Default functions and value distribution of holomorphic maps

Atsushi Atsuji, Keio University

Tokyo one-day workshop on stochastic analysis and geometry, 23. Nov. 2018

[Plan of my talk]

 $\S{\bf 1}$ Default functions: definition and basic properties

 $\S 2$ Submartingale properties of subharmonic functions : Symmetric diffusion cases

 $\S{3} L^{1}$ - Liouville properties of subharmonic functions

 $\S4$ Liouville theorems for strongly subharmonic functions related to Yamabe equations

 \S 5 Liouville theorems for holomorphic maps

 $\S 6$ Picard type theorem for meromorphic functions functions

Default is ...

Dictionaries say:

Oxford dictionary;

1. Failure to fulfil an obligation, especially to repay a loan or appear in a law court.

Mirriam-Webster;

3. economics :a failure to pay financial debts,

e.g. " was in default on her loan", "mortgage defaults"

 $\S1$ Default functions: definition and basic properties.

Fix a filtered probability space $(\Omega, \mathcal{F}, \mathcal{F}_t, P)$.

Let M_t be a <u>continuous</u> local martingale. i.e. $\exists T_n \uparrow \infty$ (stopping time) s.t. $M_t^{T_n} = M_{T_n \wedge t}$ is a true continuous martingale for each n.

 M_t is a (true) martingale $\Leftrightarrow E[M_T] = E[M_0]$ for orall T: bounded stopping time.

Def. If M_t is not a true martingale, we say M_t is a strictly local martingale.

"Local" property of M_t :

$$\gamma_T(M) := E[M_0] - E[M_T].$$

is called a default function (Elworthy- X.M.Li-Yor('99)).

Rem. If M_t is positive, $\gamma_T(M) \ge 0$ (:...) M_t is a supermartingale).

Default formula : Assume that $E[|M_T|] < \infty$, $E[|M_0|] < \infty$ for a stopping time T and $\{M_{T \wedge S}^-; S:$ stopping times $\}$ is uniformly integrable. Set $M_t^* := \sup_{0 \le s \le t} M_s.$

 $E[M_T:M_T^* \leq \lambda] + \lambda P(M_T^* > \lambda) + E[(M_0 - \lambda)_+] = E[M_0].$

Letting $\lambda
ightarrow \infty$,

$$\gamma_T(M) = \lim_{\lambda \to \infty} \lambda P(\sup_{0 \le t \le T} M_t > \lambda).$$

Another quantity: $\sigma_T(M)$

Def.

$$\sigma_T(M) := \lim_{\lambda \to \infty} \lambda P(\langle M \rangle_T^{1/2} > \lambda).$$

Theorem (Elworthy-Li-Yor, Takaoka('99)) Assume that $E[|M_T|] < \infty, E[|M_0|] < \infty.$

$$\exists \gamma_T(M) = \sqrt{rac{\pi}{2}} \sigma_T(M).$$

Moreover $M_t^T:=M_{T\wedge t}$ is a uniformly integrable martingale iff $\gamma_T(M)=\sigma_T(M)=0.$

See also Azema-Gundy -Yor('80), Galtchouk-Novikov('97).

[Example]

 R_t : d-dimensional Bessel process(= the modulus of Brownian motion on R^d ; $R_t = |B_t|$).

If d > 2, then R_t^{2-d} is a strictly local martingale.

As for default function, if $R_0 = r$,

$$\gamma_t(R^{2-d}) = rac{1}{2^
u \Gamma(
u)} \int_0^t rac{du}{u^{1+
u}} \exp(-rac{r^2}{2u}),$$

where d=2(1+
u).

If d = 2, $\log R_t$ is a strictly local martingale.

$$\gamma_t(\log R) = rac{1}{2}\int_0^t rac{du}{u}\exp(-rac{r^2}{2u}).$$

[submartingale case]

Let $X_t = X_0 + M_t + A_t$ where M is a local martingale and A is an adapted increasing process.

Lem.(Default function for submartingale)

If X is positive and $E[A_T] < \infty$,

$$\lim_{\lambda o \infty} \lambda P(\sup_{0 \le t \le T} X_t > \lambda) = \lim_{\lambda o \infty} \lambda P(\sup_{0 \le t \le T} M_t > \lambda) = E[X_0] - E[X_T] + E[A_T].$$

Example (stochastic Jensen's formula).

Let $Z_t : BM(C)$ with $Z_0 = o, \tau_r = \inf\{t > 0 : |Z_t| > r\}$ and f be a non-constant holomorphic function on C. Set $X_t := \log |f(Z_{\tau_r \wedge t}) - a|^{-2}$: a local martingale bounded below.

$$\lim_{\lambda o \infty} \lambda P(\sup_{0 < t < au_r} X_t > \lambda) = \sum_{f(\zeta) = a, \; |\zeta| < r} 2\log rac{r}{|\zeta|}.$$

From this we can see an essential relationship between Nevanlinna theory and complex Brownian motion (Carne(86), A.(95)).

 \S 2 Submartingale property of subharmonic functions.

[Settings]

Let M be a separable, metrizable, locally compact space and m a Radon measure whose support is $M. \label{eq:measure}$

 (X_t, P_x) be a symmetric diffusion process with generator L defined from the Dirichlet form $(\mathcal{E}, \mathcal{F})$ on $L^2(m)$.

