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Default is ...

Dictionaries say:

Oxford dictionary;

1. Failure to fulfil an obligation, especially to repay a loan or appear in a

law court.

Mirriam-Webster;

3. economics :a failure to pay financial debts,

e.g. ” was in default on her loan”, ”mortgage defaults”



§1 Default functions: definition and basic properties.

Fix a filtered probability space (Ω,F ,Ft, P ).

Let Mt be a continuous local martingale. i.e. ∃Tn ↑ ∞ (stopping time) s.t.

MTn
t = MTn∧t is a true continuous martingale for each n.

Mt is a (true) martingale

⇔E[MT ] = E[M0] for ∀T : bounded stopping time.

Def. If Mt is not a true martingale, we say Mt is a strictly local martingale.

“Local” property of Mt :

γT (M) := E[M0] − E[MT ].

is called a default function (Elworthy- X.M.Li-Yor(‘99)).

Rem. If Mt is positive, γT (M) ≥ 0 (∵)Mt is a supermartingale).



Default formula : Assume that E[|MT |] < ∞, E[|M0|] < ∞ for a stopping

time T and {M−
T∧S;S : stopping times } is uniformly integrable. Set

M∗
t := sup

0≤s≤t

Ms.

E[MT : M∗
T ≤ λ] + λP (M∗

T > λ) + E[(M0 − λ)+] = E[M0].

Letting λ → ∞,

γT (M) = lim
λ→∞

λP ( sup
0≤t≤T

Mt > λ).

Another quantity: σT (M)

Def.

σT (M) := lim
λ→∞

λP (⟨M⟩1/2T > λ).



Theorem (Elworthy-Li-Yor, Takaoka(‘99)) Assume that

E[|MT |] < ∞, E[|M0|] < ∞.

∃γT (M) =

√
π

2
σT (M).

Moreover MT
t := MT∧t is a uniformly integrable martingale iff

γT (M) = σT (M) = 0.

See also Azema-Gundy -Yor(‘80), Galtchouk-Novikov(‘97).



[Example]

Rt : d-dimensional Bessel process(= the modulus of Brownian motion on Rd;

Rt = |Bt|).

If d > 2, then R2−d
t is a strictly local martingale.

As for default function, if R0 = r,

γt(R
2−d) =

1

2νΓ(ν)

∫ t

0

du

u1+ν
exp(− r2

2u
),

where d = 2(1 + ν).

If d = 2, logRt is a strictly local martingale.

γt(logR) =
1

2

∫ t

0

du

u
exp(− r2

2u
).



[submartingale case]

Let Xt = X0 +Mt +At where M is a local martingale and A is an adapted

increasing process.

Lem.(Default function for submartingale)

If X is positive and E[AT ] < ∞,

lim
λ→∞

λP ( sup
0≤t≤T

Xt > λ) = lim
λ→∞

λP ( sup
0≤t≤T

Mt > λ)

= E[X0] − E[XT ] + E[AT ].



Example (stochastic Jensen’s formula).

Let Zt : BM(C) with Z0 = o, τr = inf{t > 0 : |Zt| > r}
and f be a non-constant holomorphic function on C.

Set Xt := log |f(Zτr∧t) − a|−2 : a local martingale bounded below.

lim
λ→∞

λP ( sup
0<t<τr

Xt > λ) =
∑

f(ζ)=a, |ζ|<r

2 log
r

|ζ|
.

From this we can see an essential relationship between Nevanlinna theory and

complex Brownian motion ( Carne(86), A.(95)).



§2 Submartingale property of subharmonic functions.

[Settings]

Let M be a separable, metrizable, locally compact space and m a Radon

measure whose support is M .

(Xt, Px) be a symmetric diffusion process with generator L defined from the

Dirichlet form (E,F) on L2(m).

µ⟨u⟩ denotes the energy measure of u such that∫
M

f(x)dµ⟨u⟩(x) = 2E(uf, u) − E(u2, f), f ∈ F ∩ Co(M).

Define

µ⟨u,v⟩ =
1

2
(µ⟨u+v⟩ − µ⟨u⟩ − µ⟨v⟩).

