The Laplacian on some round Sierpiński carpets and Weyl's asymptotics for its eigenvalues

Fig. 1. Apollonian gaskets $K_{\alpha,\beta,\gamma}$ Fig. 2. Round Sierpiński carpets $\partial_{\infty}G_8$, $\partial_{\infty}G_{12}$

The purpose of this talk is to present the speaker's recent results on the construction of a "canonical" Laplacian on round Sierpiński carpets invariant with respect to certain Kleinian groups (i.e., discrete subgroups of the group $\text{M\"ob}(\widehat{\mathbb{C}})$ of (orientation preserving or reversing) Möbius transformations on $\widehat{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$) and on Weyl's asymptotics for its eigenvalues. Here a *round Sierpiński carpet* refers to a subset of $\widehat{\mathbb{C}}$ homeomorphic to the standard Sierpiński carpet whose complement consists of disjoint open disks in $\widehat{\mathbb{C}}$.

1. Preceding results for the Apollonian gasket

The construction of the Laplacian is based on the speaker's preceding study of the simplest case of the *Apollonian gasket* $K_{\alpha,\beta,\gamma}$. This is a compact fractal subset of \mathbb{C} obtained from an ideal triangle, i.e., the closed subset of \mathbb{C} enclosed by mutually externally tangent three circles, with the radii of the circles $\alpha^{-1}, \beta^{-1}, \gamma^{-1}$ and with the set $V_0^{\alpha,\beta,\gamma}$ of its three vertices (see Fig. 1). Set $\mathcal{C}(K_{\alpha,\beta,\gamma}) := \{f \mid f : K_{\alpha,\beta,\gamma} \to \mathbb{R}, f \text{ is continuous}\}$.

Theorem 1.1 (K., cf. [5]). There exist a finite Borel measure μ on $K_{\alpha,\beta,\gamma}$ with full support and an irreducible, strongly local, regular symmetric Dirichlet form $(\mathcal{E}^{\alpha,\beta,\gamma}, \mathcal{F}_{\alpha,\beta,\gamma})$ on $L^2(K_{\alpha,\beta,\gamma},\mu)$ such that for any affine function $h: \mathbb{C} \to \mathbb{R}$, $h|_{K_{\alpha,\beta,\gamma}} \in \mathcal{F}_{\alpha,\beta,\gamma}$ and

$$\mathcal{E}^{\alpha,\beta,\gamma}(h|_{K_{\alpha,\beta,\gamma}},v) = 0 \qquad \text{for any } v \in \mathcal{F}_{\alpha,\beta,\gamma} \cap \mathcal{C}(K_{\alpha,\beta,\gamma}) \text{ with } v|_{V_0^{\alpha,\beta,\gamma}} = 0 \qquad (1.1)$$

(i.e., $h|_{K_{\alpha,\beta,\gamma}}$ is $\mathcal{E}^{\alpha,\beta,\gamma}$ -harmonic on $K_{\alpha,\beta,\gamma} \setminus V_0^{\alpha,\beta,\gamma}$). Moreover, $\mathcal{C}_{\alpha,\beta,\gamma} := \mathcal{F}_{\alpha,\beta,\gamma} \cap \mathcal{C}(K_{\alpha,\beta,\gamma})$ and $\mathcal{E}^{\alpha,\beta,\gamma}|_{\mathcal{C}_{\alpha,\beta,\gamma} \times \mathcal{C}_{\alpha,\beta,\gamma}}$ are unique (up to positive constant multiples of $\mathcal{E}^{\alpha,\beta,\gamma}|_{\mathcal{C}_{\alpha,\beta,\gamma} \times \mathcal{C}_{\alpha,\beta,\gamma}}$).

Theorem 1.2 (K.). $\mathcal{C}_{\alpha,\beta,\gamma}^{\text{LIP}} := \{ u |_{K_{\alpha,\beta,\gamma}} \mid u : \mathbb{C} \to \mathbb{R}, u \text{ is Lipschitz} \} \subset \mathcal{C}_{\alpha,\beta,\gamma} \text{ and}$

$$\mathcal{E}^{\alpha,\beta,\gamma}(u,v) = \sum_{C \in \mathcal{A}_{\alpha,\beta,\gamma}} \operatorname{rad}(C) \int_C \langle \nabla_C u, \nabla_C v \rangle \, d\operatorname{vol}_C \quad \text{for any } u, v \in \mathcal{C}^{\operatorname{LIP}}_{\alpha,\beta,\gamma}, \quad (1.2)$$

where $\mathcal{A}_{\alpha,\beta,\gamma}$ denotes the set of all the arcs appearing in the construction of $K_{\alpha,\beta,\gamma}$, rad(C) the radius of C, ∇_C the gradient on C and vol_C the length measure on C.

