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TARO ASUKE

ABSTRACT. We show that projective structures with torsion are related to con-
nections in a parallel way to the torsion-free ones. This is done in terms of Cartan
connections by following Kobayashi and Nagano. For this purpose, we make use
of a bundle of formal frames, which is a generalization of a bundle of frames.
We will also describe projective structures in terms of Thomas–Whitehead con-
nections by following Roberts. In particular, we formulate normal projective con-
nections and show the fundamental theorem for Thomas–Whitehead connections
regardless the triviality of the torsion. We will study some examples of projective
structures of which the torsion is non-trivial while the curvature is trivial. In this
article, projective structures are considered to be the same if they have the same
geodesics and the same torsions.

INTRODUCTION

Projective structures are quite well-studied. They can be described by Cartan
connections and frame bundles, as studied by Kobayashi and Nagano [5], et. al.
Projective structures can be also described in terms of Thomas–Whitehead connec-
tions (TW-connections for short) which are linear connections on a certain line bun-
dle [7]. Associated with projective structures are torsions, which are 2-forms. If the
torsion of a projective structure vanishes, then the structure is said to be torsion-free
or without torsion. Actually, the above-mentioned studies are done in the torsion-
free case. One of the most fundamental results is the existence of normal projective
connections [5, Proposition 3] which is a Cartan connection of special kind. A
corresponding result for TW-connections is known as the Fundamental theorem for
TW-connections [7]. On the other hand, linear connections always induce projec-
tive structures even if they are with torsions. In this article, we study how linear
connections with torsions induce projective structures. Indeed, we will study pro-
jective structures with torsion and show that they can be treated in a parallel way
to the torsion-free case. For this purpose, we need a notion of formal frame bun-
dles [1] which is a generalization of frame bundles. Usually, a 2-frame at a point is
given by a pair (aij, aijk) ∈ GLn(R)×Rn3 such that aijk = aikj . The symmetricity
condition is quite related with torsion-freeness and we have to drop this condition
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in order to deal with torsions. This leads us to formal frames. A formal 2-frame at a
point is a pair (aij, aijk) ∈ GLn(R)× Rn3 . We refer to [1] for the precise definition
and details of formal frames. Expecting a better understanding of the torsion, we
will study some examples of projective structures of which the torsion is non-trivial
while the curvature is trivial. Finally, we remark that a slightly different approach
to projective structures with torsion is presented in [6, Section 7].

In this article, projective structures are considered to be the same if they have the
same (unparameterized) geodesics and the same torsions except last part of Sec-
tion 2. Throughout this article, (U,φ) and (Û , φ̂) denote charts, and ψ denotes the
transition function. Representing (local) tensors, we make use of the Einstein con-
vention. For example, aiαbαjk means

∑
α a

i
αb

α
jk. The range of α will be from 1 to

dimM or from 1 to dimM+1. We basically retain notations of [5] and [7]. Finally,
the order of lower indices of the Christoffel symbols are reversed in this article (see
Notation 2.15).

1. CARTAN CONNECTIONS

We recall basics of Cartan connections after [4]. We will work in the real cate-
gory, however, we can work in the complex category (not necessarily the holomor-
phic category) after obvious modifications.

Let G be a Lie group and H a closed subgroup of G. We assume that P is a
principal H-bundle over M . In what follows, the Lie algebra is represented by the
corresponding lower German letter, e.g., g will denote the Lie algebra of G.

Definition 1.1. A Cartan connection is a 1-form ω on P with values in g which
satisfies the following conditions:

1) ω(A∗) = A for any A ∈ h, where A∗ denotes the fundamental vector field
associated with A.

2) Ra
∗ω = Ada−1 ω for any a ∈ H .

3) ω(X) ̸= 0 for any non-zero vector X on P .

Notation 1.2. In what follows, we assume that G = PGLn+1(R) = GLn+1(R)/Z,
where Z = {λIn+1 | λ ̸= 0}. Let [x0 : · · · : xn] be the homogeneous coordinates
for RP n, and H ⊂ G the isotopy group of [0 : · · · : 0 : 1]. Finally we set m = Rn,
which is understood as a space of column vectors, and let m∗ denote its dual.

Definition 1.3. We set

G0 =

{(
A 0
ξ a

)
∈ GLn+1(R)

∣∣∣∣ a detA = 1

}/
Z,

G1 =

{(
In 0
ξ 1

)
∈ GLn+1(R)

∣∣∣∣ ξ ∈ m∗
}
.
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Note that G1 is naturally a subgroup of G and G0. We have

g0 =

{(
A 0
0 a

) ∣∣∣∣ trA+ a = 0

}
,

g1 =

{(
0 0
ξ 0

)}
.

If we set

g−1 =

{(
0 v
0 0

)}
,

then we have
g = g−1 ⊕ g0 ⊕ g1.

We have g−1
∼= m, g0 ∼= gln(R) and g1 ∼= m∗ so that g ∼= m ⊕ gln(R) ⊕ m∗. We

also have h ∼= gln(R)⊕m∗. The identifications are given by(
0 v
0 0

)
∈ g−1 7→ v ∈ m,(

A 0
0 a

)
∈ g0 7→ U = A− aIn ∈ gln(R),(

0 0
ξ 0

)
∈ g1 7→ ξ ∈ m∗.

Note that U ∈ gln(R) corresponds to
(
U 0
0 0

)
− 1

n+ 1
(trU)In+1. Under these

identifications, the Lie brackets are given as follows. Let u, v ∈ m, u∗, v∗ ∈ m∗ and
U, V ∈ gln(R). Then, we have

[u, v] = 0,

[u∗, v∗] = 0,

[U, u] = Uu ∈ m,

[u∗, U ] = u∗U ∈ m∗,

[U, V ] = UV − V U ∈ gln(R),
[u, u∗] = uu∗ + u∗uIn ∈ gln(R).

In what follows, we always make use of these identifications. If ω is a Cartan
connection on P , then we represent ω = (ωi, ωi

j, ωj) according to the identification
g = m⊕ gln(R)⊕m∗.

Remark 1.4. Each element g of PGLn+1(R) admits a representative of the form(
A ξ∗

ξ 1

)
. By associating g with (ξ, A, ξ∗), we can consider (ai, aij, aj) as coordi-

nates for PGLn+1(R). With respect to these coordinates, we haveH = {(0, aij, aj)}.
Let o = [0 : · · · : 0 : 1] denote H ∈ PGLn+1(R)/H . If h = (0, aij, aj) ∈ H and if
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x = (xi) = [x1 : · · · : xn : 1] is close enough to o, then we have

h.x =
aijx

j

ajxj + 1

= aijx
j − aijx

jakx
k + · · ·

= aijx
j − 1

2
(aijak + aikaj)x

jxk + · · · .

Definition 1.5. Let ω = (ωi, ωi
j, ωj) be a Cartan connection on P . We set

Ωi = dωi + ωi
k ∧ ωk,

Ωi
j = dωi

j + ωi
k ∧ ωk

j + ωi ∧ ωj − δijωk ∧ ωk,

Ωj = dωj + ωk ∧ ωk
j.

We call Ωi the torsion and (Ωi
j,Ωj) the curvature of ω, respectively.

We refer to (Ωi
j) as the curvature matrix of ω and consider trace of it.

We have the following

Proposition 1.6 ([5, Proposition 2]). . We can represent the torsion and the curva-
ture as

Ωi =
1

2
Ki

klω
j ∧ ωk, Ki

lk = −Ki
kl,

Ωi
j =

1

2
Ki

jklω
k ∧ ωl, Ki

jlk = −Ki
jkl,

Ωj =
1

2
Kjklω

k ∧ ωl, Kjlk = −Kjkl,

where Ki
kl, Ki

jkl and Kjkl are functions on P .

Remark 1.7. If ω is a Cartan connection on P , then we have the following:

a) ωi(A∗) = 0 and ωi
j(A

∗) = Ai
j for anyA = (Ai

j, Aj) ∈ h = gln+1(R)⊕m∗.
b) Ra

∗(ωi, ωi
j) = Ada−1(ωi, ωi

j) for any a ∈ H .
c) Let X ∈ TP . We have ωi(X) = 0 if and only if X is vertical, namely,

tangent to a fiber of P →M .

Proposition 3 in [5] holds in the following form. A point is that we do not need
the condition Ωi

i = 0. See also Remark 2.6.

Proposition 1.8. Let ωi and ωi
j satisfy the conditions in Remark 1.7. Then, there

is a Cartan connection of the form ω = (ωi, ωi
j, ωj). If n ≥ 2, there uniquely

exists a Cartan connection such that Ki
jil = 0, that is, ω is Ricci-flat. If moreover

n ≥ 3 and if ω is torsion-free, then Ωi
i = 0, namely, the curvature matrix (Ωi

j) is
trace-free.

Proof. First we show the existence of a Cartan connection. Let {Uα} be a locally
finite open covering of M and {fα} a partition of unity subordinate to {Uα}. Let
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π : P → M is the projection. Suppose that for each α, there is a Cartan connection
ωα on π−1(Uα) such that ωα = (ωi, ωi

j, ωj,α) for some ωi
j,α. If we set ω =

∑
(fα ◦

π)ωα, then ω is a Cartan connection of the form (ωi, ωi
j, ωj). On the other hand,

we may assume that π−1(Uα) is trivial. We fix a trivialization π−1(Uα) ∼= Uα ×H .
If (x, h) ∈ Uα × H and if Y ∈ T(x,h)P , then we can represent Y as Y = X + A,
where Y ∈ TxM and A ∈ h. If we set ωα(Y ) = Ada−1(ωi(X), ωi

j(X), 0) + A,
then ωα is a Cartan connection of the form (ωi, ωi

j, ωjα).
From now on, we assume that n ≥ 2. We show the uniqueness. Suppose that ω =

(ωi, ωi
j, ωj) and ω′ = (ωi, ωi

j, ω
′
j) are Cartan connections as in the proposition. By

the conditions a) and c), we have ωj − ω′
j = Ajkω

k for some functions Ajk on P .
We have

Ωi
j − Ω′i

j = ωi ∧ (ωj − ω′
j)− δij(ωk − ω′

k) ∧ ωk.

It follows that

Ki
jkl −K ′i

jkl = −δilAjk + δikAjl + δijAkl − δijAlk.

Therefore, we have

Ki
jil −K ′i

jil = −δilAji + δiiAjl + δijAil − δijAli

= (n− 1)Ajl + (Ajl − Alj)

= nAjl − Alj.

It follows that

(1.8a) Ajk =
1

n2 − 1
(n(Ki

jik −K ′i
jik) + (Ki

kij −K ′i
kij)).

