dy = €. Hence the transition function from £(M)|y to £(M)|s is given
by (p,t) — (p,t+logdet Di)) if M is orientable and (p,t) — (p, t + log|det D))

if M is non-orientable. ]

Remark 4.3. In the complex category, we fix branches of the logarithms when
choosing local trivializations.
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_Z,n+1

Definition 4.4. We locally set ¥ = ¢ dx' A -+ Ada™ A dz™t and call U the

canonical positive odd density.
Remark 4.5. If M is orientable, then V is indeed an (n + 1)-form.

Definition 4.6. For « € R and v € £(M), we set R,v = v.a. Let Lie(R) de-

note the Lie algebra of R. If b € Lie(R), then the vector field X defined by

0
X, = &Rbtu is called the fundamental vector field associated with b. In partic-
t=0
ular, the fundamental vector field associate with 1 € Lie(R) is called the canonical

fundamental vector field and denoted by &.

We can reduce the definition of connection forms on £(M) as follows.
Definition 4.7. A Lie(R)-valued 1-form w on £(M) is called a connection form if
we have

1) w() =1, and
2) R,jfw = Ad_,w = w fora € R.

i 0 0 0
Definition 4.8. We set .7 = (8351 Ve 8:15”“) onTE(M).

If 7» denotes a change of coordinates, then the transition function is given by
dlog J Olog J
( by O>,Wherer/J—detDz/Jandc’?long/z—( ogJy  dlog ¢)_

dlog Jy 1 ox! ox"
Definition 4.9 ([7]], see also [10]). A Thomas—Whitehead projective connection, or
a TW-connection, is a linear connection V on T'E( M) with the following properties.
Let w = (w';) be the connection form of V with respect to .%.

1) V&= —n%lid, namely, we have
i 5ij
Wintl,j = a1
. 1 i
where §'; =< Z ‘7,’.
0, 1#7
61‘

2) We have w'j 11 = — -5
3) Ris(VxY) = Vg,.x(R.Y) for any X|Y € X(E(M)), namely, V is in-
variant under the right action of R.

We refer to V<« as a TW-connection on T'M induced by V and w.

Remark 4.10. TW-connections are usually assumed to be torsion-free. In this case,
the conditions 1) and 2) in Definition 4.9 are equivalent.

Definition 4.11. Let V be a TW-connection on 76(M) and w a connection form
on E(M). If X, Y € X(M), then let X,Y € X(£(M)) be lifts of X,Y horizontal
with respect to w. We set

VLY =7, (v)ﬂ?) ,
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where 7: £(M) — M is the projection.

Lemma 4.12 (see also Lemma@.20). V“ is a connection on T'M. If V is torsion-
free, then so is V<.

Proof. It is easy to see that V¢ is a connection. If V is torsion-free, then we have

VRY - ViX =7, (VgV - Vi X)

= ([%¥])
.
— [X,Y]. O
Let w be a connection form on £(M ). We locally have
w= fidz' + -+ fudz™ + da"!
for some functions fi,..., f,.

Remark 4.13. 1) The functions fi,..., [, are independent of x™' by 2) of

Definition
2) Despite 1), fidz! + -+ + f,dz™ is not necessarily well-defined on M.

0
Definition 4.14. Let e; be the horizontal lift of g to TE(M) with respect to w,
xl

that is, we set

0 0
6= — fim o
ox? Qxntl
We set Entl = W and yH = (61, R Y €n+1).
Lemma 4.15. Let 1) be the transition function from (z',... z") to (', ..., 7").
We have
~ ~ ~ D

(4'15a) <€177en7€n+1) ( Ow 1) - <€1a7€n7€n+1>

Proof. If we set f = (f1 -+ fn), then we have

I, R 0 0
(€1, -y €ns€ni1) 1) =\ o g )
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If we set JJ = det D1, then we have

. ~ L, D
(€1, .., 6n, Ens1) (J? 1) (Dlo?] 1)
B ( 0 0 0 ) ( D )
~\ozt T gz gzt DlogJ 1
0 0 0
- <8$1""’8$”’89€”+1)

= (€1, €n,€nt1) <€? 1) .

