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Brownian motion

There are a few ways of introducing Brownian motion on a manifold:

it’s the continuous version of an isotropic random walk on a manifold.

it’s the continuous Markov process with transition density given by the
heat kernel.

it solves the martingale problem for half the Laplacian; that is, if Bt is
Brownian motion and f is smooth and compactly supported, then
f (Bt)− f (x0)−

∫ t
0

1
2∆f (Bs) ds is a martingale.

It follows from this last point that if h is harmonic then h(x0) is given by the
expectation of h(Bσ) where Bt is Brownian motion started at x0 and σ is a
(bounded) stopping time. Two familiar examples are integrating h against the
heat kernel and integrating h against harmonic measure.
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Rank-n martingales

A rank-n martingale is a (continuous) process Xt on a smooth, m-dimensional
manifold M, possibly defined up to some explosion time ζ, which locally (in
space and time) satisfies an SDE of the form

dXt =

n∑
i=1

vi,t dW i
t

where (v1,t, . . . , vn,t) is a continuous, adapted n-tuple of orthonormal vectors
(in TXt M). (We assume that 1 ≤ n < m.)

Infinitesimally, it’s a BM on Λt = span{v1,t, . . . , vn,t}. We think of such a
process as really being determined by Λt, but having an associated frame is
often convenient for computations.
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Rank-n martingales in geometry

This notion provides a unifying theme to a few geometric objects (formally, at
least), and allows us to study “coarse” properties of such objects all at one
time.

Brownian motion on a minimal submanifold (meaning the mean
curvature vector vanishes) gives rise to a rank-n martingale in the
ambient space.

This generalizes to the natural diffusion along the mean curvature flow,
backward in time.

The diffusion associated to a rank-n sub-Riemannian structure (realized
as the restriction of a Riemannian metric) with the property that the
sub-Laplacian is a sum-of-squares of coordinate vector fields in normal
coordinates also gives a rank-n martingale. (Though this is a bit
artificial.)
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Martingales of bounded dilation

There is a relationship with martingales of bounded dilation, as studied by
Kendall, Darling, Arnaudon, etc. Indeed, any rank-n martingale with n ≥ 2 is
a special case of a martingale of bounded dilation (in fact, of 1-bounded
dilation and already essentially on the intrinsic time scale). These arise in
studying the harmonic mapping problem, especially to prove generalized
Picard little theorems.

However, we will be working in different geometric contexts than that of the
harmonic mapping problem. In the following result about transience on a
Cartan-Hadamard manifold, our methods are closer to those of March and
Hsu for BM.
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Course results motivated by minimal submanifolds

Let M be a (smooth, complete) Cartan-Hadamard manifold of dimension m.
Choose n ∈ {1, . . . ,m− 1}.

Markvorsen and Palmer (2003) prove that if N is a complete, n-dimensional,
minimally immersed submanifold of M then if either of the following hold

n = 2 and the sectional curvatures of M are bounded above by −a2 < 0,
or

n ≥ 3,

we have that N is transient. They prove this using nontrivial capacity
estimates.

We wish to extend this (in a few directions), and to do so using elementary
stochastic methods.
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Transience results

Theorem (N. ’14)
Let Xt be a rank-n martingale on a Cartan-Hadamard manifold M, as above.
Then if either of the following two conditions hold:

1 n = 2 and, in polar coordinates around some point, M satisfies (for some
ε > 0 and R > 1) the curvature estimate

K(r, θ,Σ) ≤ − 1 + 2ε
r2 log r

for r > R (and for all θ and Σ 3 ∂r)

2 n ≥ 3,

we have that Xt is transient.

So we re-prove Markvorsen and Palmers’ results when n ≥ 3, and weaken the
curvature condition for n = 2. Further, this also applies to BM along
backwards mean curvature flow and certain sub-Riemannian structures
(although the significance is less clear).
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Angular behavior

Theorem (Kendall ’90s-ish, applied to rank-n martingales)
If M is a Cartan-Hadamard manifold of dimension m ≥ 3 and with sectional
curvatures pinched between two negative constants, and Xt is a rank-n
martingale on M with 2 ≤ n < m, then θt = θ(Xt) converges, almost surely,
as t→ ζ. Further, the distribution of θ(ζ) on Sm−1 is “genuinely random.”