Since ω and ω′ are Ricci-flat, we have Ajk = 0.
Next, we show that the existence of a Cartan connection which is Ricci-flat. Let

ω′ be a Cartan connection of the form (ωi, ωi
j, ω

′
j) which is not necessarily Ricci-

flat. If ω is a Cartan connection which is Ricci-flat, then we have by (1.8a) that

(1.8b) Ajk = − 1

n2 − 1
(nK ′i

jik +K ′i
kij).

If we conversely define Ajk by the equality (1.8b) and set ωj = ω′
j + Ajkω

k, then
(ωi, ωi

j, ωj) is a desired Cartan connection.
Finally, we assume that ω is torsion-free. Then Ωi

i = 0 by Proposition 1.9
provided that dimM ≥ 3. □

Proposition 1.9. Suppose that n ≥ 3 and let ω = (ωi, ωi
j, ωj) be a Cartan connec-

tion. Then, we have the following:

1) If dΩi + ωi
j ∧ Ωj = 0, then we have Ki

jkl +Ki
klj +Ki

ljk = 0.
2) If dΩi + ωi

j ∧ Ωj = 0 and if Ki
jil = 0, then Ωi

i = 0.
3) If Ωi = 0 and if Ωi

i = 0, then we have Kjkl +Kklj +Kljk = 0.
4) If Ωi = 0 and if Ωi

j = 0, then Ωj = 0.
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Proof. First we will show 1). We have Ωi = dωi + ωi
j ∧ ωj . Hence we have

dΩi + ωi
j ∧ Ωj

= dωi
j ∧ ωj − ωi

j ∧ dωj + ωi
j ∧ (dωj + ωj

k ∧ ωk)

= dωi
j ∧ ωj + ωi

j ∧ ωj
k ∧ ωk

= Ωi
j ∧ ωj

=
1

2
Ki

jklω
k ∧ ωl ∧ ωj.

It follows that Ki
jkl + Ki

klj + Ki
ljk = 0 if dΩi + ωi

j ∧ Ωj = 0. Next, we show
2). Suppose in addition that Ki

jil = 0. Then, we have 0 = Ki
ikl + Ki

kli =

Ki
ikl −Ki

kil = Ki
ikl. Next, we show 3). We have

dΩi
j = dωi

k ∧ ωk
j − ωi

k ∧ dωk
j + dωi ∧ ωj − ωi ∧ dωj − δij(dωk ∧ ωk − ωk ∧ dωk)

= (Ωi
k − ωi

l ∧ ωl
k − ωi ∧ ωk + δikωl ∧ ωl) ∧ ωk

j

− ωi
k ∧ (Ωk

j − ωk
l ∧ ωl

j − ωk ∧ ωj + δkjωl ∧ ωl)

+ (Ωi − ωi
k ∧ ωk) ∧ ωj − ωi ∧ (Ωj − ωk ∧ ωk

j)

− δij((Ωk ∧ ωk − ωl ∧ ωl
k) ∧ ωk − ωk ∧ (Ωk + ωk

l ∧ ωl))

= Ωi
k ∧ ωk

j − ωi
k ∧ Ωk

j + Ωi ∧ ωj − ωi ∧ Ωj − δij(Ωk ∧ ωk − ωk ∧ Ωk).

Taking the trace, we obtain

dΩi
i = (n+ 1)(Ωi ∧ ωi − ωi ∧ Ωi).

If Ωi = 0 and if Ωi
i = 0, then we have ωi ∧Ωi = 0. Hence Kjkl +Kklj +Kljk = 0.

Finally, we show 4). If Ωi = 0 and if Ωi
j = 0, then we have ωi ∧ Ωj = 0 by 3). As

n ≥ 3, we have Ωi = 0. □

2. CARTAN CONNECTIONS, AFFINE CONNECTIONS AND PROJECTIVE

STRUCTURES

We follow the arguments in [5], taking torsions into account.
First, we briefly recall bundles of formal frames P̃ r(M) and groups G̃r which act

on P̃ r(M) on the right [1], where r = 1, 2.
Let M be a manifold, and P r(M) and Gr the bundle of r-frames and the group

of r-jets [4].

Definition 2.1. 1) We set P̃ 1(M) = P 1(M) and G̃1 = G1 ∼= GLn(R).
2) We set G̃2 = GLn(R) ⋉ Rn3 , where the multiplication law is given by

(aij, a
i
jk)(b

i
j, b

i
jk) = (ailb

l
j, a

i
lb

l
jk + ailmb

l
jb

m
k) which is the same as the

one in G2. Indeed, G2 = {(aij, aijk) ∈ G̃2 | aijk = aikj}.

The group G̃2 consists of the 1-jets of certain bundle homomorphisms, and the
bundle P̃ 2(M) is a principal G̃2-bundle which also consists of the 1-jets of certain
bundle homomorphisms. We have P̃ 2(M) = P 2(M)×G2 G̃2.
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In view of Remark 1.4, we introduce the following

Definition 2.2. We define a subgroup H2 of G̃2 by setting

H2 = {(aij, aijk) ∈ G̃2 | ∃ ai, aijk = −(aijak + aja
i
k)}.

We regard (aij, aj) as coordinates for H2.

It is easy to see that H2 is indeed a subgroup of G̃2 isomorphic to H and satisfies
G1 = G̃1 < H2 < G2 < G̃2.

Definition 2.3. 1) A projective structure onM is a subbundle P of P̃ 2(M) with
structure group H2.

2) A projective connection associated with a projective structure P is a Cartan
connection ω = (ωi, ωi

j, ωj) on P such that ωi coincides with the restriction
of the canonical form of order 0 to P . In order to distinguish from TW-
connections, we refer to projective connections also as Cartan projective
connections.

Remark 2.4. Let (θi, θij) be the canonical form on P̃ 2(M). We set Θi = dθi +

θij ∧ θj . Then we have σ∗Ωi = σ∗Θi. We have Θi = 0 on P 2(M). Indeed, this is
just the structural equation. See [1] for details.

Theorem 2.5 (cf. [6, Theorem 7]). For each projective structure P of a manifold
M , there is a projective connection ω = (ωi, ωi

j, ωj) with the projective structure
P . If n ≥ 2, then there exists a unique ω with the following properties:

1) (ωi, ωi
j) coincides with the restriction of the canonical form on P̃ 2(M) to P .

2) Ki
jil = 0.

If moreover ω is torsion-free, namely, if Ωi = 0, then Ωi
i = 0, or equivalently,

Ki
ikl = 0.

Proof. This is a consequence of Proposition 1.8. Indeed, the restriction of the
canonical form satisfies the conditions in Remark 1.7. If n = 2, then the last part
will be later shown as Lemma 2.24. □

Remark 2.6. Theorem 2.5 is well-known in the torsion-free case. Since we do not
assume projective structures to be torsion-free, we need canonical forms on P̃ 2(M)

which realize torsions. A point is that the condition Ωi
i = 0 is not needed for the

uniqueness in Proposition 1.8.

Remark 2.7. Let (U,φ) be a chart. Then, u ∈ P̃ 2(M)|U naturally corresponds
to (ui, uij, u

i
jk) ∈ Rn × GLn(R) × Rn3

, which are called the natural coordinates
([5, p. 225], [1, Definition 1.8]). If u ∈ P 2(M) and if u is represented by f : Rn →
M , then (ui, uij, u

i
jk) = (f i(o), DF i

j(o), D
2F i

jk(o)). The canonical form (θ0, θ1)
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is represented as

θ0u = viαdu
α,

θ1u = viαdu
α
j − viαu

α
jβv

β
γdu

γ,

where (vij) = (uij)
−1.

Definition 2.8. Let n ≥ 2. The projective connection given by Theorem 2.5 is
called the normal projective connection associated with P .

The following is clear.

Proposition 2.9. 1) There is a one-to-one correspondence between the follow-
ing objects:

a) Sections from M to P̃ 2(M)/G̃1.
b) Sections from P̃ 1(M) to P̃ 2(M) equivariant under the G̃1-action.
c) Affine connections on M .

2) There is a one-to-one correspondence between the following objects:
a) Sections from M to P̃ 2(M)/H2.
b) Projective structures on M .

If ∇ is an affine connection, then ∇ corresponds to a section fromM to P̃ 2(M)/G̃1.
Since G̃1 = G1 is a subgroup of H2, ∇ induces a section from M to P̃ 2(M)/H2,
namely, a projective structure. Conversely, given a projective structure, we can find
an affine connection which induces the projective structure because H2/G̃1 is con-
tractible.

We introduce the following definition after [4] (see also Tanaka [9], Weyl [11]).

Definition 2.10. Let ∇ and ∇′ be linear connections on TM . Let ω and ω′ be the
connection forms of associated connection on P 1(M). We say that ∇ and ∇′ are
projectively equivalent if there is an m∗-valued function, say p, on P 1(M) such that

ω′ − ω = [θ, p],

where θ denotes the canonical form on P 1(M).

Note that p necessarily satisfy Rg
∗p = pg, where g ∈ GLn(R).

Remark 2.11. The torsion is invariant under the projective equivalences in the
sense of Definition 2.10. On the other hand, we can consider the usual equiva-
lence relation based on unparameterized geodesics, then any affine connection is
equivalent to a torsion-free one. See Corollary 2.26 and Remark 2.27.

Lemma 2.12. Linear connections ∇ and ∇′ on TM are projectively equivalent if
and only if there is a 1-form, say ρ, on M such that ∇′ −∇ = ρ⊗ id + id⊗ ρ.

Proof. If ∇ and ∇′ are projectively equivalent, then there is an m∗-valued function
p such that ω′−ω = [θ, p]. If x ∈M and if v ∈ TxM , then we fix a frame u of TxM



NOTES ON PROJECTIVE STRUCTURES WITH TORSION 9

and represent v = uw. We set ρx(v) = p(u)w, and we have ∇′−∇ = ρ⊗id+id⊗ρ.
Conversely if ∇′ −∇ = ρ⊗ id + id⊗ ρ holds for a 1-form ρ. Let u = (e1, . . . , en)

be a frame and (e1, . . . , en) its dual. We represent ρ as ρ = ρ1e
1 + · · · + ρne

n and
set p(u) = (ρ1, . . . , ρn). Then we have ω′ − ω = [θ, p]. □

Remark 2.13. Let (x1, . . . , xn) be local coordinates and choose
(

∂

∂x1
, . . . ,

∂

∂xn

)
as a frame. If we represent ρ as ρ = ρidx

i, then we have

(ρ⊗ id)ijk = δijρk,

(id⊗ ρ)ijk = δikρj,

where δij =

{
1, i = j,

0, i ̸= j
.