On the other hand, if we set dz = '(dz"' - -+ da"), thenwehavew = (f 1) < dr )

d$n+1
Hence we have

(f 1) (d;lfu) = (f 1) (dgﬁl) = (J? 1> (Diﬁj 1) (d;lf“)

and consequently that

]ﬂ D1 _ (Dy _ (Dy I,
f 1) \DlogJ 1) \f 1) 0 1 f 1)
Combining these equalities, we obtain the relation as desired. 0

Let w be the connection form of a TW-connection with respect to .%. If we define

w’ by the property
Y 1 <]ndx"+1 dx )

- n+1 0 dxn+1
a 0 . .
then o' = ( 3 0), where o and 8 do not involve dz"!. Moreover, as V is
invariant under the R-action, o and /3 projects to M.

Remark 4.16. The connection V is torsion-free if and only if we have o' j;, = o'y
and [3'ji, = [3'k;.
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Remark 4.17. The transition rule of o and 3 under changes of coordinates is given
as follows. We have

D 0*1d Dy 0 D o*h Dy 0

dlog Jo 1 dlogJu 1) T\ alogsu 1 dlog Jo 1
(D ) LdDy) 0
8logJ¢)( )dDiﬂ%—d@logJ:b 0

—(
Dw 0
( alOgJ “laDy + BDY: 0>
<I dz 1 + ( (D¢)_1d§810g Jl/) (D¢>_1d§;\ >)
”“ " —(0log Ju)(Dy~Y)dzdlog Jyp —0(log Jab)(Dy)~'dz

(D1 )1dD¢ 0
0log Jv)(Dvy )dDw—l—dmong 0

—(
(D1 0
( (81og J)( Dw D¢+BD¢ o>
1 (Indx”“ dx )
n+1 0 dax"t

1 I,dlog Jvy + dxdlog J¢ 0
n+1\ —(dlogJiy)dlogJy 0

It follows that

a = (DY) tdDy — i (Indlog Jy + dxdlog Jip) + (D)~ 'aDy,

B = —(0log JY)(Dp~1dDv + ddlog Ji) + n—H(dlog J)0log Ji
— (8log Jy) (DY) 'aDy + BDip.

Note that we have

B =—(0log JY)a — %H((alog Jy)dlog JY + dlog Ju(0log Jv))
1 ~
+ n—Hda log Ji + Dy

= %ﬂ(df)log J — 2(0log Jy)dlog Jip) — (0log Jy)a + ED@/).
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Remark 4.18. If w! denotes the connection matrix of ¥ with respect to F !, then

we have by the equality that
I, oI I, o
=) Al ) () w ()
O, « 0
= (—df o) + (fa—l—ﬁ 0)

1 Idx" —dxf dx
n+1 \fda"™ — (fdx +dz"™) f  fdw + da™t?

B a+n+r1([nfd:1:+dxf) 0y 1 ILw dx
C\—df+ g fdef+ fa+B 0) 41\ 0 w)°

Note that (dz!,. .., da"™, w) is the dual to F X,

Definition 4.19. We set
1
H_ — (I, fd d
« a—i—n+1( fdx +dzf),

ﬁHz—dern%rlfdforfaJrﬂ.

We have the following

0 0
Lemma 4.20. The connection form of V< with respect to <ﬁ’ ceey 8_> is equal
T Wik
to . Indeed, we have
ol = Dy~tdDy + Dy~ tat Dy,
" = 8" Dy.
Proof. The first part follows directly from Definition Let (U, ) and ([7 )

be charts, and w!’ and @ connection forms of V with respect to .Z ! and .F !,
respectively. Then, by Lemma[.15| we have

o) ) ) ()

_ (Dl/z—lle/) 0>+<D¢‘1aHD¢ 0) 1 (Ina_u D1/J—1d55)

0 0 BEDy  0) n+1\ 0 w
B Dy=YdDy + Dy='a Dy 0 1 Iw dz =
N BH D 0 n+1\ 0 w)/"’

Theorem 4.21. If V is a TW-connection on TE(M ) and if w and w' are connection
forms on E(M), then

1) W' — w = 7*pfor some 1-form p on M, and
2) We have

/ 1
Ve -V = ——p®id
n+1p®1 +n—|—1

id ® p.
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3) V¥ and V¥ are projectively equivalent.

Proof. First, we have w'(§) —w(§) = 0 and R,* (W —w) = w’ — w. Hence we
have w' — w = 7*p for some 1-form on M. 2) follows from Remark and
Lemma 3) follows from 2) and Lemma O

Theorem 4.22. Fix a TW-connection NV on TE(M) and a connection form w on
E(M). Then, there is a one-to-one correspondence between the set of connection
forms on E(M) and the set of linear connections in the projective equivalence class
represented by V<.