Then

E(u, v) =
1

2
µ⟨u,v⟩(M) (u, v ∈ Fb).



If µ⟨u,v⟩ is absolutely continuous w.r.t.m,

Γ(u, v) :=
dµ⟨u,v⟩

dm
.

Assume that

• (E,F) is a strongly local, irreducible regular Dirichlet form.

• (AC) the transition probability p(t, x, dy) is absolutely continuous w.r.t. m

for ∀t > 0,∀x.

• (EXH) there exists a nonnegative exhaustion function r(x) (i.e.

{r(x) < r} : rel.cpt for ∀r ≥ 0) such that Γ(r, r) is bounded.

• (CON) (Xt, Px) is conservative.



Typical Example : Brownian motion on a complete, connected Riemannian

manifold M. L =
1

2
∆,Γ(u, u) =

1

2
|∇u|2, r(x) = d(o, x),

m = Riemannian volume dv, p(t, x, dy) = p(t, x, y)dv(y) where

p(t, x, y) is the heat kernel of ∂/∂t − 1

2
∆.

F = H1
0(M) = C∞

0 (M)
E1

where E1(u, u) = E(u, u) + ||u||2L2(m).

Note C = C∞
0 (M). This satisfies the assumptions (AC), (EXH). If the Ricci

curvature of M satisfies

Ric ≥ −Cr(x)2 − C,

for some C > 0, (CON) holds.



[subharmonic function]

Def. u is (L-)subharmonic if u ∈ Floc ∩ L∞
loc(M) and E(ϕ, u) ≤ 0 for

∀ϕ ≥ 0, ϕ ∈ F with compact support.

Let

U := {u : a positive L-subharmonic function |

Ex[u(Xt)] < ∞(∀t > 0)a.e.x}.

It is well-known that u(Xt) is a local submartingale if u ∈ U :

ũ(Xt) − ũ(x) = M
[u]
t + A

[u]
t Px-a.s.

Def. Submartingale property of subharmonic functions We say that u has the

L-submartingale property if ũ(Xt) is a continuous submartingale under Px for

a.e. x.



Def. Default function of u(XT )

Nx(T, u) = lim
λ→∞

λPx( sup
0≤s≤T

ũ(Xs) > λ).

We consider the condition for the default function to be vanishing when T = t.

Theorem 0. Let B(r) := {r(x) < r}.

If u ∈ U and

lim inf
r→∞

1

r2
(log

∫
B(r)

uαdm + logm(B(r)) < ∞

for some α > 2, then u has the L-submartingale property. i.e. ũ(Xt) is a

submartingale under Px for a.e.x.



sketch of proof.

1◦. Let τr = inf{t > 0|Xt /∈ B(r)}. If

lim
r→∞

Ex[ũ(Xτr) : τr < t] = 0,

then Nx(t, u) = 0.

2◦. Estimate Ex[ũ(Xτr)].

Lem. Let x0 ∈ M,η > 0. If u is a positive L-subharmonic function, there

exists a constant C(x0) such that for r large enough,

Ex0 [ũ(Xτr)] ≤ C(x0)(

∫
B(r(η+1)

u(x)2dm)1/2 + C(x0).



3◦. Estimate Px(τr < t).

Lem. (Takeda’s inequality) Fix r0 > 0. If r > r0, there exists c > 0 such that∫
B(r0)

Py(τr < t)dm(y) ≤ const.
vol(B(r + 1))

r
e− cr2

t ,

4◦. Nx0(t0, u) = 0 for some x0, t0 implies Nx(t, u) = 0 for ∀t > 0 and

a.e.x.



[Brownian motion case]

When M is a complete Riemannian manifold and (Xt, Px) is Brownian motion

on M, the Ricci curvature controls the conditions in the above theorem.

Theorem. If there exists a constant C > 0 such that Ric ≥ −Cr(x)2 − C

and a positive subharmonic function u satisfies

lim inf
r→∞

1

r2
log

∫
B(r)

u(x)dv(x) < ∞,

then u has the ∆-submartingale property.