Lemma 2.14. If we have ∇′−∇ = ρ⊗ id+ id⊗ρ = ρ′⊗ id+ id⊗ρ′, then ρ′ = ρ.

Proof. We have (ρ⊗id+id⊗ρ)(ei, ei) = 2ρ(ei). Hence ρ(ei) = 0 if ρ⊗id+id⊗ρ =
0. □

We will make use of the Christoffel symbols reversing the order of lower indices.
This is convenient when formal frames are considered.

Notation 2.15. We set Γi
jk = dxi

(
∇ ∂

∂xk

∂

∂xj

)
.

Lemma 2.16. Affine connections ∇ and ∇′ induce the same projective structure if
and only if they are projectively equivalent.

Proof. Let Γi
jk and Γ′i

jk be the Christoffel symbols for ∇ and ∇′, respectively.
Then, ∇ corresponds to a section from M to P̃ 2(M)/G̃1 represented by x 7→
σ∇(x) = (x, δij,−Γi

jk). Then, sections σ∇ and σ∇′ determine the same projec-
tive structure if and only if there is an H2-valued function, say a = (aij,−(aijak +

aja
i
k)) such that σ∇.a = σ∇′ . This condition is equivalent to that

(x, aij,−Γi
lma

l
ja

m
k − (aljak + aja

l
k)) = (x, δij,−Γ′i

jk).

holds in P̃ 2(M)/G̃1. The left hand side is equal to (x, δij,−Γi
jk− (δijak+ δ

i
kaj)).

Hence ∇ and ∇′ correspond to the same projective structure if and only if we have
Γ′i

jk = Γi
jk + δijak + δikaj , that is, ∇ and ∇′ are projectively equivalent. □

Remark 2.17. Affine connections decide geodesics and hence projective structures.
The most standard projective structure is the one on RP n and equivalences should
be described in terms of linear fractional transformations even if we allow torsions.
This leads to above definitions. Recall that projective structures are considered
to be the same if they have the same (unparameterized) geodesics and the same
torsions in this article.
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Let ∇ be an affine connection. We will describe the projective structure given by
∇ and the associated normal projective connection. For this purpose, we introduce
the following

Definition 2.18. Let ∇ be an affine connection and {Γi
jk} the Christoffel symbols

with respect to a chart. We define one-forms µ and ν by setting µj =
1
2
(Γα

αj−Γα
jα)

and νj = − 1
2(n+1)

(Γα
αj + Γα

jα). We refer to µ as the reduced torsion of ∇.

Remark 2.19. 1) The differential form Γα
αjdx

j is the connection form of the
connection on E(M) induced by ∇. The other differential form Γα

kαdx
k

also correspond to a connection on E(M). These connections are the same
if ∇ is torsion-free.

2) The differential form −µ = −µjdx
j is a kind of the Ricci tensor of the tor-

sion.

Cartan connections can be found as follows.

Lemma 2.20. Let (ωi, ωi
j, ωj) be a Cartan connection on P . Let σ : U → P be a

section, and set ψi = σ∗ωi = Πi
jdx

j , ψi
j = σ∗ωi

j = Πi
jkdx

k and ψj = σ∗ωj =

Πjkdx
k. Let (aij, aj) be the coordinates for H2 as in Definition 2.2 and (xi, aij, aj)

be the product coordinates for P |U ∼= U ×H2, where the identification is given by
σ. If we set (bij) = (aij)

−1, then we have

ωi = biαψ
α

= biαΠ
α
βdx

β,

ωi
j = biαda

α
j + biαψ

α
βa

β
j + biαψ

αaj + δijaαb
α
βψ

β

= biαda
α
j + biαΠ

α
βγa

β
jdx

γ + biαΠ
α
βajdx

β + δijaαb
α
βΠ

β
γdx

γ

ωj = daj − aαb
α
βda

β
j − aαb

α
βψ

β
γa

γ
j + ψαa

α
j − aαb

α
βψ

βaj

= daj − aαb
α
βda

β
j − aαb

α
βΠ

β
γδa

γ
jdx

δ +Παβa
α
jdx

β − aαb
α
βΠ

β
γajdx

γ.

Let U be a chart of M and xi the local coordinates on U .

Proposition 2.21. Suppose that n ≥ 2 and let ω = (ωi, ωi
j, ωj) be the normal

projective connection for the projective structure P determined by ∇. Then, there
is a unique section σ : U → P with the following properties:

1) We have σ∗ωi = dxi.
2) If we set σ∗ωi

j = Ψi
j = Πi

jkdx
k, then we have Πi

ik = µk.

We have moreover that

2’) Πi
ji = −µj ,
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and

Πi
jk = Γi

jk + δijνk + δikνj

= Γi
jk −

1

2(n+ 1)
(δij(Γ

α
αk + Γα

kα) + δik(Γ
α
αj + Γα

jα)),

Πjk =
−1

n2 − 1

(
n

(
∂Πi

jk

∂xi
+
∂µj

∂xk
− µαΠ

α
jk − Πα

jβΠ
β
αk

)
+

(
∂Πi

kj

∂xi
+
∂µk

∂xj
− µαΠ

α
kj − Πα

kβΠ
β
αj

))
,

where {Γi
jk} denote the Christoffel symbols and σ∗ωj = Ψj = Πjkdx

k. Finally, we
can exchange conditions 2) and 2’).

Proof. Let σ0 be the section fromM to P̃ 2(M)/G̃1 given by the connection, namely,
σ0(x) = (xi, δij,−Γi

jk). Let σ0 denote the section from M to P̃ 2(M)/H2 in-
duced by σ0. By the condition 1), σ should be of the form σ0.h, where h =

(δij,−(δikν
′
j + δijν

′
k)) for some ν ′j . If σ(x) = (xi, δij,−Πi

jk), then we have
Πi

jk = Γi
jk + δijν

′
k + δikν

′
j (see Remark 2.7). Suppose that ν ′j can be so cho-

sen that Πi
ik = µk or Πi

ji = −µj . Then, we accordingly have

µk = Πi
ik = Γi

ik + (n+ 1)ν ′k, or

−µj = Πi
ji = Γi

ji + (n+ 1)ν ′j.

The both conditions are equivalent to

(n+ 1)ν ′k = −1

2
(Γα

αk + Γα
kα).

Hence we have ν ′ = ν in the both cases. The uniqueness also holds. Conversely,
if we define Πi

jk as in the statement and if we set σ(x) = (xi, δij,−Πi
jk), then σ

induces a section to P̃ 2(M)/H2 by Lemma 2.23 below. We have σ∗ωi = dxi and
σ∗ωi

j = Ψi
j . If we set Ψj = σ∗ωj , then we have

(2.21a) σ∗Ωi
j = dΨi

j +Ψi
k ∧Ψk

j + dxi ∧Ψj − δijΨk ∧ dxk.

If we define kijkl by the conditions that σ∗Ωi
j =

1
2
kijkldx

k ∧dxl and kijkl+kijlk =
0, then (2.21a) is equivalent to

kijkl =
∂Πi

jl

∂xk
− ∂Πi

jk

∂xl
+Πi

αkΠ
α
jl −Πi

αlΠ
α
jk + δikΠjl − δilΠjk − δij(Πlk −Πkl).

Since ω is a normal projective connection, we have

0 = kijil

=
∂Πi

jl

∂xi
− ∂Πi

ji

∂xl
+Πi

αiΠ
α
jl − Πi

αlΠ
α
ji + nΠjl − Πjl − (Πlj − Πjl)

=
∂Πi

jl

∂xi
+
∂µj

∂xl
− µαΠ

α
jl − Πi

αlΠ
α
ji + nΠjl − Πlj.
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Regarding this equality as an equation with respect to Πjk, we see that Πjk is given
as in the statement. □

Remark 2.22. If we replace νj by − 1
2(n+1)

(aΓα
αj + bΓα

jα) in Definition 2.18, then
Proposition 2.21 holds after replacing the conditions by

Πα
αk =

(
1− a

2

)
Γα

αk −
b

2
Γα

kα,

Πα
jα = −a

2
Γα

αk +

(
1− b

2

)
Γα

kα.

These are proportional to the reduced torsion if and only if a + b = 2. We choose
a = b = 1 as the simplest case, taking symmetricity into account. The situation is
similar in Theorem 4.28.

As in the classical case, we have the following. We choose a branch of the loga-
rithmic function in the complex category.

Lemma 2.23. Let (U,φ) and (Û , φ̂) be charts. We assume that U = Û and set
ψ = φ̂ ◦ φ−1. If σ and σ̂ denote the sections given by Proposition 2.21, then we
have

ψ∗σ = σ̂.(aij,−(aja
i
k + aka

i
j)),

where aij = Dψi
j and aj = − 1

n+ 1

∂ log Jψ

∂xj
with Jψ = detDψ.

Proof. We have

Γi
jk = (Dψ−1)iαHψ

α
jk + (Dψ−1)iαΓ̂

α
βγDψ

β
jDψ

γ
k,

where D denotes the derivative and H denotes the Hessian. It follows that

Πi
jk = (Dψ−1)iαHψ

α
jk + (Dψ−1)iαΓ̂

α
βγDψ

β
jDψ

γ
k

− 1

2(n+ 1)
δij

((
∂ log J

∂xk
+ Γ̂α

αβDψ
β
k

)
+

(
∂ log J

∂xk
+ Γ̂α

γαDψ
γ
k

))
− 1

2(n+ 1)
δik

((
∂ log J

∂xj
+ Γ̂α

αβDψ
β
j

)
+

(
∂ log J

∂xj
+ Γ̂α

γαDψ
γ
j

))
= (Dψ−1)iαHψ

α
jk + (Dψ−1)iαΠ̂

α
βγDψ

β
jDψ

γ
k

− 1

n+ 1

(
δij
∂ log J

∂xk
+ δik

∂ log J

∂xj

)
,

from which the lemma follows. □

If ∇ is torsion-free, then Πi
jk and Πjk are well-known as follows [5, Proposi-

tion 17], [7, Fundamental theorem for TW-connections].
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Lemma 2.24. If ∇ is torsion-free, then we have µj = 0 and Πi
jk = Πi

kj . We have

Πi
jk = Γi

jk −
1

n+ 1
(δijΓ

α
αk + δikΓ

α
αj),

Πjk = Πkj = − 1

n− 1

(
∂Πi

jk

∂xi
− Πα

jβΠ
β
αk

)
.

Moreover, Ωi
ikl = 0.