Proof. Let D be a linear connection projectively equivalent to V. There is a 1-
form p such that D — V¥ = n%lp ®id + n%lid ® p. If we set w’ = w + 7*p, then
we have V¥ = D by Theorem Suppose conversely that V<1 = V<2, Then
w; = wy by Lemma2.14] O
Definition 4.23. If w is a gl,,(R)-valued 1-form, then we set R(w) = dw + w A w.

Needless to say that R(w) is the curvature form if w is a connection form of a
linear connection.

Lemma 4.24. The curvature form of a TW-connection with respect to ¥ is given
by

N _ 1
R(w):dw+w/\w:<da+a/\a —dr A B oz/\dx>‘

n+1
The TW-connection is torsion free if and only if o N\ dx = 0 and f N\ dx = 0,

Proof. We have

dw +w A w
=dw +uW' AW
1 A Lydz™t dx 1 I, dx"t dx A
ntl’ 0  dz"t')  pr1\ 0 dantt) ¥

N 1 L, daz" dx A I, dx" dx
(n+ 1>2 0 d{[}"+1 0 dxn+1

_(da+a/\a 0) 1 (aAdx"“erx”“Aaerx/\ﬁ aAd:v)

d+BAa 0) n4+1 BAda™ T+ dz" A B B A dx
_(da+ana 0) 1 dr N3 aANdx
“\ag+8ra o) "1\ 0o Bade)
If V is torsion-free, then we have (a A dz)" = o jpdz® A dz? = 0. Similarly, we
have 5 A dx = 0. The converse is easy. 0

In view of Definition [I.5] we introduce the following
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Definition 4.25. We regard the curvature form dw + w A w as being valued in
pgl, 1 (R) = m @ gl,(R) @& m*, and represent the curvature form as (o', p';, p;).
We call p' the rorsion and (p';, p;) the curvature of V as a projective connection.

Lemma 4.26. We have

- 1
b= — Ad
p AT,

. 1
i _ __1 - I
pj=da+ala n+1(da:/\5 B Adxly,),
=da+aANa+ds NG — B Ndxl,,
p; =dB+ BN«
= —(n+1)d8 + 5 Na),

where 3/ = ——5p.
Definition 4.27. We define the Ricci curvature Ric(V) of a TW-connection V by
RIC(V)]k
= pijik
daty, Oty . 1
= 893]" - 893’1 + o'y — alypal i — n—H(nﬁjk — Bik + Bix — Bry)
aOéi ik 80/ i i i 1
= 8:(:]" - 8—1:2 + a'yia7 i — atppal o — n—_H(nﬁjk — Bij)-

The fundamental theorem for TW-connections by Roberts [[7] holds in the fol-
lowing form in the present setting.

Theorem 4.28. Suppose that dim M > 2 and a projective structure is of M is
given by an affine connection V ;. Let V), be the canonical positive odd scalar
density on E(M) and jiyy the reduced torsion of Vs regarded as a form on E(M)
by pull-back. Then, there exists a unique TW-connection V such that

1) VU = —pupy @ Uy

2) V is Ricci-flat.

3) V induces the given projective equivalence class on M.

Moreover; there is a unique connection on E(M) such that o is the connection

Sform of Ny with respect to < ppe
xl

1<i<n

Indeed, if {I" .} denotes the Christoffel symbols of V y;, then we have
i % 1 % a a i a a
ajk:ij—m(5k(F aj‘i‘r ja)+(5j(F ak‘i‘r ka))y
1 Dt Ouny . .
ﬁjk = n—1 (n ( 3;2' + 8xk’] — UM jg — & jbOébak

80/@- (9,uMk b
+ = + — — Upa® 'k — QM0 | )
( ozt Oz HMaQ kj Kb aj
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a 0) 1 I, dx" dx
B 0 n+1 0 dz"t

is the connection matrix of ¥V with respect to .%. The connection of E(M) is given
by w = %(Faaj + Faja).

where

Proof. Let {I'"';.} be the Christoffel symbols of Vj, and set o = (I'";zdz*). If
we fix a connection w = fdx + dz™*! on £(M), then a TW-connection is given by
ol — n%l(]nfda: +drf) 0\ 1 Ldx"!  dx
df+n+r1fd93f—faH—|—5H 0 n+1 0 dx™t
m*-valued 1-form (see Remark |4.18). Note that even if we replace V by a projec-
tively equivalent connection, then w is modified while the TW-connection remains

, where 37 is an

in the same form. We have
VU = (—(a)jda? + fida?) @ Uy = (=T%;da? + fda?) @ Uy
By the condition 1), we have I'*,; — f; = (I'*; — I'*},) so that
1 « o
fi= §(F oj T T%a).