Theorem 1.3 (K.). As the measure μ in Theorem 1.1, $\mu^{\alpha,\beta,\gamma} := \sum_{C \in \mathcal{A}_{\alpha,\beta,\gamma}} \operatorname{rad}(C) \operatorname{vol}_C$ can be taken. Moreover, the Laplacian associated with $(K_{\alpha,\beta,\gamma}, \mu^{\alpha,\beta,\gamma}, \mathcal{E}^{\alpha,\beta,\gamma}, \mathcal{F}_{\alpha,\beta,\gamma})$ has discrete spectrum and its eigenvalues $\{\lambda_n^{\alpha,\beta,\gamma}\}_{n \in \mathbb{N}}$ (with each repeated according to multiplicity) satisfy, with $d_{\mathsf{AG}} := \dim_{\mathrm{H}} K_{\alpha,\beta,\gamma}$ and some $c_0 \in (0,\infty)$ independent of α, β, γ ,

$$\lim_{\lambda \to \infty} \lambda^{-d_{\mathsf{AG}}/2} \#\{n \in \mathbb{N} \mid \lambda_n^{\alpha,\beta,\gamma} \le \lambda\} = c_0 \mathcal{H}^{d_{\mathsf{AG}}}(K_{\alpha,\beta,\gamma}) \in (0,\infty).$$
(1.3)

This work was supported by JSPS KAKENHI Grant Numbers 25887038, 15K17554, 18K18720.

Keywords: Kleinian groups, round Sierpiński carpets, Laplacian, Weyl's eigenvalue asymptotics.

 $^{^{1}}$ dim_H and \mathcal{H}^{d} denote Hausdorff dimension and the *d*-dimensional Hausdorff measure, respectively.

2. Kleinian groups G_m with limit set a round Sierpiński carpet

Let $m \in \mathbb{N}$, m > 6. Since $\frac{\pi}{2} + \frac{\pi}{3} + \frac{\pi}{m} < \pi$ there exists a geodesic triangle with inner angles $\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{m}$, which is unique up to hyperbolic isometry, in the Poincaré disk model $\mathbb{B}^2 := \{z \in \mathbb{C} \mid |z| < 1\}$ of the hyperbolic plane. More specifically, set $\ell_1 := \mathbb{R}$, $\ell_3 := \{te^{\pi i/m} \mid t \in \mathbb{R}\}$ and choose $t, r \in (0, \infty)$ so that $\ell_2 := \{z \in \mathbb{C} \mid |z - te^{\pi i/m}| = r\}$ is orthogonal to $\partial \mathbb{B}^2 := \{z \in \mathbb{C} \mid |z| = 1\}$ and intersects ℓ_1 with angle $\frac{\pi}{3}$; there is a unique such choice of t, r by virtue of $\frac{\pi}{2} + \frac{\pi}{3} + \frac{\pi}{m} < \pi$. Let Δ_0 denote the closed geodesic triangle formed by ℓ_1, ℓ_2, ℓ_3 and define a subgroup Γ_m of $\mathrm{M\ddot{o}b}(\widehat{\mathbb{C}})$ by $\Gamma_m := \langle \{\mathrm{Inv}_{\ell_k}\}_{k=1}^3 \rangle$, where Inv_ℓ denotes the inversion (reflection) in a circle or a straight line ℓ . Then *Poincaré's polygon theorem* (see, e.g., [2, Section 8]) tells us that $\mathbb{B}^2 = \bigcup_{\tau \in \Gamma_m} \tau(\Delta_0)$, where $\tau(\Delta_0)$ and $\sigma(\Delta_0)$ intersect only on their boundaries for any $\tau, \sigma \in \Gamma_m$ with $\tau \neq \sigma$.

Next, choose $r_m \in (0, 1)$ so that $S := \{z \in \mathbb{C} \mid |z| = r_m\}$ intersects ℓ_2 with angle $\frac{\pi}{3}$; it is elementary to see that there is a unique such choice of r_m . Then it turns out (see, e.g., [1]) that the subgroup G_m of $\text{M\"ob}(\widehat{\mathbb{C}})$ defined by $G_m := \langle \Gamma_m, \text{Inv}_S \rangle$ is a Kleinian group and that $\partial_{\infty} G_m := \bigcup_{g \in G_m} g(\partial \mathbb{B}^2)$ is the *limit set* of G_m (i.e., the minimum nonempty closed G_m -invariant subset of $\widehat{\mathbb{C}}$) and is in fact a round Sierpiński carpet (being homeomorphic to the standard Sierpiński carpet follows from [6]).