Proof. The first part is straightforward. To show that Ωi
j is trace-free, it suffices to

show that kiikl = 0. We have

kiikl =
∂Πi

il

∂xk
− ∂Πi

ik

∂xl
+Πi

αkΠ
α
il − Πi

αlΠ
α
ik +Πkl − Πlk − n(Πlk − Πkl)

=
∂µl

∂xk
− ∂µk

∂xl
+ (n+ 1)(Πkl − Πlk)

= 0. □

In this article, we are working with projective structures keeping torsion invariant.
If we allow to modify torsions, we have the following lemma and corollary [11], [6,
Lemma 11]. We include a sketch of a proof for completeness.

Lemma 2.25. Let ∇ and ∇ be connections of which the Christoffel symbols are
{Γi

jk} and {Γi
jk}. Then, the unparameterized geodesics of ∇ and ∇ are the same

if and only if Γ
i
jk = Γi

jk + δijφk + δikφj + aijk, where {φk} are components of
a 1-form of M , and {aijk} are components of TM -valued 2-form on M such that
aikj = −aijk.

Proof. We follow the proof of [5, Proposition 12]. We only show that the geodesic
equation of ∇ and ∇ are equivalent. Let s and s be parameters of geodesic of ∇
and ∇, respectively. Writing down the geodesic equation, we have

0 =
d2xi

ds2
+ Γ

i
jk
dxj

ds

dxk

ds

=

(
d2xi

ds2
+ Γi

jk
dxj

ds

dxk

ds

)(
ds

ds

)2

+
dxi

ds

(
2φj

dxj

ds
+
d2s

ds2

)
+ aijk

dxj

ds

dxk

ds

=

(
d2xi

ds2
+ Γi

jk
dxj

ds

dxk

ds

)(
ds

ds

)2

+
dxi

ds

(
2φj

dxj

ds
+
d2s

ds2

)
,

because aikj = −aijk. Hence, it suffices to solve the equation 2φj
dxj

ds
+ d2s

ds2
= 0. □

Corollary 2.26. Given an affine connection ∇, we can find a torsion-free affine
connection ∇ of which the geodesics are the same.

Proof. Let T be the torsion of ∇. It suffices to set ∇ = ∇+ 1
2
T . □
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Remark 2.27. A projective connection similar to the normal projective connection
as in Theorem 2.5 is given by Hlavatý [2]. We refer to this connection as the Hlavatý
connection. The components of the Hlavarý connection is given by

Φi
jk = Γi

jk +
1

n2 − 1
(δij(Γ

α
kα − nΓα

αk) + δik(Γ
α
αj − nΓα

jα)).

We have Φα
αk = 0 and Φα

jα = 0. The Hlavatý connection can be obtained as
follows. First consider an affine connection ∇ of which the Christoffel symbols
{Γi

jk} are given by

Γi
jk = Γi

jk −
1

n− 1
(δijµk − δikµj).

The geodesics of ∇ and ∇ are the same. On the other hand, if T and T denote the
torsion of ∇ and ∇, then we have T i

jk = T i
jk +

2
n−1

(δijµk − δikµj). We have

Γα
αk = Γα

αk − µk =
1

2
(Γα

αk + Γα
kα) = −(n+ 1)νk,

Γα
jα = Γα

jα + µj =
1

2
(Γα

αj + Γα
jα) = −(n+ 1)νj.

Hecne we have

µj =
1

2
(Γα

αj − Γα
jα) = 0,

νj = − 1

2(n+ 1)
(Γα

αj + Γα
jα) = νj.

By some straightforward calculations, we see that Πi
jk = Φi

jk. Note that we have
Φi

jk − Πi
jk = Γi

jk − Γi
jk = − 1

n−1
(δijµk − δikµj). As µj = 0, we have

Πjk =
−1

n2 − 1

(
n

(
∂Πi

jk

∂xi
− Πα

jβΠ
β
αk

)
+

(
∂Πi

kj

∂xi
− Πα

kβΠ
β
αj

))
.

3. GEODESICS AND COMPLETENESS, FLATNESS OF PROJECTIVE STRUCTURES

Carefully examining arguments in [5, Sections 7 and 8], we see that results pre-
sented there remain valid for projective structures with torsion. We always consider
equivalences in the sense of Definition 2.10, namely, we require the geodesics to be
the same and also the torsions are the same.

As mentioned in the previous section, we have the following

Proposition 3.1 ([11], [5, Proposition 12]). Let P be a projective structure of M
and ∇ an affine connection which belongs to P . If we disregard parametrizations,
then geodesics of ∇ are geodesics of P and vice versa.

Definition 3.2. 1) LetM andM ′ be manifolds with projective structures P and
P ′. A diffeomorphism f : M →M ′ is said to be a projective isomorphism if
f∗ : P̃

2(M) → P̃ 2(M ′) induces a bundle isomorphism from P to P ′.
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2) Let M and M ′ be manifolds with projective structures P and P ′. A mapping
f : M → M ′ is said to be a projective morphism if for each p ∈ M , there
exists an open neighborhood U of p such that the restriction of f to U is a
projective isomorphism to its image.

3) A projective structure P on a manifoldM is said to be flat, if for each p ∈M ,
there exists an open neighborhood U of p and a projective isomorphism from
U to an open subset of RP n, where n = dimM .

If a projective structure P is flat, then the normal projective connection is torsion-
free. Hence we are in the classical settings so that we have the following.

Theorem 3.3 ([5, Theorem 15]). A projective structure P of a manifold M is flat if
and only if the torsion and the curvature of the normal projective connection vanish.

Remark 3.4. We also have estimates of the dimension of transformation groups
which concern projective structures. The results are parallel to Theorems 13 and
14 of [5].

4. THOMAS–WHITEHEAD CONNECTIONS

We follow arguments by Roberts [7]. Projective structures are described by
means of connections on bundle of volumes. Such connections are called Thomas–
Whitehead connections.

Definition 4.1. Let M be a manifold of dimension n. If M is orientable, then let
E(M) be the principal R>0-bundle associated with

∧n TM . IfM is non-orientable,
we consider E(M)/{±1}. We equip an R-action on E(M) by setting va = vea for
v ∈ E(M) and a ∈ R. We call E(M) the bundle of volume elements over M .

Lemma 4.2. The bundle of volume elements E(M) is a principal R-bundle.

Proof. If M is orientable, then we only consider charts compatible with the orien-

tation. Let (U,φ) be a chart. Then, TM |U is trivialized by
{
∂

∂xi

}
so that E(M)|U

is trivialized by ϵ =
∂

∂x1
∧ · · · ∧ ∂

∂xn
. Indeed, if p ∈ U and if vp ∈ Ep(M),

then we have vp = aϵp for some a > 0. Hence we can associate with vp a pair
(ϵp, log a). In other words, the inverse of the mapping (x1, x2, . . . , xn, xn+1) 7→
(φ−1(x1, . . . , xn), ϵφ−1(x1,...,xn)e

xn+1
) is a local trivialization of E(M). If (Û , φ̂)

is another chart and if ψ is the transition function from U to Û , then we have
ϵ̂ detDψ = ϵ. Hence the transition function from E(M)|U to E(M)|Û is given
by (p, t) 7→ (p, t+ log detDψ) if M is orientable and (p, t) 7→ (p, t+ log|detDψ|)
if M is non-orientable. □

Remark 4.3. In the complex category, we fix branches of the logarithms when
choosing local trivializations.
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Definition 4.4. We locally set Ψ = e−xn+1
dx1 ∧ · · · ∧ dxn ∧ dxn+1 and call Ψ the

canonical positive odd density.

Remark 4.5. If M is orientable, then Ψ is indeed an (n+ 1)-form.

Definition 4.6. For a ∈ R and v ∈ E(M), we set Rav = v.a. Let Lie(R) de-
note the Lie algebra of R. If b ∈ Lie(R), then the vector field X defined by

Xu =
∂

∂t
Rbtu

∣∣∣∣
t=0

is called the fundamental vector field associated with b. In partic-

ular, the fundamental vector field associate with 1 ∈ Lie(R) is called the canonical
fundamental vector field and denoted by ξ.

We can reduce the definition of connection forms on E(M) as follows.

Definition 4.7. A Lie(R)-valued 1-form ω on E(M) is called a connection form if
we have

1) ω(ξ) = 1, and
2) Ra

∗ω = Ad−a ω = ω for a ∈ R.

Definition 4.8. We set F =

(
∂

∂x1
, . . . ,

∂

∂xn
,

∂

∂xn+1

)
on TE(M).

If ψ denotes a change of coordinates, then the transition function is given by(
Dψ 0

∂ log Jψ 1

)
, where Jψ = detDψ and ∂ log Jψ =

(
∂ log Jψ

∂x1
· · · ∂ log Jψ

∂xn

)
.

Definition 4.9 ([7], see also [10]). A Thomas–Whitehead projective connection, or
a TW-connection, is a linear connection ∇ on TE(M) with the following properties.
Let ω = (ωi

j) be the connection form of ∇ with respect to F .

1) ∇ξ = − 1
n+1

id, namely, we have

ωi
n+1,j = − δij

n+ 1
,

where δij =

{
1, i = j,

0, i ̸= j
.

2) We have ωi
j,n+1 = − δij

n+1
.

3) Ra∗(∇XY ) = ∇Ra∗X(Ra∗Y ) for any X, Y ∈ X(E(M)), namely, ∇ is in-
variant under the right action of R.

We refer to ∇ω as a TW-connection on TM induced by ∇ and ω.

Remark 4.10. TW-connections are usually assumed to be torsion-free. In this case,
the conditions 1) and 2) in Definition 4.9 are equivalent.

Definition 4.11. Let ∇ be a TW-connection on TE(M) and ω a connection form
on E(M). If X, Y ∈ X(M), then let X̃, Ỹ ∈ X(E(M)) be lifts of X, Y horizontal
with respect to ω. We set

∇ω
XY = π∗

(
∇X̃ Ỹ

)
,
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where π : E(M) →M is the projection.

Lemma 4.12 (see also Lemma 4.20). ∇ω is a connection on TM . If ∇ is torsion-
free, then so is ∇ω.

Proof. It is easy to see that ∇ω is a connection. If ∇ is torsion-free, then we have

∇ω
XY −∇ω

YX = π∗

(
∇X̃ Ỹ −∇Ỹ X̃

)
= π∗

([
X̃, Ỹ

])
=

[
π∗X̃, π∗Ỹ

]
= [X, Y ]. □

Let ω be a connection form on E(M). We locally have

ω = f1dx
1 + · · ·+ fndx

n + dxn+1

for some functions f1, . . . , fn.

Remark 4.13. 1) The functions f1, . . . , fn are independent of xn+1 by 2) of
Definition 4.7.

