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Interval maps with indifferent fixed points have been studied as models of intermittent
phenomena, such as intermittent transitions to turbulent flow in convective fluid. In
this context, the occupations near indifferent fixed points correspond to long regular or
laminar phases, while the occupations away from them correspond to short irregular or
turbulent bursts. There have been many studies of scaling limits of the occupations near
and away from them, e.g., [1, 7, 8, 10, 4, 6]. In this talk, we present a functional and joint-
distributional refinement of them, based on [5]. It is motivated particularly by [2, 3, 9].

We impose the following assumption from now on:

Assumption. An interval map T : [0, 1] → [0, 1] satisfies the following conditions:

(1) (for simplicity) T is point-symmetric, i.e., Tx = 1− T (1− x), x ∈ (1/2, 1].

(2) the restriction T |[0,1/2] : [0, 1/2] → [0, 1] is a C2-bijective map.

(3) T0 = 0, T ′0 = 1 and T ′′x > 0, x ∈ (0, 1/2).

Note that 0 and 1 are indifferent fixed points of T . We know that T has a unique (up to
scalar multiplication) σ-finite invariant measure µ(dx) equivalent to the Lebesgue measure
dx. From now on, let us fix δ ∈ (0, 1/2). Then, it holds that µ([0, δ)) = µ((1− δ, 1]) = ∞
and µ([δ, 1− δ]) < ∞. Hence Birkhoff’s pointwise ergodic theorem implies
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Roughly speaking, the orbit (x, Tx, T 2x, . . . ) of almost every starting point x is concen-
trated close to 0 and 1. We are interested in non-trivial scaling limits of occupation times
for [0, δ), [δ, 1− δ] or (1− δ, 1]. Let us denote by φ(N) = φ(N, x) the Nth hitting time of
(x, Tx, T 2x, . . . ) for [δ, 1− δ]:

φ(0) = 0 and φ(N + 1) = min{k > φ(N) : T kx ∈ [δ, 1− δ]}, N ≥ 0.

We will denote by µ = µ([δ, 1 − δ] ∩ ·)/µ([δ, 1 − δ]) the normalized restriction of µ over
[δ, 1− δ]. We now present our main result.

Theorem (S. [5]). Let α ∈ (0, 1), and let ξ be a [0, 1]-valued random variable with P[ξ ∈
dx] ≪ dx. Then the following conditions are equivalent:
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(i) Tx− x = (1− x)− T (1− x) is regularly varying of index (1 + 1/α) at 0.

(ii) it holds that(
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, in D,

where bn := 1/µ[φ(1) > n], and S
(α)
− (t) and S

(α)
+ (t) are i.i.d. α-stable subordinators

with Lévy measure α
2
r−1−αdr, r > 0.

(iii) it holds that(
1

n

[nt]∑
k=0

1{Tkξ<δ},
Γ(1− α)

bn

[nt]∑
k=0

1{Tkξ∈[δ,1−δ]},
1

n

[nt]∑
k=0

1{Tkξ>1−δ} : t ≥ 0

)
d−→

n→∞
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, in D,

where Z(α)(t) denotes a (2 − 2α)-dimensional symmetric Bessel diffusion process
starting from the origin, and L(α)(t) denotes the local time of Z(α)(t) at the origin
in the Blumenthal–Getoor normalization.
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