In our context, we made a first effort at relaxing the upper bound:
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More angular behavior

Theorem (N. ’14)
Suppose that M is Cartan-Hadamard manifold of dimension m ≥ 4, and that
M is radially symmetric around some point p. Let (r, θ) be polar coordinates
around p, and let Xt be a rank-n martingale, for 3 ≤ n < m. Further, assume
that M satisfies the curvature estimate

−a2 ≤ K(r, θ,Σ) ≤ −2 + ε

r2 when r > R, and for all θ and Σ 3 ∂r,

for some a > 0, ε > 0, and R > 1. Then we have that θt = θ(Xt) converges,
almost surely, as t→ ζ, and this limit θζ is not a point mass. Further, for any
0 < δ < 1, there exists ρ (depending only on M and n) such that, if r0 > ρ,
then θζ ∈ Bδ(θ0) ⊂ Sm−1 with probability at least 1− δ.
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Consequences

Theorem (N. ’14)
Let N be an n-dimensional, properly immersed minimal submanifold (in M),
corresponding to either of the above situations. Then N admits a
non-constant, bounded, harmonic function.

Also, a sub-Riemannian structure of the type we’ve been discussing, in either
situation, admits a non-constant, bounded, harmonic function (relative to the
sub-Laplacian). Further, in the second case, we can solve some extrinsic
version of the Dirichlet problem at infinity.
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Finer results for minimal surfaces

For now, we consider the case when M is a minimal surface in R3.

The/a plane is the simplest such surface; we’ll see more in a moment. We
assume M is stochastically complete; this means that Brownian motion never
explodes.

Two important families of minimal surfaces:

Complete minimal surfaces of bounded curvature are stochastically
complete.

Properly immersed (complete) minimal surfaces are stochastically
complete.
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Example: The catenoid

Properly embedded

Bounded (Gauss) curvature

Recurrent for Brownian
motion

This image (and the others to come) is taken from Matthias Weber’s online archive at
http://www.indiana.edu/∼minimal/archive/ and used under a Creative Commons Attribution-Noncommercial-No Derivative
Works 3.0 Unported License.
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Example: The Schwarz P surface

Properly embedded

Bounded curvature

Triply periodic (invariant
under translations by Z3)

Transient for Brownian
motion
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Less picturesque possibilities

There exists a proper, conformal, minimal immersion of the open disk
into R3 (Morales, 2003). Obviously, this is transient with lots of
non-constant bounded harmonic functions.

There exists a non-proper, conformal, minimal immersion of the disk
into a ball (Nadirashvili, 1996). Brownian motion almost surely blows
up in finite time.
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The Gauss map

The Gauss map M → S2 associates to each point its unit normal.

It is (anti-) conformal, with the area distortion given by K, the Gauss
curvature.

Thus, the Gauss map composed with Brownian motion is a time-changed
spherical Brownian motion, with time change given by the integral of
−K.

Thus, not only is BM on M a rank-2 martingale in R3, but we also have
control over the evolution of Λt. This extra structure beyond what we have for
an arbitrary rank-2 martingale allows us to study finer properties of minimal
surfaces.
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Mirror coupling in R2

x1

x2

Figure: Kendall and Cranston give a version on Riemannian manifolds; it’s useful for
spectral gap estimates. . .

Kendall and Cranston (though see von Renesse and Kuwada) give a version
on Riemannian manifolds; it’s useful for spectral gap estimates, etc.
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Mirror couplings for minimal surfaces

Let M and N be stochastically complete minimal surfaces; a coupled
Brownian motion is a process (xt, yt) on M × N such that xt and yt are
Brownian motions.
Our goal is to get xt and yt to couple in R3 in finite time.
Intuitively, we want to develop an extrinsic analogue of the
Kendall-Cranston mirror coupling.

If M and N are different and xt and yt couple with positive probability,
then M and N intersect.
If M = N is embedded and xt and yt couple almost surely, then M admits
no non-constant bounded harmonic functions.
Both of the above situations have analogues when M and N have
boundary. In fact, the ability to extend results to the case when M and N
are allowed to have boundary relatively easily is one of the motivations
for using Brownian motion methods.

Robert Neel (Lehigh University) Minimal surfaces and martingales Stochastic Analysis, Tokyo 18 / 32



Intuitive local picture

With a fair amount of technical hassle, one can show that there exists a
coupling which is instantaneously “at least barely favorable.” While this is
always true, some additional global control is needed to get the two particles
to actually couple. (Recall that parallel planes exist.)

This situation is somewhat analogous to wanting to show that a function
f : [0,∞)→ R with f (0) > 0 has a zero. Showing f ′ ≤ 0 is the borderline
infinitesimal condition, but you also need some global condition so that you
don’t get “stuck” before reaching zero.

Robert Neel (Lehigh University) Minimal surfaces and martingales Stochastic Analysis, Tokyo 19 / 32



Choice of coupling

Ler rt = distR3(xt, yt)

Coupling instantaneously determined by an identification of Txt M and
Tyt N; these are parametrized by O(2).

