Resolution of sigma-fields for multiparticle finite-state evolution with infinite past

Yu ITO (Kyoto Sangyo University) Toru SERA (Kyoto University) Kouji YANO (Kyoto University)

Let us consider the stochastic recursive equation

$$X_k = N_k X_{k-1} \quad \mathbb{P}\text{-a.s. for } k \in \mathbb{Z}$$

$$\tag{1}$$

with the observation process $X = \{X_k\}_{k \in \mathbb{Z}}$ taking values in a set V and with the noise process $N = \{N_k\}_{k \in \mathbb{Z}}$ doing in a composition semigroup Σ consisting of mappings from V to itself, where we write fv simply for the evaluation f(v). For a given probability law on Σ , we call the pair $\{X, N\}$ a μ -evolution if the equation (1) holds and each N_k has law μ and is independent of $\mathcal{F}_{k-1}^{X,N} := \sigma(X_j, N_j : j \leq k-1)$. Our problem here is to resolve the observation $\mathcal{F}_k^X = \sigma(X_j : j \leq k)$ into three independent components as

$$\mathcal{F}_{k}^{X} = \mathcal{F}_{k}^{Y} \vee \mathcal{F}_{-\infty}^{X} \vee \sigma(U_{k}) \quad \mathbb{P}\text{-a.s. for } k \in \mathbb{Z},$$
(2)

where, for each k, the first component \mathcal{F}_k^Y is a sub- σ -field of the noise \mathcal{F}_k^N , the second $\mathcal{F}_{-\infty}^X := \bigcap_{k \in \mathbb{Z}} \mathcal{F}_k^X$ is the remote past, and the third U_k is a random variable which is independent of $\mathcal{F}_k^Y \lor \mathcal{F}_{-\infty}^X$. For σ -fields $\mathcal{F}_1, \mathcal{F}_2, \ldots$ we write $\mathcal{F}_1 \lor \mathcal{F}_2 \lor \cdots$ for $\sigma(\mathcal{F}_1 \cup \mathcal{F}_2 \cup \cdots)$.

If we assume that the product $N_j N_{j+1} \cdots N_k$ converges \mathbb{P} -a.s. as $j \to -\infty$ to some random mapping \widetilde{N}_k and that X_j does to some random variable $X_{-\infty}$, then we obtain

$$\mathcal{F}_k^X \subset \mathcal{F}_k^{\widetilde{N}} \lor \mathcal{F}_{-\infty}^X \quad \mathbb{P}\text{-a.s. for } k \in \mathbb{Z}$$
 (3)

with $\mathcal{F}_{-\infty}^X = \sigma(X_{-\infty})$, \mathbb{P} -a.s. We notice that, in typical cases, these a.s. convergences fail but the resolution (2) holds with the third random variable U_k being uniform in some sense.

Motivated by Tsirelson's example [2] of a stochastic differential equation without strong solutions, Yor [7] studied this problem in the case $V = \mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$, the onedimensional torus, and $\Sigma = \mathbb{T}$ by identifying $z \in \mathbb{T}$ with the multiplication mapping $w \mapsto zw$. By means of the Fourier series and the martingale convergence theorems, he obtained a complete answer to the resolution problem. Akahori–Uenishi–Yano [1] and Hirayama–Yano [3] generalized Yor's results to compact groups; see also Yano–Yor [6] for a survey on this topic.

We now consider the resolution problem when the state space is a finite set $V = \{1, 2, \ldots, \#V\}$ and $\Sigma = \operatorname{Map}(V)$ is the finite composition semigroup of all mappings from V to itself. In Yano [5] we gave a partial answer in the sense that the inclusion

$$\mathcal{F}_k^X \subset \mathcal{F}_k^N \lor \mathcal{F}_{-\infty}^X \quad \mathbb{P}\text{-a.s. for } k \in \mathbb{Z}$$
 (4)

holds if and only if $\operatorname{Supp}(\mu)$ is sync, i.e., the image g(V) is a singleton for some $g \in \langle \operatorname{Supp}(\mu) \rangle$, where $\langle \operatorname{Supp}(\mu) \rangle$ denotes the subsemigroup of Σ consisting of all finite compositions from $\operatorname{Supp}(\mu)$. Unfortunately, we have not so far obtained a general result nor a counterexample for the resolution of the form (2).

We thus focus on the resolution problem for multiparticle evolutions. For a probability law μ and for $m \in \mathbb{N}$, we mean by an *m*-particle μ -evolution the pair $\{\mathbb{X}, N\}$ of a V^m valued process $\mathbb{X} = \{\mathbb{X}_k\}_{k \in \mathbb{Z}}$ with $\mathbb{X}_k = (X_k^1, \ldots, X_k^m)$ and a Σ -valued process $N = \{N_k\}_{k \in \mathbb{Z}}$ such that the stochastic recursive equation

$$X_k^i = N_k X_{k-1}^i \quad \mathbb{P}\text{-a.s. for } k \in \mathbb{Z} \text{ and } i = 1, \dots, m$$
(5)

holds and each N_k has law μ and is independent of $\mathcal{F}_{k-1}^{\mathbb{X},N}$. Choosing

$$m = \inf\{\#g(V) : g \in \langle \operatorname{Supp}(\mu) \rangle\},\tag{6}$$

we shall give a complete answer to the resolution problem of the form

$$\mathcal{F}_{k}^{\mathbb{X}} = \mathcal{F}_{k}^{Y} \vee \mathcal{F}_{-\infty}^{\mathbb{X}} \vee \sigma(U_{k}) \quad \mathbb{P}\text{-a.s. for } k \in \mathbb{Z}.$$
(7)

For this purpose, we utilize the *Rees decomposition* from the algebraic semigroup theory, which has played a fundamental role in the theory of infinite products of random variables taking values in topological semigroups; see, e.g., [4] for the details.

References

- J. Akahori, C. Uenishi, and K. Yano. Stochastic equations on compact groups in discrete negative time. *Probab. Theory Related Fields*, 140(3-4):569–593, 2008.
- [2] B. S. Cirel'son. An example of a stochastic differential equation that has no strong solution. *Teor. Verojatnost. i Primenen.*, 20(2):427–430, 1975.
- [3] T. Hirayama and K. Yano. Extremal solutions for stochastic equations indexed by negative integers and taking values in compact groups. *Stochastic Process. Appl.*, 120(8):1404–1423, 2010.
- [4] G. Högnäs and A. Mukherjea. Probability measures on semigroups. Probability and its Applications (New York). Springer, New York, second edition, 2011. Convolution products, random walks, and random matrices.
- [5] K. Yano. Random walk in a finite directed graph subject to a road coloring. J. Theoret. Probab., 26(1):259–283, 2013.
- [6] K. Yano and M. Yor. Around Tsirelson's equation, or: The evolution process may not explain everything. Probab. Surv., 12:1–12, 2015.
- [7] M. Yor. Tsirel'son's equation in discrete time. Probab. Theory Related Fields, 91(2):135–152, 1992.