Ifset o = o — (I, fdr +dof) and 8 = df + =5 fdxf — fa' + B, then we
have by the condition 2) that

aOZijk _ 80/]-1-

ox? oxk

It follows that 3;), are given as in the statement. Conversely, if we define o’;;, and

+a'yia i — b’y — n—H(nﬂjk — Br;) = 0.

Bji as in the statement, then V is a TW-connection with the required properties.
Since o 1 and [ are independent of w, V is unique. ]

It is natural to introduce the following

Definition 4.29. We call the TW-connection given by Theorem the normal
TW-connection.

Remark 4.30. If we only require uniqueness of normal TW-connections, then we
can modify the normalizing conditions 1) and 2) in Theorem by similar rea-
sons as in Remark[2.22] The conditions are so chosen that components of the normal
TW-connections coincide with the normal Cartan projective connections up to mul-
tiplication of constants. Actually, o ;. and ' i, coincide with I1' ;. and 115, given by
Proposition 2.21]

Remark 4.31. Suppose that the projective structure in Theorem is torsion-free.
Then, V), is always torsion-free so that the condition 1) reduces to VV,; = 0,
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which is independent of 'V ;. In addition, we have

Oéijk = Fijk — nr 1(6ikF“aj + 5ijFaak),
n+1 (0l .
Bk = ( G~ ek ) -

Remark 4.32. If we allow to modify the torsion keeping the geodesics, then we
can uniquely find a TW-connection which corresponds to the Hlavaty connection
(Remark 2.27). We can also uniquely find a TW-connection which corresponds to
the connection of which the Christoffel symbols are { (I ;i + T'y;) }.

5. STRUCTURAL EQUIVALENCES OF TW-CONNECTIONS
We continue to follow the arguments in [/7]].

Definition 5.1 ([8]). TW-connections V and V' are said to be structurally equiva-
lent if V and V' induce the same projective structure.

Theorem 5.2. TW-connections V and V' are structurally equivalent if and only if
there is a (0, 2)-tensor 3 on E(M ) such that

(5.22) {Lfﬁ 0
B(£,€) =0,
and
(5.2b) V' =V + (tf) ®id +id ® (18) — B&E,

where 1.3 = B( - ,§). Such a B is unique. If NV and V' are torsion-free, then f3 is
symmetric.

Before proving Theorem [5.2] we show the following
Lemma 5.3. If the condition holds, then there is a 1-form 3 on M such that
e =mp.
Proof. Let ¢ be the usual inner product. We locally represent 3 as 3 = 3;;dx’ @ dx?.
We have ;3 = Bint+1dx’. On the other hand, we have 0 = L¢3 = 9B dr' ®

Oxnt1
j aﬁi,nJrl i 8ﬁn+l,n+1 ;
dz’. Hence we have 1¢(1z3) = 0 and 1ed(1;3) = oy dz* — Tdaﬂ =
ve(LeB) = 0. O

Remark 5.4. If (5.2b)) holds and if w is a connection form on E(M), then we have
VY =VY+B®id+1id® b.
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Proof of Theorem The proof is essentially identical to that of Theorem 3.6 in [[7].
Keep in mind that connections need not be torsion-free. First assume that there ex-
ists a 3 which satisfy (5.2a)) and (5.2b). If we set

V=V+h)@id+id (f) — BRE,

then V is a TW-connection. Note that [ is invariant under the R-action because
L¢fB = 0. Let now w be a connection form on £(M) and X, Y € X(M). If X and
Y denote horizontal lifts of X and Y, then we have

VgV = VgV + 7 B(X)Y + 7 B(Y)X — B(X,Y)¢
for some 1-form 3 on M. Hence we have
(2) VEXY = VEXY + B(X)Y + B(Y)X,

which means that V¥ and V are projectively equivalent. Hence V and V are struc-
turally equivalent. Suppose conversely that V and V are structurally equivalent. If

we fix a connection form w, then
Ve =VY+B®id+id® B
for some 1-form 3 on M. We set, for X,Y € X(E(M)),