§3. L1 Liouville theorem.

[Known results]

1-1. Lp-Liouville theorem: (Yau ‘76, P.Li-Schoen ‘84) If M is a complete

Riemannian manifold and a positive ∆-subharmonic function u is Lp-integrable

for p > 1, u is constant.

1-2. Generalization in the context of Dirichlet form (T.Sturm, ‘94).

Under our setting, if a positive L-subharmonic u satisfies∫ ∞ rdr∫
B(r)

updm
= ∞

for some p > 1, then u is constant.



2. L1-Liouville theorem. Let M be a complete Riemannian manifold and u a

positive ∆-subharmonic function.

Ricci curvature condition (P.Li ‘84 )

If M is a complete Riemannian manifold satisfying Ric ≥ −Cr(x)2 − C for

some C > 0 and u is L1, then u is constant.

3. Weighted Lp-Liouville theorem. (Nadirashvili ‘85)

If

∫
M

f(u(x))

r(x)2 + 1
dv(x) < ∞ for a nonnegative function on [0,∞)

satisfying

∫ ∞

0

1/f(t)dt < ∞, then u is constant



[L1-Liouville theorem and submartingale property]

We do not assume the conservativeness of (Xt, Px) in the following

proposition.

Prop. If u is a positive, integrable L-subharmonic function and u has the

submartingale property, then u is constant a.e. Namely vanishing of default

function of u implies L1-Liouville theorem.



[(Counter)Example]

Example 1 (recurrent case).

The following example is originally due to Li-Schoen. We give a little modification.

Let M be a compact 2-dim Riemannian manifold without boundary, equipped with

a metric ds2
0,

∆M is the Laplacian defined from ds2
0 and

X Brownian motion on M with its generator
1

2
∆M . Fix o ∈ M . Set

g(o, x) = 2π

∫ ∞

0

(p(t, o, x) − 1

vol(M)
)dt + C,

where p(t, x, y) is the transition density of X and C is a positive constant such

that g(o, x) > 0 for all x ∈ M \ {o}. Remark that

g(o, x) ∼ log
1

dM(o, x)2
(dM(o, x) → 0). Note



1

2
∆Mg(o, x) = −2πδo(x) +

1

V ol(M)
.

Let M be M \ {o}. Take σ be a smooth function on M s.t.

σ(x) ∼ t−1(log
1

t
)−1(log log

1

t
)−α with 1/2 < α < 1

when t = dM(o, x) → 0.

Define a metric ds2 = σ2ds2
0 on M . Note that Laplacian ∆M defined from

ds2 has a form

∆M = σ−2∆M ,

where ∆M is defined from ds2
0. Let Xt be Brownian motion on M with its

generator
1

2
∆M . Then Xt is a time changed process of Xt which is recurrent.

Hence Xt is recurrent, in particular, conservative.



(M,ds2) satisfies

• complete and stochastically complete.

• M is of finite volume w.r.t ds2.

• u is a nonnegative smooth subharmonic function on M and integrable w.r.t.

ds2.

• the curvature ∼ −const.r
2α

1−α = −cr2+ϵ as r → ∞
(ϵ = (4α − 2)/(1 − α) > 0).

From these facts we see u(Xt) is a strictly local submartingale and L1-Liouville

property of M fails.



Example 2 (transient case).

Let M be a unit disc( {|z| < 1} )\{o} in C.

Take a (non-degenerate) conformal metric g:

g ∼

 ds2 around o (ds2 as in Example 1),

the Poincaré metric near |z| = 1.

Then g is complete on M and log volB(r) = O(r). The Brownian motion

defined from g is a time-change of a hyperbolic Brownian motion. Set

u(z) := − log(2|z| ∧ 1)) = (− log |z|) ∨ log 2 − log 2 ≥ 0.

u is a nonnegative integrable subharmonic function w.r.t. the volume defined from

g.



[Our results]

Theorem 1. Suppose u is an L-subharmonic function. u+ := max{u, 0}.

i) Assume there exists α > 2 and 0 ≤ p < 1 such that

lim inf
r→∞

1

r2(1−p)
log{m(B(r))

∫
B(r)

u+(x)αdm(x)} < ∞.