2) Despite 1), f1dx1 + · · ·+ fndx
n is not necessarily well-defined on M .

Definition 4.14. Let ei be the horizontal lift of
∂

∂xi
to TE(M) with respect to ω,

that is, we set

ei =
∂

∂xi
− fi

∂

∂xn+1
.

We set en+1 =
∂

∂xn+1
and FH = (e1, . . . , en, en+1).

Lemma 4.15. Let ψ be the transition function from (x1, . . . , xn) to (x̂1, . . . , x̂n).
We have

(4.15a) (ê1, . . . , ên, ên+1)

(
Dψ
0 1

)
= (e1, . . . , en, en+1) .

Proof. If we set f = (f1 · · · fn), then we have

(e1, . . . , en, en+1)

(
In
f 1

)
=

(
∂

∂x1
, . . . ,

∂

∂xn
,

∂

∂xn+1

)
.
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If we set J = detDψ, then we have

(ê1, . . . , ên, ên+1)

(
In
f̂ 1

)(
Dψ

D log J 1

)
=

(
∂

∂x̂1
, . . . ,

∂

∂x̂n
,

∂

∂x̂n+1

)(
Dψ

D log J 1

)
=

(
∂

∂x1
, . . . ,

∂

∂xn
,

∂

∂xn+1

)
= (e1, . . . , en, en+1)

(
In
f 1

)
.

On the other hand, if we set dx = t(dx1 · · · dxn), then we have ω =
(
f 1

)( dx
dxn+1

)
.

Hence we have(
f 1

)( dx
dxn+1

)
=

(
f̂ 1

)(
dx̂

dx̂n+1

)
=

(
f̂ 1

)(
Dψ

D log J 1

)(
dx

dxn+1

)
and consequently that(

In
f̂ 1

)(
Dψ

D log J 1

)
=

(
Dψ
f 1

)
=

(
Dψ
0 1

)(
In
f 1

)
.

Combining these equalities, we obtain the relation as desired. □

Let ω be the connection form of a TW-connection with respect to F . If we define
ω′ by the property

ω = ω′ − 1

n+ 1

(
Indx

n+1 dx
0 dxn+1

)
,

then ω′ =

(
α 0
β 0

)
, where α and β do not involve dxn+1. Moreover, as ∇ is

invariant under the R-action, α and β projects to M .

Remark 4.16. The connection ∇ is torsion-free if and only if we have αi
jk = αi

kj

and βi
jk = βi

kj .
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Remark 4.17. The transition rule of α and β under changes of coordinates is given
as follows. We have

ω =

(
Dψ 0

∂ log Jψ 1

)−1

d

(
Dψ 0

∂ log Jψ 1

)
+

(
Dψ 0

∂ log Jψ 1

)−1

ω̂

(
Dψ 0

∂ log Jψ 1

)
=

(
(Dψ)−1dDψ 0

−(∂ log Jψ)(Dψ−1)dDψ + d∂ log Jψ 0

)
+

(
(Dψ)−1α̂Dψ 0

−(∂ log J)(Dψ)−1α̂Dψ + β̂Dψ 0

)
− 1

n+ 1

(
In+1dx̂

n+1 +

(
(Dψ)−1dx̂∂ log Jψ (Dψ)−1dx̂

−(∂ log Jψ)(Dψ−1)dx̂∂ log Jψ −∂(log Jψ)(Dψ)−1dx̂

))
=

(
(Dψ)−1dDψ 0

−(∂ log Jψ)(Dψ−1)dDψ + d∂ log Jψ 0

)
+

(
(Dψ)−1α̂Dψ 0

−(∂ log J)(Dψ)−1α̂Dψ + β̂Dψ 0

)
− 1

n+ 1

(
Indx

n+1 dx
0 dxn+1

)
− 1

n+ 1

(
Ind log Jψ + dx∂ log Jψ 0
−(d log Jψ)∂ log Jψ 0

)
.

It follows that

α = (Dψ)−1dDψ − 1

n+ 1
(Ind log Jψ + dx∂ log Jψ) + (Dψ)−1α̂Dψ,

β = −(∂ log Jψ)(Dψ−1)dDψ + d∂ log Jψ +
1

n+ 1
(d log Jψ)∂ log Jψ

− (∂ log Jψ)(Dψ)−1α̂Dψ + β̂Dψ.

Note that we have

αi
i = α̂i

i,

β = −(∂ log Jψ)α− 1

n+ 1
((∂ log Jψ)d log Jψ + d log Jψ(∂ log Jψ))

+
1

n+ 1
d∂ log Jψ + β̂Dψ

=
1

n+ 1
(d∂ log Jψ − 2(∂ log Jψ)d log Jψ)− (∂ log Jψ)α + β̂Dψ.
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Remark 4.18. If ωH denotes the connection matrix of ∇ with respect to FH , then
we have by the equality (4.15a) that

ωH =

(
In
−f 1

)−1

d

(
In
−f 1

)
+

(
In
−f 1

)−1

ω

(
In
−f 1

)
=

(
On

−df 0

)
+

(
α 0

fα+ β 0

)
− 1

n+ 1

(
Indx

n+1 − dxf dx
fdxn+1 − (fdx+ dxn+1)f fdx+ dxn+1

)
=

(
α + 1

n+1
(Infdx+ dxf) 0

−df + 1
n+1

fdxf + fα+ β 0

)
− 1

n+ 1

(
Inω dx
0 ω

)
.

Note that (dx1, . . . , dxn, ω) is the dual to FH .

Definition 4.19. We set

αH = α +
1

n+ 1
(Infdx+ dxf),

βH = −df +
1

n+ 1
fdxf + fα+ β.

We have the following

Lemma 4.20. The connection form of ∇ω with respect to
(

∂

∂x1
, . . . ,

∂

∂xn

)
is equal

to αH . Indeed, we have

αH = Dψ−1dDψ +Dψ−1α̂HDψ,

βH = β̂HDψ.

Proof. The first part follows directly from Definition 4.11. Let (U,φ) and (Û , φ̂)

be charts, and ωH and ω̂H connection forms of ∇ with respect to FH and F̂H ,
respectively. Then, by Lemma 4.15, we have

ωH =

(
Dψ

1

)−1

d

(
Dψ

1

)
+

(
Dψ

1

)−1

ω̂H

(
Dψ

1

)
=

(
Dψ−1dDψ 0

0 0

)
+

(
Dψ−1α̂HDψ 0

β̂HDψ 0

)
− 1

n+ 1

(
Inω Dψ−1dx̂
0 ω

)
=

(
Dψ−1dDψ +Dψ−1α̂HDψ 0

β̂HDψ 0

)
− 1

n+ 1

(
Inω dx
0 ω

)
. □

Theorem 4.21. If ∇ is a TW-connection on TE(M) and if ω and ω′ are connection
forms on E(M), then

1) ω′ − ω = π∗ρ for some 1-form ρ on M , and
2) We have

∇ω′ −∇ω =
1

n+ 1
ρ⊗ id +

1

n+ 1
id⊗ ρ.



NOTES ON PROJECTIVE STRUCTURES WITH TORSION 21

3) ∇ω and ∇ω′
are projectively equivalent.

Proof. First, we have ω′(ξ) − ω(ξ) = 0 and Ra
∗(ω′ − ω) = ω′ − ω. Hence we

have ω′ − ω = π∗ρ for some 1-form on M . 2) follows from Remark 4.18 and
Lemma 4.20. 3) follows from 2) and Lemma 2.12. □

Theorem 4.22. Fix a TW-connection ∇ on TE(M) and a connection form ω on
E(M). Then, there is a one-to-one correspondence between the set of connection
forms on E(M) and the set of linear connections in the projective equivalence class
represented by ∇ω.

Proof. Let D be a linear connection projectively equivalent to ∇ω. There is a 1-
form ρ such that D −∇ω = 1

n+1
ρ⊗ id + 1

n+1
id⊗ ρ. If we set ω′ = ω + π∗ρ, then

we have ∇ω′
= D by Theorem 4.21. Suppose conversely that ∇ω1 = ∇ω2 . Then

ω1 = ω2 by Lemma 2.14. □

Definition 4.23. If ω is a gln(R)-valued 1-form, then we set R(ω) = dω + ω ∧ ω.

Needless to say that R(ω) is the curvature form if ω is a connection form of a
linear connection.

Lemma 4.24. The curvature form of a TW-connection with respect to F is given
by

R(ω) = dω + ω ∧ ω =

(
dα + α ∧ α− 1

n+1
dx ∧ β − 1

n+1
α ∧ dx

dβ + β ∧ α − 1
n+1

β ∧ dx

)
.

The TW-connection is torsion free if and only if α ∧ dx = 0 and β ∧ dx = 0,

Proof. We have

dω + ω ∧ ω
= dω′ + ω′ ∧ ω′

− 1

n+ 1
ω′ ∧

(
Indx

n+1 dx
0 dxn+1

)
− 1

n+ 1

(
Indx

n+1 dx
0 dxn+1

)
∧ ω′

+
1

(n+ 1)2

(
Indx

n+1 dx
0 dxn+1

)
∧
(
Indx

n+1 dx
0 dxn+1

)
=

(
dα + α ∧ α 0
dβ + β ∧ α 0

)
− 1

n+ 1

(
α ∧ dxn+1 + dxn+1 ∧ α + dx ∧ β α ∧ dx

β ∧ dxn+1 + dxn+1 ∧ β β ∧ dx

)
=

(
dα + α ∧ α 0
dβ + β ∧ α 0

)
− 1

n+ 1

(
dx ∧ β α ∧ dx

0 β ∧ dx

)
.

If ∇ is torsion-free, then we have (α ∧ dx)i = αi
jkdx

k ∧ dxj = 0. Similarly, we
have β ∧ dx = 0. The converse is easy. □

In view of Definition 1.5, we introduce the following
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Definition 4.25. We regard the curvature form dω + ω ∧ ω as being valued in
pgln+1(R) = m ⊕ gln(R) ⊕ m∗, and represent the curvature form as (ρi, ρij, ρj).
We call ρi the torsion and (ρij, ρj) the curvature of ∇ as a projective connection.

Lemma 4.26. We have

ρi = − 1

n+ 1
α ∧ dx,

ρij = dα + α ∧ α− 1

n+ 1
(dx ∧ β − β ∧ dxIn),

= dα + α ∧ α + dx ∧ β′ − β′ ∧ dxIn,
ρj = dβ + β ∧ α

= − (n+ 1)(dβ′ + β′ ∧ α),

where β′ = − 1
n+1

β.