BIX,Y) =w(VgV —VV) + 1 B(X)w(Y) + 7BV )w(X).
It is clear that 3 is a (0, 2)-tensor. We have L¢3 = 0 and 5(£,£) = 0 because
V and V are TW-connections. If in addition V and V' are torsion-free, then 3 is

symmetric. We will show that the equality (3.25) holds. Let X,Y € X(£(M)).
First assume that X and Y are horizontal lifts of X, Y € X(M). Then, the equality

—~——

(5.2K) holds. If VY and V<Y denote the horizontal lifts of V<Y and V¥ Y,
then we have

VeV = VeyY +w(VgY)E,
ViV = VeyY +w(VgY)E,

It follows that

—~——

VxY = VeyY +w(VyY)E
= VeyY + TB(X)Y + 7 B)X +w(VxY)E
=VyY —w(VxY)E+ 7 BX)Y + mB(Y)X +w(VyY)E.
On the other hand, we have

B(X)

w(V g€ — V) +1B3(X)
B(X).
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Similarly, we have ¢ B(Y) = B(Y). Hence we have
VxY = VyY —w(VxY)E+ T BX)Y + 7 BY)X 4+ w(VyY)E
= VY + 4 BX)Y + (V)X +w(VxY = VxY)¢
= VxY + 4 B(X)Y + (V)X — B(X,Y)E.
Next, we assume that Y = £. We have 3(X,Y) = 7*B(X) so that

V€ + tBX)E + UBE)X — BIX,€)E
1 ~
n 4+ 1X
= Vzé.
We assume lastly that X = &. We have
VeY + uBE)Y + BV )E - BEY)E
= VY + 4 B(V)E —w(VeY = VeV )g — BV )¢
— 9.7

Therefore, the equality (5.2b) holds. Finally, suppose that 5’ also satisfy the equal-
ities (5.24) and if we replace /3 with 3'. Then we hazle el = B and e = B
for some 1-forms § and §’. By Remark we have 3 = . On the other hand, we
have

VLY = VgV = i BX)Y + 4 B(YV)X = B(X, V)¢

= BX)Y + B)X - B(X, V)€

Similarly, we have

VLY - ViY =B(X)Y +B(Y)X — (X, Y)E.
Hence we have 5 = /3'. O

6. EXAMPLES

We introduce examples of which the torsions are non-trivial and the curvatures
are trivial.

Let T? = R?/7Z? be the standard torus and (!, 2%) the standard coordinates. We
study projective structures of 7 which are curvature-free and invariant under the
standard T action. First of all, Christoffel symbols of connections are constants.

Let

T = {projective structures of 7 invariant under the 7-action and is curvature-free},
T' = {7 €T | 7 is with torsion}.

Let w = (w',w';,w;) denote the normal projective connection associated with
the projective structure given by an affine connection V, o the section given by
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Proposition Let (7, QF;,Q;) be the torsion and the curvature of w. We have
o*w' = dx'. We have naturally P?(7?) = T? x G*. If P C P?*(T?) is a projective
structure, then we have P = T2 x H?> C T? x G>.

Example 6.1. We consider an affine connection V of which the Christoffel sym-
bols are

1 1
rt..,=1 1t,=_= ', =—= 1., =0
11 ) 12 27 21 2; 22 )
3 1
rZ,=1. 1%,=-=- 2, =—=-. 12%,=—-1.
11 ) 12 27 21 27 22

We set g = (6%, —T"j%) € G2, which does not belong to H? because 'y, # I'%),.
We define oq: T? — P?*(T?) by o(p) = (p, g) and define an H?-subbundle P of
P*(T?) by

P={ue PXT?|3peT? heH? u=oy(p).h}.

We have 'Y, = %, I'“p = —%, 'y, = g and ['%y, = —% so that

p=—1, p2=0,
1 1

VW = —= Vy = —.