If ∫
M

|u(x)|
(1 + r(x))2p

dm(x) < ∞,

then u is constant a.e.



ii) Assume there exists α > 2 such that

lim inf
r→∞

1

(log r)2
log{m(B(r))

∫
B(r)

u+(x)αdm(x)} < ∞.

If ∫
M

|u(x)|
1 + r(x)2

dm(x) < ∞,

then u is constant a.e.



Rem. If M is a complete Riemannian manifold, u is a ∆-subharmonic function

and Ric ≥ −Cr(x)2 − C , then the assumption of Theorem 1 with p = 0 is

satisfied. It implies P.Li’s theorem.

[Brownian motion case]

When M is a complete Riemannian manifold and u is a ∆-subharmonic

function, using Ricci curvature condition enables us to simplify the results as

follows.

Theorem 2 (A. 2016, 2017 manuscripta math.). Suppose Ric ≥ −k(r(x)).

Let u be a smooth subharmonic function on M .

i) Assume that k(r) is non-decreasing and there exists 0 ≤ p ≤ 1/2 such that

lim inf
r→∞

k(r)

r2(1−2p)
< ∞. If∫

M

|u(x)|
(1 + r(x))2p

dv(x) < ∞, then u is constant.



ii) Assume that k(r) is regularly varying or moderately monotone, and there

exists

0 ≤ p < 1 such that

lim inf
r→∞

1

r2(1−p)
{k(r)1/2 +

∫ r

1

k(t)1/2dt + log vol({r(x) < r})} <

∞. If ∫
M

|u(x)|
(1 + r(x))2p

dv(x) < ∞, then u is constant.

iii) Assume that k(r) is regularly varying or moderately monotone,

and lim inf
r→∞

1

(log r)2
{k(r)1/2 +

∫ r

1

k(t)1/2dt + log vol({r(x) <

r})} < ∞.

If ∫
M

|u(x)|
1 + r(x)2

dv(x) < ∞, then u is constant.



Proof of Theorem 1. As for the case of p = 0 directly from the submartingale

property for u(Xt). For the other case use time-change argument as follows. Let

ρ(t) is a non-increasing, positive function on (0,∞) such that∫ ∞

0

ρ(t)1/2dt = ∞. Yt defined by

Yt = X
ζ
−1
t

with ζt =

∫ t

0

ρ(r(Xs))ds.

Note that Yt has a generator
1

2
ρ(r(x))−1L which becomes a self-adjoint

operator on L2(ρ(r(x))dm). Define an exhaustion function θ(x) on M by

θ(x) =

∫ r(x)

0

√
ρ(s)ds.

Then Γ(θ, θ) is bounded. Thus our argument as before is available. Take

ρ(t) = (1 + t)−2p with 0 ≤ p < 1 in case of i) and with p = 1 in case of ii).



§4. Liouville type theorems for strongly subharmonic functions.

Takegoshi (‘06) and Pigola-Rigoli-Setti(‘03) showed :

Theorem (Takegoshi(‘06), Pigola-Rigoli-Setti(‘03) (b < 2)) Let M be a

non-compact complete Riemannian manifold and v(r) denote the volume of a

geodesic ball of radius r > 0 with center x0. r(x) := d(x0, x). If there exist

u ∈ C2(M), C > 0, a > 0, δ > 0 such that {u > δ} ̸= ∅ and

∆u(x) ≥
Cu(x)a+1

(1 + r(x))b
on {u > δ} (*)

holds for b ≤ 2, then lim inf
r→∞

log v(r)

r2−b
= ∞ (b < 2),

lim inf
r→∞

log v(r)

log r
= ∞ (b = 2).