Itô’s rule and trigonometry show that we can choose σ pointwise so that
rt is instantaneously modeled on a time-changed Bessel process of
dimension two or less.

Further, the instantaneous time-change is generically positive, and the
instantaneous dimension is generically less than 2.
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Obstacles to coupling

Assuming a coupling corresponding to a choice of σ with these properties
exists, the particles will couple barring the following potential problems:

The time-change might be deficient (the growth of the
time-change/quadratic variation is too small), so that rt converges and
never hits zero.

The domination by a two-dimensional Bessel process isn’t strict enough
near zero, so that rt comes arbitrarily close to zero but never hits it.

Thus, the idea is to somehow control the unit normals and (xt − yt)/rt in order
to rule out the above problems.
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Parallel lines/planes

We illustrate the coupling and the potential problems in a revealing case.
Suppose that M and N are parallel planes.

y1

y2

An extrinsic cross-section with coordinates.
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A cross-section of M × N

y1

y2
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Perpendicular lines/planes

By way of contrast, for perpendicular planes with the particles started in the
same cross-section, we see that they couple as follows:

y1

y2

An extrinsic cross-section with
coordinates

y1

y2

A cross-section of M × N
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A general solution

The desired process on M × N can be viewed as the solution to a
martingale problem corresponding to a second order operator on M × N.

As the above suggests, the operator for our coupling is degenerate (rank
2 out of 4) everywhere and discontinuous on some subset.

Thus, standard existence results do not apply.

The best we can do (which happens to be good enough) is

Replace the optimal operator with a “good enough” choice with the same
qualitative features; this makes the set of discontinuities smaller.

Use an approximation argument to show existence, though not
uniqueness.

Solution need not be Markov at the discontinuities.
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Partial global control

Theorem (Pathwise weak halfspace theorem)
Let M be a stochastically complete minimal surface of bounded curvature.
Then if M is not flat, the Gauss sphere process (the composition of the Gauss
map with Brownian motion) almost surely accumulates infinite occupation
time in every open set of S2.

This is enough to show that the particles get arbitrarily close, giving . . .
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Strong halfspace theorem for bounded curvature

Theorem (N. ’09)
Let M be a stochastically complete, non-flat minimal surface with bounded
curvature, and let N be a stochastically complete minimal surface. Then the
distance between M and N is zero.

Compare this with

Theorem (Rosenberg ’01)
Let M and N be complete minimal surfaces of bounded curvature. Then either
M and N intersect, or they are parallel planes.
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Maximum principle at infinity

Theorem (Meeks-Rosenberg ’08)
Let M and N be disjoint, complete, properly immersed minimal
surfaces-with-boundary, at least one of which has non-empty boundary. Then
the distance between them satisfies

dist(M,N) = min{dist(M, ∂N), dist(∂M,N)}.

Theorem (N. ’09)
Let M and N be stochastically complete minimal surfaces-with-boundary, at
least one of which has non-empty boundary, such that dist(M,N) > 0. If M
has bounded curvature and is not a plane, then

dist(M,N) = min{dist(M, ∂N), dist(∂M,N)}.
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A conjecture

Conjecture (Sullivan)
A complete, properly embedded minimal surface admits no non-constant,
positive harmonic functions.

Previously known cases:

The theorem obviously holds if M is recurrent.

Meeks, Pérez, and Ros (2006) have proved this under additional
symmetry assumptions (double or triple periodicity, various conditions
about the quotient by the isometry group having finite topology).
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A partial result

Theorem (N. ’09)
Let M be a complete, properly embedded minimal surface of bounded
curvature. Then M has no non-constant bounded harmonic functions.

Again, bounded curvature means the particles get arbitrarily close, either
infinitely often or until they couple.

Meeks and Rosenberg’s tubular neighborhood theorem implies that when
the particles are close, the situation is uniformly close to the mirror
coupling on R2.

Then eventually the particles couple, almost surely.
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Settling a conjecture of Meeks

Theorem (N. ’08 (only arXiv) & ’12, Impera-Pigola-Setti ’13)
Any minimal graph (that is, a complete minimal surface-with-boundary, the
interior of which is a graph over some planar region), other than a plane, is
parabolic in the sense that any bounded harmonic function is determined by
its boundary values.

Here the “global control” used to make the coupling work is that the
Gauss sphere process converges on a graph.
Parabolicity is equivalent to Brownian motion almost surely hitting the
boundary in finite time.
In particular, such surfaces have non-empty boundary.
Weitsman (2008) proved this assuming the domain was finitely
connected. Other partial/related results were obtained by López and
Pérez, and Meeks and Pérez.
Impera, Pigola, and Setti give an analytic proof and some related results.
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Example: The Sherk surface
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