Definition 4.27. We define the Ricci curvature Ric(∇) of a TW-connection ∇ by

Ric(∇)jk

= ρijik

=
∂αi

jk

∂xi
− ∂αi

ji

∂xk
+ αi

γiα
γ
jk − αi

γkα
γ
ji −

1

n+ 1
(nβjk − βjk + βjk − βkj)

=
∂αi

jk

∂xi
− ∂αi

ji

∂xk
+ αi

γiα
γ
jk − αi

γkα
γ
ji −

1

n+ 1
(nβjk − βkj).

The fundamental theorem for TW-connections by Roberts [7] holds in the fol-
lowing form in the present setting.

Theorem 4.28. Suppose that dimM ≥ 2 and a projective structure is of M is
given by an affine connection ∇M . Let ΨM be the canonical positive odd scalar
density on E(M) and µM the reduced torsion of ∇M regarded as a form on E(M)

by pull-back. Then, there exists a unique TW-connection ∇ such that

1) ∇ΨM = −µM ⊗ΨM .
2) ∇ is Ricci-flat.
3) ∇ induces the given projective equivalence class on M .

Moreover, there is a unique connection on E(M) such that αH is the connection

form of ∇M with respect to
(
∂

∂xi

)
1≤i≤n

.

Indeed, if {Γi
jk} denotes the Christoffel symbols of ∇M , then we have

αi
jk = Γi

jk −
1

2(n+ 1)
(δik(Γ

a
aj + Γa

ja) + δij(Γ
a
ak + Γa

ka)),

βjk =
1

n− 1

(
n

(
∂αi

jk

∂xi
+
∂µMj

∂xk
− µMaα

a
jk − αa

jbα
b
ak

)
+

(
∂αi

kj

∂xi
+
∂µMk

∂xj
− µMaα

a
kj − αa

kbα
b
aj

))
,
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where (
α 0
β 0

)
− 1

n+ 1

(
Indx

n+1 dx
0 dxn+1

)
is the connection matrix of ∇ with respect to F . The connection of E(M) is given
by ω = 1

2
(Γα

αj + Γα
jα).

Proof. Let {Γi
jk} be the Christoffel symbols of ∇M and set αH = (Γi

jkdx
k). If

we fix a connection ω = fdx+ dxn+1 on E(M), then a TW-connection is given by(
αH − 1

n+1
(Infdx+ dxf) 0

df + 1
n+1

fdxf − fαH + βH 0

)
− 1

n+ 1

(
Indx

n+1 dx
0 dxn+1

)
, where βH is an

m∗-valued 1-form (see Remark 4.18). Note that even if we replace ∇ by a projec-
tively equivalent connection, then ω is modified while the TW-connection remains
in the same form. We have

∇ΨM = (−(αH)ααjdx
j + fjdx

j)⊗ΨM = (−Γα
αjdx

j + fjdx
j)⊗ΨM .

By the condition 1), we have Γα
αj − fj =

1
2
(Γα

αj − Γα
jα) so that

fj =
1

2
(Γα

αj + Γα
jα).

If set α = αH − 1
n+1

(Infdx+ dxf) and β = df + 1
n+1

fdxf − fαH + βH , then we
have by the condition 2) that

∂αi
jk

∂xi
− ∂αi

ji

∂xk
+ αi

γiα
γ
jk − αi

γkα
γ
ji −

1

n+ 1
(nβjk − βkj) = 0.

It follows that βjk are given as in the statement. Conversely, if we define αi
jk and

βjk as in the statement, then ∇ is a TW-connection with the required properties.
Since αi

jk and βjk are independent of ω, ∇ is unique. □

It is natural to introduce the following

Definition 4.29. We call the TW-connection given by Theorem 4.28 the normal
TW-connection.

Remark 4.30. If we only require uniqueness of normal TW-connections, then we
can modify the normalizing conditions 1) and 2) in Theorem 4.28 by similar rea-
sons as in Remark 2.22. The conditions are so chosen that components of the normal
TW-connections coincide with the normal Cartan projective connections up to mul-
tiplication of constants. Actually, αi

jk and β′
jk coincide with Πi

jk and Πjk given by
Proposition 2.21.

Remark 4.31. Suppose that the projective structure in Theorem 4.28 is torsion-free.
Then, ∇M is always torsion-free so that the condition 1) reduces to ∇ΨM = 0,
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which is independent of ∇M . In addition, we have

αi
jk = Γi

jk −
1

n+ 1
(δikΓ

a
aj + δijΓ

a
ak),

βjk =
n+ 1

n− 1

(
∂αi

jk

∂xi
− αa

jbα
b
ak

)
.

Remark 4.32. If we allow to modify the torsion keeping the geodesics, then we
can uniquely find a TW-connection which corresponds to the Hlavatý connection
(Remark 2.27). We can also uniquely find a TW-connection which corresponds to
the connection of which the Christoffel symbols are

{
1
2
(Γi

jk + Γi
kj)

}
.

5. STRUCTURAL EQUIVALENCES OF TW-CONNECTIONS

We continue to follow the arguments in [7].

Definition 5.1 ([8]). TW-connections ∇ and ∇′ are said to be structurally equiva-
lent if ∇ and ∇′ induce the same projective structure.

Theorem 5.2. TW-connections ∇ and ∇′ are structurally equivalent if and only if
there is a (0, 2)-tensor β on E(M) such that

(5.2a)

{
Lξβ = 0,

β(ξ, ξ) = 0,

and

(5.2b) ∇′ = ∇+ (ι′ξβ)⊗ id + id⊗ (ι′ξβ)− β ⊗ ξ,

where ι′ξβ = β( · , ξ). Such a β is unique. If ∇ and ∇′ are torsion-free, then β is
symmetric.

Before proving Theorem 5.2, we show the following

Lemma 5.3. If the condition (5.2a) holds, then there is a 1-form β on M such that
ι′ξβ = π∗β.

Proof. Let ι be the usual inner product. We locally represent β as β = βijdx
i⊗dxj .

We have ι′ξβ = βi,n+1dx
i. On the other hand, we have 0 = Lξβ =

∂βij
∂xn+1

dxi ⊗

dxj . Hence we have ιξ(ι′ξβ) = 0 and ιξd(ι′ξβ) =
∂βi,n+1

∂xn+1
dxi − ∂βn+1,n+1

∂xj
dxj =

ι′ξ(Lξβ) = 0. □

Remark 5.4. If (5.2b) holds and if ω is a connection form on E(M), then we have

∇′ω = ∇ω + β ⊗ id + id⊗ β.



NOTES ON PROJECTIVE STRUCTURES WITH TORSION 25

Proof of Theorem 5.2. The proof is essentially identical to that of Theorem 3.6 in [7].
Keep in mind that connections need not be torsion-free. First assume that there ex-
ists a β which satisfy (5.2a) and (5.2b). If we set

∇̂ = ∇+ (ι′ξβ)⊗ id + id⊗ (ι′ξβ)− β ⊗ ξ,

then ∇̂ is a TW-connection. Note that β is invariant under the R-action because
Lξβ = 0. Let now ω be a connection form on E(M) and X, Y ∈ X(M). If X̃ and
Ỹ denote horizontal lifts of X and Y , then we have

∇̂X̃ Ỹ = ∇X̃ Ỹ + π∗β(X̃)Ỹ + π∗β(Ỹ )X̃ − β(X̃, Ỹ )ξ

for some 1-form β on M . Hence we have

(5.2c) ∇̂ω
XY = ∇ω

XY + β(X)Y + β(Y )X,

which means that ∇ω and ∇̂ω are projectively equivalent. Hence ∇ and ∇̂ are struc-
turally equivalent. Suppose conversely that ∇ and ∇̂ are structurally equivalent. If
we fix a connection form ω, then

∇̂ω = ∇ω + β ⊗ id + id⊗ β

for some 1-form β on M . We set, for X̃, Ỹ ∈ X(E(M)),

β(X̃, Ỹ ) = ω(∇X̃ Ỹ − ∇̂X̃ Ỹ ) + π∗β(X̃)ω(Ỹ ) + π∗β(Ỹ )ω(X̃).

It is clear that β is a (0, 2)-tensor. We have Lξβ = 0 and β(ξ, ξ) = 0 because
∇ and ∇̂ are TW-connections. If in addition ∇ and ∇′ are torsion-free, then β is
symmetric. We will show that the equality (5.2b) holds. Let X̃, Ỹ ∈ X(E(M)).
First assume that X̃ and Ỹ are horizontal lifts of X, Y ∈ X(M). Then, the equality

(5.2c) holds. If ∇̃ω
XY and ˜̂∇ω

XY denote the horizontal lifts of ∇ω
XY and ∇̂ω

XY ,
then we have

∇X̃ Ỹ = ∇̃ω
XY + ω(∇X̃ Ỹ )ξ,

∇̂X̃ Ỹ =
˜̂∇ω

XY + ω(∇̂X̃ Ỹ )ξ.

It follows that

∇̂XY =
˜̂∇ω

XY + ω(∇̂XY )ξ

= ∇̃ω
XY + π∗β(X̃)Ỹ + π∗β(Ỹ )X̃ + ω(∇̂XY )ξ

= ∇XY − ω(∇XY )ξ + π∗β(X̃)Ỹ + π∗β(Ỹ )X̃ + ω(∇̂XY )ξ.

On the other hand, we have

ι′ξβ(X̃) = ω(∇X̃ξ − ∇̂X̃ξ) + π∗β(X̃)

= β(X).
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Similarly, we have ι′ξβ(Ỹ ) = β(Y ). Hence we have

∇̂XY = ∇XY − ω(∇XY )ξ + π∗β(X̃)Ỹ + π∗β(Ỹ )X̃ + ω(∇̂XY )ξ

= ∇XY + ι′ξβ(X̃)Ỹ + ι′ξβ(Ỹ )X̃ + ω(∇̂XY −∇XY )ξ

= ∇XY + ι′ξβ(X̃)Ỹ + ι′ξβ(Ỹ )X̃ − β(X̂, Ŷ )ξ.

Next, we assume that Ỹ = ξ. We have β(X̃, Ỹ ) = π∗β(X̃) so that

∇X̃ξ + ι′ξβ(X̃)ξ + ι′ξβ(ξ)X̃ − β(X̃, ξ)ξ

= − 1

n+ 1
X̃

= ∇̂X̃ξ.

We assume lastly that X̃ = ξ. We have

∇ξỸ + ι′ξβ(ξ)Ỹ + ι′ξβ(Ỹ )ξ − β(ξ, Ỹ )ξ

= ∇ξỸ + ι′ξβ(Ỹ )ξ − ω(∇ξỸ − ∇̂ξỸ )ξ − π∗β(Ỹ )ξ

= ∇̂ξỸ .