Takegoshi called a function satisfying (*) a strongly subharmonic function. This

inequality is related to Yamabe type differential inequality :

∆u(x) + k(x)u(x) ≥ l(x)u(x)1+a.

cf. Yamabe’s equation : Let f : (M, g) → (N,h) be a conformal immersion

such that f∗h = u4/(m−2)g (m ≥ 3), f∗h = ug (m = 2). Then u

satisfies :

cm∆M − sgu + Kf∗hu
(m+2)/(m−2) = 0 (m ≥ 3),

∆log u − sg + Kf∗hu = 0 (m = 2),

where cm = 4(m − 1)/(m − 2), sg and Kf∗h are scalar curvatures of g

and f∗h, respectively.

We can extend the above result by Takegoshi and Pigola et. al to the case of our

symmetric diffusion case.



Theorem 3. Let ρ be a non-increasing, positive continuous function on RR s.t.∫ ∞

0

√
ρ(t)dt = ∞. Set Φ(t) :=

∫ t

0

√
ρ(s)ds. If u ∈ Floc satisfies that

{u > δ} ̸= ∅ for some δ > 0 and

Lu(x) ≥ ρ(r(x))ua+1(x) on {u > δ}

holds for some a > 0, then lim inf
r→∞

logm(Φ(r(x)) < r)

Φ(r)2
= ∞.

Cor. Takegoshi’s theorem holds replacing the conclusion in the case of b = 2 by

lim inf
r→∞

log v(r)

(log r)2
= ∞.



Proof of Theorem 3. By time-change argument it is sufficient to consider the case

that ρ = 1. The problem can be deduced to consider u satisfying

Lu ≥ Cua+1 (**)

on M .

Lemma. If u ∈ Floc satisfies (**), there exists a constant C1 > 0 such that∫
B(r)

u(x)2+adm(x) ≤ C1V (2r),

where V (r) := m({x|r(x) ≤ r}).

Hence by Theorem 0, if u satisfies (**) and

lim inf
r→∞

log V (r)

r2
< ∞,

then u has L-submartingale property.



§5. Liouville theorems for holomorphic maps.

Let M be a complete Kähler manifold, N a Hermitian manifold, and

f : M → N a holomorphic map. R(x) := inf
ξ∈TxM,||ξ||=1

Ric(ξ, ξ),

R−(x) := max{0,−R(x)}, B(r) := {x ∈ M |r(x) < r},

K(y) : holomorphic bisectional curvature of N .

Let ρ be a non-increasing, positive continuous function on RR s.t.∫ ∞

0

√
ρ(t)dt = ∞ as Theorem 3.



Theorem 4. Assume Brownian motion on M is transient. If

K(f(x)) ≤ −ρ(r(x)),

∫
M

R−(x)dv(x) < ∞ and

lim inf
r→∞

1

Φ(r)2
log vol(B(r)) < ∞,

then f is constant, where Φ(r) =

∫ r

0

√
ρ(t)dt.

Cor. If

∫
M

R−(x)dv(x) < ∞ and

lim inf
r→∞

1

r2
log vol(B(r)) < ∞,

then every bounded holomorphic function on M is constant.



Rem.

• This type result is originally due to Li and Yau(1990) where they treated the

case that ρ was constant.

• Pigola-Rigoli-Setti(‘08) showed the above theorem when

ρ(t) = ct−b (b < 2).

• In recurrent cases Theorem 4 does not always hold. In particular, it does not

hold when dimC M = 1.



Idea of proof. Let e(x) := trgMf∗gN (energy density of f ). Chern-Lu formula

implies

1

2
∆ log e(x) ≥ −K(f(x))e(x) − R−(x) if e(x) ̸= 0.

Then the problem can be deduced to

Theorem 5. Suppose that L-diffusion (Xt, Px) is transient and that

lim inf
r→∞

logm(B(r))

r2
< ∞,

where B(r) = {x ∈ M | r(x) < r}. If a > 0 and a nonnegative

u ∈ Floc ∩ L∞
loc(M) satisfies

L log u(x) ≥ u(x)a − g(x), (***)

where g is a nonnegative m-integrable function, then u = 0.



Transience assumption is effectively used as follows:

Lemma. If u satisfies (***) and

logw(x) = log u(x) − Ex[

∫ ∞

0

g(Xs)ds],

then w satisfies

Lw ≥ w1+a.

Then the problem can be deduced to Theorem 3.