2 2
It follows that

My =0, I'yy=0, Iy =0, II'yp=0,
%y =1, IPp=1, %y = —1, I’ =0,
IT;; = -1, II;» =0, IIy; =0, [Ty = 0.
We have therefore that
N =0, 0*0% = —2dz' Ada?,
o* Q) =0,
o Q,; =0.
Hence the connection V gives an element of 7 of which the torsion is non-trivial.
The normal TW-connection which corresponds to V is given as follows. We

have £(T?) = T? x R. Let t be the standard coordinate for R. Then, the normal
TW-connection is given by

I, dz®  Ilypdz® 0 1 dt 0 dz!
w= | II?*,dz* Py, dz® 0| —=1|0 dt da?
3 de® —3ydz® 0) S \0 0 dt

0 0 0 dt 0 dz!
= |dxt +dx® —dz' 0] — 0 dt dx?
3dz! 0 0 0 0 dt

Y

W —



28 TARO ASUKE

which is with torsion. We have

0 0 0
Rw)=10 0 2da'Adz?
0 0 0

so that w is with torsion as a projective connection. On the other hand, w is
curvature-free. The correspondence between (Q°, Q';, ;) and the components of
R(w) is given by Lemma[4.26]

Projective structures with torsion are abundant even if we assume the curvatures
to be trivial.

Theorem 6.2. The space T is a cubic subvariety of R® of dimension 4. The space
T is an open subvariety of T and induces a subvariety of RP® of dimension 3.

If we work in the complex category, then RS and R P are replaced by C® and CP°.

Proof. We make use of notations in Lemma Let ¢'; = II';dz* and ¢; =
I1,.dz*. We have
Hji = Haaj - _Hajam

where p is the reduced torsion. This is equivalent to

(6.2-1) 21T 1 + 1%y + 1?15 = 0,
(6.2-2) 201%5y + Ity + Iy = 0.
‘We have
1
Wiw =3 (2(paI1% + 115117 o) + (eIl + T1%6117) ) -

It follows that

1

Wik =3 (2(—T17 0810 e + 1125117 ) + (=117 10% + T1%611%,))

If j = k, then we have
—I1P o pI1%y + 116107 0y = —IT' 40Ty — I 117y — T1% 00 gy — T1%5000%
+ ' Iy 4 T TPy 4 T2 Ty + T2 0117
= —IPP 0Ty — P9Il + I pI1% )y + I1%1511%,,
_Hﬁaﬁﬂa22 + HaQﬁHﬁQQ = —I1 ) T gy — Y9 TPy + T gy Iy + 112, IT 9.
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If © # j, then we have
—I17 5 11% 0 + %1511 g = —T1' 41T g5 — I T2 — T1% 45005 — ITP001% 5
+ ' 1T g + I oTT% 0 + 11244 T 9p + 11715117,
= —II'y 115 + %4119
117 05 T1%; + %117 oy = —T1' 1119y — Ty TP — T1% 30015y — 1250112
+ Ty Ty 4 T 9eT1% ) + [Py gy + [129001%
= —IIP 50T ) + I oI,

Hence we have

(6.2-3) Ty = —IP 0Ty — TP9elT?yy + MY oIT?y + 1124011,
(6.2-4) [y = Iy = —T12 oI gy + M'opIT?)y,
(6.2-5) Il = —IT' 1T g — M9y ITP0p + IT'9 1Yo + TP 1T 90

These are the defining equalities for II;;.
On the other hand, we have

QO — —ITtyy + Iy
—IT%5 + 1%y

Qi. _ ngkHQUdZUk A d.CEl (Hllknlm + HIripgl)d.Tk A diEl

J (H21kH111 + H22kH21l)dl’k VAN dl’l H21kH121dl’k VAN del
i 2115 — Il 1155

—IIyy —21Io; + Iy
Qj = ((Hlkﬂlu + HQkHQU)dIk A dzt (HlkH12l + HngZQZ)dﬁL'k A dwl) .

) dzt A da?,

) dz' A da?,

The projective structure is with torsion if and only if we have

(6.2-6) Ty #£ Iy or I # Py,

while it is curvature-free, namely, (Q2';, ;) = (0, 0) if and only if we have
(6.2-7) 151 11%5 — IT'9oIT?14 4 2104 — Iy = 0,

(6.2-8) Iy 1Ty — T o IT gy + TTY g 1290 — T 90117y + ITpp = 0,
(6.2-9) 1%, 1Ty — T2 0Ty + T2, 1% 5 — I1P9001% — 1Ty = 0,
(6.2-10) 1?09y — T1%15IT' 9y — 2009y + II;p = 0,

(6.2-11) 31Ty — oIy + oy IT%5 — gpIl%yy = 0,

(6.2-12) I3, 11 9y — TIT' gy + TMp 1205 — T9pT1%5 = 0.