Set $K_0 := (\partial_{\infty} G_m) \cap \mathbb{B}^2$, $\mathcal{G} := \{g \in \operatorname{M\"ob}(\widehat{\mathbb{C}}) \mid g^{-1}(\infty) \in \widehat{\mathbb{C}} \setminus \overline{\mathbb{B}^2}\}$ and $K_g := g(K_0)$ for $g \in \mathcal{G}$. Also set $\mathcal{D}_g := \{gh(\widehat{\mathbb{C}} \setminus \overline{\mathbb{B}^2}) \mid h \in G_m\} \setminus \{g(\widehat{\mathbb{C}} \setminus \overline{\mathbb{B}^2})\}$, so that \mathcal{D}_g is a family of disjoint open disks in \mathbb{C} with $K_g = g(\mathbb{B}^2) \setminus \bigcup_{D \in \mathcal{D}_g} D$. Now we adopt (1.2) as the *definition* of the Dirichlet form on K_g and similarly for the volume measure on K_g .

Definition 2.1 (K.). Let $g \in \mathcal{G}$ and set $\mathcal{C}_g := \{u|_{K_g} \mid u : \mathbb{C} \to \mathbb{R}, u \text{ is Lipschitz}\}$. We define a Borel measure ν^g on K_g and a symmetric bilinear form $\mathcal{E}^g : \mathcal{C}_g \times \mathcal{C}_g \to \mathbb{R}$ by

$$\nu^{g} := \sum_{D \in \mathcal{D}_{g}} \operatorname{rad}(\partial D) \operatorname{vol}_{\partial D}, \quad \mathcal{E}^{g}(u, v) := \sum_{D \in \mathcal{D}_{g}} \operatorname{rad}(\partial D) \int_{\partial D} \langle \nabla_{\partial D} u, \nabla_{\partial D} v \rangle \, d\operatorname{vol}_{\partial D}.$$

Proposition 2.2 (K.). On $L^2(K_g, \nu^g)$, $(\mathcal{E}^g, \mathcal{C}_g)$ is closable and its closure $(\mathcal{E}^g, \mathcal{F}_g)$ is a strongly local regular Dirichlet form whose associated Laplacian has discrete spectrum.

Since G_m is convex cocompact (hence Gromov hyperbolic), $d_m := \dim_{\mathrm{H}} K_g \in (1, 2)$ and $\mathcal{H}^{d_m}(K_q) \in (0, \infty)$ by [4, Theorem 7]. The following is the main result of this talk.

Theorem 2.3 (K.). There exists $c_m \in (0, \infty)$ such that for any $g \in \mathcal{G}$, the eigenvalues $\{\lambda_n^g\}_{n \in \mathbb{N}}$ (with each eigenvalue repeated according to its multiplicity) of the (non-negative definite) Laplacian associated with $(K_g, \nu^g, \mathcal{E}^g, \mathcal{F}_g)$ satisfy

$$\lim_{\lambda \to \infty} \lambda^{-d_m/2} \#\{n \in \mathbb{N} \mid \lambda_n^g \le \lambda\} = c_m \mathcal{H}^{d_m}(K_g).$$
(2.1)

Theorem 2.3 is proved by applying Kesten's renewal theorem [3, Theorem 2] to a certain Markov chain on the space of "all possible Euclidean shapes of K_g " defined by $H \setminus \mathcal{G} := \{Hg \mid g \in \mathcal{G}\}$, where H denotes the group of Euclidean similarities of \mathbb{C} .

References

- [1] S. Bullett and G. Mantica, Nonlinearity 5 (1992), 1085–1109.
- [2] D. B. A. Epstein and C. Petronio, Enseign. Math. 40 (1994), 113–170.
- [3] H. Kesten, Ann. Probab. 2 (1974), 355–386.
- [4] D. Sullivan, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 171–202.
- [5] A. Teplyaev, in: M. L. Lapidus and M. van Frankenhuijsen (eds.), Proc. Sympos. Pure Math., vol. 72, Part 1, Amer. Math. Soc., 2004, pp. 131–154.
- [6] G. T. Whyburn, Fund. Math. 45 (1958), 320–324.