Therefore, the equality (5.2b) holds. Finally, suppose that β′ also satisfy the equal-
ities (5.2a) and (5.2b) if we replace β with β′. Then we have ι′ξβ = β and ι′ξβ

′ = β
′

for some 1-forms β and β′. By Remark 5.4, we have β = β
′
. On the other hand, we

have

∇′
X̃
Ỹ −∇X̃ Ỹ = ι′ξβ(X̃)Ỹ + ι′ξβ(Ỹ )X̃ − β(X̃, Ỹ )ξ

= β(X)Ỹ + β(Y )X̃ − β(X̃, Ỹ )ξ.

Similarly, we have

∇′
X̃
Ỹ −∇X̃ Ỹ = β(X)Ỹ + β(Y )X̃ − β′(X̃, Ỹ )ξ.

Hence we have β = β′. □

6. EXAMPLES

We introduce examples of which the torsions are non-trivial and the curvatures
are trivial.

Let T 2 = R2/Z2 be the standard torus and (x1, x2) the standard coordinates. We
study projective structures of T 2 which are curvature-free and invariant under the
standard T 2 action. First of all, Christoffel symbols of connections are constants.

Let

T = {projective structures of T 2 invariant under the T 2-action and is curvature-free},
T ′ = {τ ∈ T | τ is with torsion}.

Let ω = (ωi, ωi
j, ωj) denote the normal projective connection associated with

the projective structure given by an affine connection ∇, σ the section given by
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Proposition 2.21. Let (Ωi,Ωi
j,Ωj) be the torsion and the curvature of ω. We have

σ∗ωi = dxi. We have naturally P̃ 2(T 2) ∼= T 2 × G̃2. If P ⊂ P̃ 2(T 2) is a projective
structure, then we have P ∼= T 2 ×H2 ⊂ T 2 × G̃2.

Example 6.1. We consider an affine connection ∇ of which the Christoffel sym-
bols are

Γ1
11 = 1, Γ1

12 = −1

2
, Γ1

21 = −1

2
, Γ1

22 = 0,

Γ2
11 = 1, Γ2

12 =
3

2
, Γ2

21 = −1

2
, Γ2

22 = −1.

We set g = (δij,−Γi
jk) ∈ G̃2, which does not belong to H2 because Γ2

21 ̸= Γ2
12.

We define σ0 : T 2 → P̃ 2(T 2) by σ(p) = (p, g) and define an H2-subbundle P of
P̃ 2(T 2) by

P = {u ∈ P̃ 2(T 2) | ∃p ∈ T 2, h ∈ H2, u = σ0(p).h}.

We have Γα
α1 =

1
2
, Γα

α2 = −3
2
, Γα

1α = 5
2

and Γα
2α = −3

2
so that

µ1 = −1, µ2 = 0,

ν1 = −1

2
ν2 =

1

2
.

It follows that

Π1
11 = 0, Π1

12 = 0, Π1
21 = 0, Π1

22 = 0,

Π2
11 = 1, Π2

12 = 1, Π2
21 = −1, Π2

22 = 0,

Π11 = −1, Π12 = 0, Π21 = 0, Π22 = 0.

We have therefore that

σ∗Ω1 = 0, σ∗Ω2 = −2dx1 ∧ dx2,
σ∗Ωi

j = 0,

σ∗Ωj = 0.

Hence the connection ∇ gives an element of T of which the torsion is non-trivial.
The normal TW-connection which corresponds to ∇ is given as follows. We

have E(T 2) = T 2 × R. Let t be the standard coordinate for R. Then, the normal
TW-connection is given by

ω =

 Π1
1αdx

α Π1
2αdx

α 0
Π2

1αdx
α Π2

2αdx
α 0

−3Π1αdx
α −3Π2αdx

α 0

− 1

3

dt 0 dx1

0 dt dx2

0 0 dt


=

 0 0 0
dx1 + dx2 −dx1 0

3dx1 0 0

− 1

3

dt 0 dx1

0 dt dx2

0 0 dt

 ,
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which is with torsion. We have

R(ω) =

0 0 0
0 0 2

3
dx1 ∧ dx2

0 0 0


so that ω is with torsion as a projective connection. On the other hand, ω is
curvature-free. The correspondence between (Ωi,Ωi

j,Ωj) and the components of
R(ω) is given by Lemma 4.26.

Projective structures with torsion are abundant even if we assume the curvatures
to be trivial.

Theorem 6.2. The space T is a cubic subvariety of R6 of dimension 4. The space
T ′ is an open subvariety of T and induces a subvariety of RP 5 of dimension 3.

If we work in the complex category, then R6 and RP 5 are replaced by C6 and CP 5.

Proof. We make use of notations in Lemma 2.20. Let ψi
j = Πi

jkdx
k and ψj =

Πjkdx
k. We have

µj = Πα
αj = −Πα

jα,

where µ is the reduced torsion. This is equivalent to

2Π1
11 +Π2

21 +Π2
12 = 0,(6.2-1)

2Π2
22 +Π1

12 +Π1
21 = 0.(6.2-2)

We have

Πjk =
1

3

(
2(µαΠ

α
jk +Πα

jβΠ
β
αk) + (µαΠ

α
kj +Πα

kβΠ
β
αj)

)
.

It follows that

Πjk =
1

3

(
2(−Πβ

αβΠ
α
jk +Πα

jβΠ
β
αk) + (−Πβ

αβΠ
α
kj +Πα

kβΠ
β
αj)

)
If j = k, then we have

−Πβ
αβΠ

α
11 +Πα

1βΠ
β
α1 = −Π1

11Π
1
11 − Π1

21Π
2
11 − Π2

12Π
1
11 − Π2

22Π
2
11

+Π1
11Π

1
11 +Π1

12Π
2
11 +Π2

11Π
1
21 +Π2

12Π
2
21

= −Π2
12Π

1
11 − Π2

22Π
2
11 +Π1

12Π
2
11 +Π2

12Π
2
21,

−Πβ
αβΠ

α
22 +Πα

2βΠ
β
α2 = −Π1

11Π
1
22 − Π1

21Π
2
22 +Π1

21Π
1
12 +Π2

21Π
1
22.
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If i ̸= j, then we have

−Πβ
αβΠ

α
12 +Πα

1βΠ
β
α2 = −Π1

11Π
1
12 − Π1

21Π
2
12 − Π2

12Π
1
12 − Π2

22Π
2
12

+Π1
11Π

1
12 +Π1

12Π
2
12 +Π2

11Π
1
22 +Π2

12Π
2
22

= −Π1
21Π

2
12 +Π2

11Π
1
22

−Πβ
αβΠ

α
21 +Πα

2βΠ
β
α1 = −Π1

11Π
1
21 − Π1

21Π
2
21 − Π2

12Π
1
21 − Π2

22Π
2
21

+Π1
21Π

1
11 +Π1

22Π
2
11 +Π2

21Π
1
21 +Π2

22Π
2
21

= −Π2
12Π

1
21 +Π1

22Π
2
11.

Hence we have

Π11 = −Π2
12Π

1
11 − Π2

22Π
2
11 +Π1

12Π
2
11 +Π2

12Π
2
21,(6.2-3)

Π12 = Π21 = −Π2
12Π

1
21 +Π1

22Π
2
11,(6.2-4)

Π22 = −Π1
11Π

1
22 − Π1

21Π
2
22 +Π1

21Π
1
12 +Π2

21Π
1
22.(6.2-5)

These are the defining equalities for Πij .
On the other hand, we have

Ωi =

(
−Π1

12 +Π1
21

−Π2
12 +Π2

21

)
dx1 ∧ dx2,

Ωi
j =

(
Π1

2kΠ
2
1ldx

k ∧ dxl (Π1
1kΠ

1
2l +Π1

2kΠ
2
2l)dx

k ∧ dxl
(Π2

1kΠ
1
1l +Π2

2kΠ
2
1l)dx

k ∧ dxl Π2
1kΠ

1
2ldx

k ∧ dxl
)

+

(
2Π12 − Π21 Π22

−Π11 −2Π21 +Π12

)
dx1 ∧ dx2,

Ωj =
(
(Π1kΠ

1
1l +Π2kΠ

2
1l)dx

k ∧ dxl (Π1kΠ
1
2l +Π2kΠ

2
2l)dx

k ∧ dxl
)
.

The projective structure is with torsion if and only if we have

(6.2-6) Π1
12 ̸= Π1

21 or Π2
12 ̸= Π2

21,

while it is curvature-free, namely, (Ωi
j,Ωj) = (0, 0) if and only if we have

Π1
21Π

2
12 − Π1

22Π
2
11 + 2Π12 − Π21 = 0,(6.2-7)

Π1
11Π

1
22 − Π1

12Π
1
21 +Π1

21Π
2
22 − Π1

22Π
2
21 +Π22 = 0,(6.2-8)

Π2
11Π

1
12 − Π2

12Π
1
11 +Π2

21Π
2
12 − Π2

22Π
2
11 − Π11 = 0,(6.2-9)

Π2
11Π

1
22 − Π2

12Π
1
21 − 2Π21 +Π12 = 0,(6.2-10)

Π11Π
1
12 − Π12Π

1
11 +Π21Π

2
12 − Π22Π

2
11 = 0,(6.2-11)

Π11Π
1
22 − Π12Π

1
21 +Π21Π

2
22 − Π22Π

2
21 = 0.(6.2-12)

The equalities (6.2-8) and (6.2-9) are equivalent to the equalities (6.2-5) and (6.2-3).
The equalities (6.2-7) and (6.2-10) are equivalent to the equality (6.2-4). Hence we
always have Ωi

j = 0.
We consider τ = (Π1

12,Π
1
21,Π

1
22,Π

2
11,Π

2
12,Π

2
21) as coordinates. Let F (τ)

be the left hand side of the equality (6.2-11) and G(τ) be the left hand side of the
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equality (6.2-12). We have

F (τ) =
1

2
Π2

12Π
2
12Π

1
12 +

3

2
Π2

12Π
2
21Π

1
12 +

3

2
Π1

12Π
2
11Π

1
12

− 3

2
Π2

12Π
1
21Π

2
12 −

1

2
Π2

12Π
1
21Π

2
21 +Π1

22Π
2
11Π

2
12

− 1

2
Π1

21Π
1
21Π

2
11 − Π1

21Π
1
12Π

2
11 − Π2

21Π
1
22Π

2
11

=
1

2
Π2

12Π
2
12(Π

1
12 − Π1

21) + Π2
12Π

2
21(Π

1
12 − Π1

21)− Π2
12Π

1
21(Π

2
12 − Π2

21)

+
1

2
Π2

12Π
2
21(Π

1
12 − Π1

21) +
1

2
(Π1

12Π
1
12 − Π1

21Π
1
21)Π

2
11 +Π1

12Π
2
11(Π

1
12 − Π1

21)

+ Π1
22Π

2
11(Π

2
12 − Π2

21).