The equalities (6.2-8)) and (6.2-9) are equivalent to the equalities (6.2-5)) and (6.2-3).
The equalities (6.2-7)) and (6.2-10) are equivalent to the equality (6.2-4). Hence we
always have 2'; = 0.

We consider 7 = (IT!y, 'y, [T 9y, T2, T12%19, IT29;) as coordinates. Let F'(7)
be the left hand side of the equality (6.2-11)) and G(7) be the left hand side of the
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equality (6.2-12). We have
1 3 3
F(r) = §H212H212H112 + 51_[2121_[2211_[112 + §H112H211H112
3 1
- §H212H121H212 - §H212H121H221 + H122H211H212

1
- §H121H121H211 - H121H112H211 - H221H122H211

1

= ST o011 (I — ITYgy) + T1% 3010y (1T — ITYgy) — T1% 3000 gy (11745 — I1%5)

2
1

1
+ —H212H221(H112 — H121) + —(H112H112 — H121H121)H211 + H112H211(H112 — H121)

2 2
+ H122H211(H212 - H221)-

Similarly, we have

1 3 3
G(r) = —§H121H121H221 - §H121H112H221 - §H221H122H221

3 1

+ §H121H212H121 + §H121H212H112 — T2 I oIy
1

+ T2 o112 5T gg + T12 151129 T gy + 11112 Iy

2
1

= SIT oy [Ty (T2 — T1%gp) 4 Ty T 4o (I — TT2g;) — Ty T2 (T — TT'yy)

2
1

1
+ ST IT o (T2 — TT2%9)) + = (T12 1011219 — TT%9 11200 )T 9g + 11291 T gy (1175 — T12%5))

2 2
+ Iy T gy (I 15 — ITYyy).
Suppose conversely that we can find 7 = (IT';;), where (4, j, k) # (1,1,1),(2,2,2),
such that F(1) = G(7) = 0. We define IT'}; and IT%y, by and (6.2-2), and
I1;; by (6.2-3), (6.2-4) and (6.2-5). Then, the projective structure determined by 7
is curvature-free. It is with torsion if and only if the condition is satisfied.
Therefore, we have

T =A{r='%) | F(r) = G(r) = 0}.

Note that if 7 € T is torsion-free, then 7 is flat, because 7 is curvature-free. In this
example, if we assume 11!, = IT'y; and 11?15 = T1%, then F(7) = G(7) = 0 are
equal to zero so that 2; = 0. This is analogous to the case of dimension greater
than two. In the latter case, the vanishing of €2; is guaranteed by Proposition

Affine connections which induce a given normal projective connection is ob-
tained as follows. Let vy, 5 € R be arbitrary, and set I, = IT";, — (0" ;v + 8%, v;)

1, 1=

for <i7j> k) 7& (1?171)7(27272)’ where 5ij - {0 % .
y VFE]

(D% +T%4) = =61y — 2Ty — I1P9y — [P0 414 4+ 14 = —4vy — 20y 4 20Ty,
Hence we have I1';; = I''}; + 2v;. Similarly, we have 11255 = 1'%y + 2u5. Thus
defined affine connection induces the projective structure given by 7 = (II';x).

". We have then —61; —
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Finally, let F" ), = and G'j;, = ——. We have

1 1
F112(7) = §H212H212 + 1215112 + §H212H221 + o112
+ 2001 T1% ) — T2, Yy,
1 1

F121(7—) = _§H212H212 - 1_[2121_1221 - 1_[212(1_[212 - 1_[221) - §H212H221

— I 1%y — 117,
F122(7') = H211(H212 - H221),
Fu(r) = %(Hluﬂlu — I T gy) 4 MM p (I — TThgy) + I oo (T4 — IT%y),
F?o(7) = TP (g — y) 4 [Py (IT — ITYyy) — 201715109y + 19,1175
1

+ §H221(H112 —IT'yy),
F21(1) = IPp(IT' g — I'gy) 4 I p500 Yy + %H212(H112 — IT'y;) — 117,
Gha(1) = 11"y (I — IT%5) — 'y 11%5 — %H121(H221 — I1%5) + I ',
Gloi(1) = —I1'g  (ITPgy — IT%) — Mo (TP — I1%p0) + 21T 1175 — 115101,

- %H112(H221 —I%15),
G'o(r) = —%(H221H221 — I 117 15) — [Py (I — I1%yp) — 1%y (ITYyy — 1T'yy),