§6. Picard type theorems.

Consider the value distribution of meromorphic functions on negatively curved

Kähler manifolds. Let f be a nonconstant meromorphic function on M : Kähler

manifold i.e. f : M → P1(C) holomorphic.

[x, y] denotes the chordal distance on C ∪ {∞} ∼= P1(C) defined by

[x, y] =


|x − y|√

|x|2 + 1
√

|y|2 + 1
(x, y < ∞)

1√
|x|2 + 1

(y = ∞).

Let (Xt, Px) be a Brownian motion defined from the Kähler metric. In this

section we consider default function log[f(Xt), a]
−2 (a ∈ P1(C)).

Assume (Xt, Px) is conservative (i.e. (M, g) is stochastically complete).



Define

m̃x(t, a) = Ex[log[f(Xt), a]
−2],

Ñx(t, a) = lim
λ→∞

λPx( sup
0≤s≤t

log[f(Xs), a]
−2 > λ),

T̃x(t) = Ex[

∫ t

0

e(Xs)ds]

provided that f(x) ̸= a. As before by Ito’s formula, we have an analogy of the

First Main Theorem of Nevanlinna theory:

m̃x(t, a) − log[f(x), a]−2 + Ñx(t, a) = T̃x(t)

provided that f(x) ̸= a and T̃x(t) < ∞.

Let r(x) be a distance function from a reference point on M and, set

R(x) = inf
|ξ|=1, ξ∈TxM

Ric(ξ, ξ) and B(r) = {r(x) < r}.



Lemma. Assume R(x) ≥ −Cr(x)2 − C for some C > 0. If f omits

a ∈ P1(C) and

lim inf
r→∞

1

r2
log

∫
B(r)

e(x)dv(x) < ∞,

then Ñx(t, a) = 0 for ∀t > 0, a.e. x.

Theorem 5 (A. 2017 Forum Math.) Let M be a complete Kähler manifold whose

sectional curvature is non-positive and its Ricci curvature satisfies

R(x) ≥ −Cr(x)β − C for β < 2.

Let f be a nonconstant meromorphic function on M , a1, a2, . . . , aq distinct

points of P1(C) and x ∈ M such that f(x) ̸= aj (j = 1, . . . , q). Assume

that f cannot omit any sets of positive logarithmic capacity. Then

(i) f omits at most two points or



(ii)

q∑
i=1

m̃x(t, ai) + Ñ1(t, x) ≤ 2T̃x(t) + Ñx(t,Ric) + O(log T̃x(t))

holds for t ∈ (0,∞) except for a set of finite Lebesgue measure, where

Ñx(t,Ric) = −Ex[

∫ t

0

R(Xs)ds].

Rem. 1) The assumption that f cannot omit any sets of positive logarithmic

capacity implies T̃x(t) → ∞ (t → ∞).

2) The case when T̃x(t) = ∞ for a finite t > 0 is included in the case (i).

3) When dimCM = 1, the negativity assumption of the sectional curvature of

M can be removed.



Cor. Let M and f be as above.

If

α := lim sup
t→∞

Ñx(t,Ric)

T̃x(t)
< ∞,

then f can omit at most 2 + α points.

Examples. 1) Let M be a Riemann surface of finite total curvature and

Ric ≥ −Crβ − C for some β < 2. Then we have

α = lim
t→∞

Ñx(t,Ric)

T̃x(t)
=

KM

e(f)
,

where KM is the total curvature of M and e(f) =

∫
M

e(x)dV (x) (≤ ∞).

Hence

#(P1(C) \ f(M)) ≤ 2 +
KM

e(f)
.



2) Assume that dimCM ≥ 2, SectM ≤ 0,

∫
M

R−dv < ∞ and

Ric ≥ −Crβ − C for some β < 2. If X is transient, Ñx(∞,Ric) < ∞.

Hence

Cap(P1(C) \ f(M)) = 0 implies #(P1(C) \ f(M)) ≤ 2.

If X is recurrent,

#(P1(C) \ f(M)) ≤ 2 +

∫
M

R−dv

e(f)

as before.