Similarly, we have

G(τ) = −1

2
Π1

21Π
1
21Π

2
21 −

3

2
Π1

21Π
1
12Π

2
21 −

3

2
Π2

21Π
1
22Π

2
21

+
3

2
Π1

21Π
2
12Π

1
21 +

1

2
Π1

21Π
2
12Π

1
12 − Π2

11Π
1
22Π

1
21

+
1

2
Π2

12Π
2
12Π

1
22 +Π2

12Π
2
21Π

1
22 +Π1

12Π
2
11Π

1
22

=
1

2
Π1

21Π
1
21(Π

2
12 − Π2

21) + Π1
21Π

1
12(Π

2
12 − Π2

21)− Π1
21Π

2
12(Π

1
12 − Π1

21)

+
1

2
Π1

21Π
1
12(Π

2
12 − Π2

21) +
1

2
(Π2

12Π
2
12 − Π2

21Π
2
21)Π

1
22 +Π2

21Π
1
22(Π

2
12 − Π2

21)

+ Π2
11Π

1
22(Π

1
12 − Π1

21).

Suppose conversely that we can find τ = (Πi
jk), where (i, j, k) ̸= (1, 1, 1), (2, 2, 2),

such that F (τ) = G(τ) = 0. We define Π1
11 and Π2

22 by (6.2-1) and (6.2-2), and
Πij by (6.2-3), (6.2-4) and (6.2-5). Then, the projective structure determined by τ
is curvature-free. It is with torsion if and only if the condition (6.2-6) is satisfied.
Therefore, we have

T = {τ = (Πi
jk) | F (τ) = G(τ) = 0}.

Note that if τ ∈ T is torsion-free, then τ is flat, because τ is curvature-free. In this
example, if we assume Π1

12 = Π1
21 and Π2

12 = Π2
21, then F (τ) = G(τ) = 0 are

equal to zero so that Ωj = 0. This is analogous to the case of dimension greater
than two. In the latter case, the vanishing of Ωj is guaranteed by Proposition 1.9.

Affine connections which induce a given normal projective connection is ob-
tained as follows. Let ν1, ν2 ∈ R be arbitrary, and set Γi

jk = Πi
jk − (δijνk + δikνj)

for (i, j, k) ̸= (1, 1, 1), (2, 2, 2), where δij =

{
1, i = j,

0, i ̸= j
. We have then −6ν1 −

(Γα
α1 +Γα

1α) = −6ν1 − 2Γ1
11 −Π2

21 −Π2
12 + ν1 + ν1 = −4ν1 − 2Γ1

11 +2Π1
11.

Hence we have Π1
11 = Γ1

11 + 2ν1. Similarly, we have Π2
22 = Γ2

22 + 2ν2. Thus
defined affine connection induces the projective structure given by τ = (Πi

jk).
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Finally, let F i
jk =

∂F

∂Πi
jk

and Gi
jk =

∂G

∂Πi
jk

. We have

F 1
12(τ) =

1

2
Π2

12Π
2
12 +Π2

12Π
2
21 +

1

2
Π2

12Π
2
21 +Π1

12Π
2
11

+ 2Π1
12Π

2
11 − Π2

11Π
1
21,

F 1
21(τ) = −1

2
Π2

12Π
2
12 − Π2

12Π
2
21 − Π2

12(Π
2
12 − Π2

21)−
1

2
Π2

12Π
2
21

− Π1
21Π

2
11 − Π1

12Π
2
11,

F 1
22(τ) = Π2

11(Π
2
12 − Π2

21),

F 2
11(τ) =

1

2
(Π1

12Π
1
12 − Π1

21Π
1
21) + Π1

12(Π
1
12 − Π1

21) + Π1
22(Π

2
12 − Π2

21),

F 2
12(τ) = Π2

12(Π
1
12 − Π1

21) + Π2
21(Π

1
12 − Π1

21)− 2Π2
12Π

1
21 +Π1

21Π
2
21

+
1

2
Π2

21(Π
1
12 − Π1

21),

F 2
21(τ) = Π2

12(Π
1
12 − Π1

21) + Π2
12Π

1
21 +

1

2
Π2

12(Π
1
12 − Π1

21)− Π1
22Π

2
11,

G1
12(τ) = −Π1

21(Π
2
21 − Π2

12)− Π1
21Π

2
12 −

1

2
Π1

21(Π
2
21 − Π2

12) + Π2
11Π

1
22,

G1
21(τ) = −Π1

21(Π
2
21 − Π2

12)− Π1
12(Π

2
21 − Π2

12) + 2Π1
21Π

2
12 − Π2

12Π
1
12

− 1

2
Π1

12(Π
2
21 − Π2

12),

G1
22(τ) = −1

2
(Π2

21Π
2
21 − Π2

12Π
2
12)− Π2

21(Π
2
21 − Π2

12)− Π2
11(Π

1
21 − Π1

12),

G2
11(τ) = −Π1

22(Π
1
21 − Π1

12),

G2
12(τ) =

1

2
Π1

21Π
1
21 − Π1

21Π
1
12 +Π1

21(Π
1
21 − Π1

12) +
1

2
Π1

21Π
1
12

+Π2
12Π

1
22 +Π2

21Π
1
22,

G2
21(τ) = −1

2
Π1

21Π
1
21 − Π1

21Π
1
12 −

1

2
Π1

21Π
1
12 − Π2

21Π
1
22

− 2Π2
21Π

1
22 +Π1

22Π
2
12.

If Π1
12 = Π1

21 and if Π2
12 = Π2

21, then we have

F 1
12(τ) = 2(Π2

12Π
2
12 +Π1

12Π
2
11), G1

12(τ) = −Π1
12Π

2
12 +Π1

22Π
2
11,

F 1
21(τ) = −2(Π2

12Π
2
12 +Π1

12Π
2
11), G1

21(τ) = Π1
12Π

2
12,

F 1
22(τ) = F 2

11(τ) = 0, G1
22(τ) = G2

11(τ) = 0,

F 2
12(τ) = −Π1

12Π
2
12, G2

12(τ) = 2(Π1
12Π

1
12 +Π2

12Π
1
22),

F 2
21(τ) = Π1

12Π
2
12 − Π1

22Π
2
11, G2

21(τ) = −2(Π1
12Π

1
12 +Π2

12Π
1
22).
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Hence
(
∂F

∂τ
(τ)

∂G

∂τ
(τ)

)
is of rank 2 for almost every τ . If τ ∈ T ′, then we have

Π1
12 ̸= Π1

21 or Π2
12 ̸= Π2

21. In particular, one of Π1
12,Π

1
21,Π

2
12 and Π2

21 is
non-zero. Hence T ′ induces an open subvariety of RP 5. □

An open subset of dimension 4 of T exists by the implicit function theorem,
however, it seems difficult to find explicit ones. We will present a family of elements
of T with three parameters.

Example 6.3. Suppose that Π1
12 = Π1

21 = Π1
22 = 0. Then we have F (τ) =

G(τ) = 0 and Π2
22 = 0. It follows that

Π11 = −Π2
12Π

1
11 +Π2

21Π
2
12

=
3

2
Π2

12Π
2
21 +

1

2
Π2

12Π
2
12,

Π12 = Π21 = 0,

Π22 = 0.

Let a = Π2
11, b = Π2

12 and c = Π2
21. The normal TW-connection is given by

ω =

 − b+c
2
dx1 0 0

adx1 + bdx2 cdx1 0
−3

2
(3bc+ b2)dx1 0 0

− 1

3

dt dx1

dt dx2

dt


We have Ω1 = 0 and Ω2 = 1

3
(b − c)dx1 ∧ dx2. The torsion of ω is equal to(

0
−b+ c

)
dx1 ∧ dx2. By setting a = b = 1 and c = −1, we obtain Example 6.1.

Note that the ratio a : b : c is relevant.

We have another kind of a one-parameter family.

Example 6.4. Let Π1
12 = −Π1

21 = sin θ and Π2
21 = −Π2

12 = cos θ. We have
Π1

11 = Π2
22 = 0 by (6.2-1) and (6.2-2). On the other hand, we have

F (τ) = 2(sin2 θ − (cos θ)Π1
22)Π

2
11,

G(τ) = −2(cos2 θ − (sin θ)Π2
11)Π

1
22.

1) If sin θ = 0, then we have cos θ ̸= 0. Since G(τ) = 0, we have Π1
22 = 0.

Hence Π12 = Π21 = 0 by (6.2-4). We have Π11 = −1 and Π22 = 0 by (6.2-3)
and (6.2-5). The normal TW-connection is given by 0 0 0

Π2
11dx

1 ± dx2 ∓dx1 0
3dx1 0 0

− 1

3

dt dx1

dt dx2

dt

 ,

where the double signs correspond and Π2
11 is arbitrary.
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2) If cos θ = 0, then the normal TW-connection is given by±dx2 ∓dx1 +Π1
22dx

2 0
0 0 0
0 3dx2 0

− 1

3

dt dx1

dt dx2

dt

 .

3) If sin θ ̸= 0 and if cos θ ̸= 0, then either Π1
22 = Π2

11 = 0 or Π1
22 = sin2 θ

cos θ
,

Π2
11 =

cos2 θ
sin θ

. In the first case, the normal TW-connection is given by sin θdx2 − sin θdx1 0
− cos θdx2 cos θdx1 0

0 0 0

− 1

3

dt dx1

dt dx2

dt

 .

In the second case, the normal TW-connections is given by sin θdx2 − sin θdx1 + sin2 θ
cos θ

dx2 0
cos2 θ
sin θ

dx1 − cos θdx2 cos θdx1 0
0 0 0

− 1

3

dt dx1

dt dx2

dt

 .

In the both cases, the torsion is given by 2

(
− sin θ
cos θ

)
dx1 ∧ dx2. Hence the ratio

K1
12 : K

2
12 can take any value. The latter connection can be slightly generalized as r sin2 θ cos θdx2 −r(sin2 θ cos θdx1 + sin3 θdx2) 0

r(cos3 θdx1 − sin θ cos2 θdx2) r sin θ cos2 θdx1 0
0 0 0

−1

3

dt dx1

dt dx2

dt

 .

of which the torsion is given by 2r sin θ cos θ

(
− sin θ
cos θ

)
dx1 ∧ dx2.
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