G211(T) = —H122(H121 - H112),
1 1

G212(T) = §H121H121 - 1_[1211_[112 + H121(H121 - H112) + §H121H112
+ T2 51T gy + T2, Ty,

1 1
G2y (1) = —§H121H121 — Iy Iy — §H121H112 — T2, IT' 9y

— 2017 I 5 + I 5T,
If IT'15 = IT'5; and if 112}, = I12,;, then we have
(1) = 2(I% 5 I1% 5 + 115117y ), (1) = —II' oI + I golT%
a1(7) = —2(IP oI5 + 1T pI1% ), Gloy(7) = 1T oIy,
F122(7):F21():()7 G122(T)2021<>—O
(1) = (7)
(7) (1) =

F a1 Glio(r

T

—TT* o112, G?1o(7) = 2(TT o1 5 + 171511 yy),

= 1_[1121_[ 12 — H122H211> 0221 T ( 12H 12 + H 12H 22)-
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Hence (E;_F(T) c;_G(T)) is of rank 2 for almost every 7. If 7 € T, then we have
T

-
'y # II'y; or I1?15 # II%y;. In particular, one of IT'5, IT'5;, 112}, and 1125, is

non-zero. Hence 77 induces an open subvariety of RP5. U

An open subset of dimension 4 of 7 exists by the implicit function theorem,
however, it seems difficult to find explicit ones. We will present a family of elements
of 7 with three parameters.

Example 6.3. Suppose that IT'}, = IT'y; = II'y, = 0. Then we have F(7) =
G(7) = 0 and IT%5, = 0. It follows that

I, = —T12 00 + 112,112,

3 1
= §H212H221 + §H212H212,
I =1y =0,
HQQ - O
Let a = I1%,,, b = 11?5 and ¢ = I1%5,. The normal TW-connection is given by

—eds! 0 0\  [dt dz!
W= adr' +bdx®  cdxt 0] — 3 dt  dax?
—3(Bbc+b*)dzt 0 0 dt

We have Q' = 0 and Q* = (b — ¢)dz' A dz?. The torsion of w is equal to
—b0+ c) dz' A dz?. By setting a = b = 1 and ¢ = —1, we obtain Example

Note that the ratio a : b : ¢ is relevant.
We have another kind of a one-parameter family.

Example 6.4. Let I1';, = —II'5; = sinf and 1%y, = —II2;5 = cosf. We have
IT'y, = 11?5, = 0 by (6.2-1) and (6.2-2)). On the other hand, we have
F(7) = 2(sin® § — (cos 0)IT'9) 1?1,
G(7) = —2(cos? 0 — (sin §)I1% 1 )IT 9.
1) If sin@ = 0, then we have cos # 0. Since G(7) = 0, we have Ty, = 0.

Hence 11,5 = I13; = 0 by (6.2-4). We have I1;; = —1 and I15; = 0 by (6.2-3)
and (6.2-3). The normal TW-connection is given by

0 0 0 1 dt dz!
1?1 det £ dx? Fdz' 0 — = dt dz? |,
3dz! o o) 3 dt

where the double signs correspond and 1%, is arbitrary.
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2) If cos § = 0, then the normal TW-connection is given by

+dx? Fdr' + M'odx? 0 1 dt dx?
0 0 0| —= dt da?
0 3da? 0 3 dt
3) If sinf # 0 and if cos f # 0, then either IT'5; = I1%;; = 0 or [T'y, = Sggjg,
%, = C;fee. In the first case, the normal TW-connection is given by
sinfdx? —sinfdz! 0 | [dt dat
—cosfdxz® cosfdx' 0| — 3 dt dx?
0 0 0 dt
In the second case, the normal TW-connections is given by
sin Odx? — sin Odz! + %d:ﬁ 0 dt daxt
%dwl — cos Odx? cos Odz? 0] — 3 dt dz?
0 0 0 dt
In the both cases, the torsion is given by 2 [ zgéz dx' A dx?. Hence the ratio
K5 : K2, can take any value. The latter connection can be slightly generalized as
7 sin? 6 cos Odx? —7(sin® @ cos fda! + sin® Odz?) 0 dt dz?
r(cos? Odx' — sin 0 cos® Odx?) 7 sin 6 cos® Odx? 0]—= dt  dx?
0 0 0 dt

of which the torsion is given by 2r sin @ cos 6 (_ (S;)I; g) dxt A dx?.
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