 $\mu_{\langle u
angle}$ denotes the energy measure of u such that

$$\int_M f(x) d\mu_{\langle u
angle}(x) = 2 \mathcal{E}(uf,u) - \mathcal{E}(u^2,f), \ \ f \in \mathcal{F} \cap C_o(M).$$

Define

$$\mu_{\langle u,v
angle}=rac{1}{2}(\mu_{\langle u+v
angle}-\mu_{\langle u
angle}-\mu_{\langle v
angle}).$$

Then

$${\mathcal E}(u,v)=rac{1}{2}\mu_{\langle u,v
angle}(M) \ \ (u,v\in \mathcal{F}_b).$$

If $\mu_{\langle u,v
angle}$ is absolutely continuous w.r.t.m,

$$\Gamma(u,v):=rac{d\mu_{\langle u,v
angle}}{dm}.$$

Assume that

- $(\mathcal{E}, \mathcal{F})$ is a strongly local, irreducible regular Dirichlet form.
- (AC) the transition probability p(t,x,dy) is absolutely continuous w.r.t. m for orall t>0,orall x.
- (EXH) there exists a nonnegative exhaustion function r(x) (i.e. $\{r(x) < r\}$: rel.cpt for $\forall r \geq 0$) such that $\Gamma(r,r)$ is bounded.
- (CON) (X_t, P_x) is conservative.

Typical Example : Brownian motion on a complete, connected Riemannian
manifold
$$\mathcal{M}$$
. $L = \frac{1}{2}\Delta$, $\Gamma(u, u) = \frac{1}{2}|\nabla u|^2$, $r(x) = d(o, x)$,
 $m =$ Riemannian volume dv , $p(t, x, dy) = p(t, x, y)dv(y)$ where
 $p(t, x, y)$ is the heat kernel of $\partial/\partial t - \frac{1}{2}\Delta$.
 $\mathcal{F} = H_0^1(\mathcal{M}) = \overline{C_0^\infty(\mathcal{M})}^{\mathcal{E}_1}$ where $\mathcal{E}_1(u, u) = \mathcal{E}(u, u) + ||u||_{L^2(m)}^2$.
Note $\mathcal{C} = C_0^\infty(\mathcal{M})$. This satisfies the assumptions (AC), (EXH). If the Ricci
curvature of \mathcal{M} satisfies

$$Ric \geq -Cr(x)^2 - C,$$

for some C>0, (CON) holds.

[subharmonic function]

Def. u is (L-)subharmonic if $u \in \mathcal{F}_{loc} \cap L^{\infty}_{loc}(M)$ and $\mathcal{E}(\phi, u) \leq 0$ for $\forall \phi \geq 0, \phi \in \mathcal{F}$ with compact support.

Let

$$\mathcal{U}:=\{u: ext{ a positive } L ext{-subharmonic function}\ E_x[u(X_t)]<\infty(orall t>0)a.e.x\}.$$

It is well-known that $u(X_t)$ is a local submartingale if $u \in \mathcal{U}$:

$$ilde{u}(X_t) - ilde{u}(x) = M_t^{[u]} + A_t^{[u]}$$
 Px-a.s.

Def. Submartingale property of subharmonic functions We say that u has the L-submartingale property if $\tilde{u}(X_t)$ is a continuous submartingale under P_x for a.e. x.

Def. Default function of $u(X_T)$

$$N_x(T,u) = \lim_{\lambda o \infty} \lambda P_x(\sup_{0 \le s \le T} ilde{u}(X_s) > \lambda).$$

We consider the condition for the default function to be vanishing when T = t.

Theorem 0. Let
$$B(r) := \{r(x) < r\}.$$

If $u \in \mathcal{U}$ and

$$\liminf_{r \to \infty} \frac{1}{r^2} (\log \int_{B(r)} u^{\alpha} dm + \log m(B(r)) < \infty$$

for some $\alpha > 2$, then u has the L-submartingale property. i.e. $\tilde{u}(X_t)$ is a submartingale under P_x for a.e.x.

sketch of proof.

1°. Let
$$au_r = \inf\{t>0|X_t
otin B(r)\}$$
. If $\lim_{r o\infty}E_x[ilde{u}(X_{ au_r}): au_r< t]=0,$

then $N_x(t,u)=0.$

2°. Estimate
$$E_{m{x}}[ilde{u}(X_{{m{ au}}_r})].$$

Lem. Let $x_0 \in M, \eta > 0$. If u is a positive L-subharmonic function, there exists a constant $C(x_0)$ such that for r large enough,

$$E_{x_0}[ilde{u}(X_{ au_r})] \leq C(x_0) (\int_{B(r(\eta+1)} u(x)^2 dm)^{1/2} + C(x_0).$$

3°. Estimate $P_x(au_r < t)$.

Lem. (Takeda's inequality) Fix $r_0 > 0$. If $r > r_0$, there exists c > 0 such that

$$\int_{B(r_0)} P_y(au_r < t) dm(y) \leq const. rac{vol(B(r+1))}{r} e^{-rac{cr^2}{t}},$$

4°. $N_{x_0}(t_0,u)=0$ for some x_0,t_0 implies $N_x(t,u)=0$ for orall t>0 and a.e.x.

[Brownian motion case]

When \mathcal{M} is a complete Riemannian manifold and (X_t, P_x) is Brownian motion on \mathcal{M} , the Ricci curvature controls the conditions in the above theorem.

Theorem. If there exists a constant C > 0 such that $Ric \ge -Cr(x)^2 - C$ and a positive subharmonic function u satisfies

$$\liminf_{r o\infty} rac{1}{r^2} \log \int_{B(r)} u(x) dv(x) < \infty,$$

then u has the Δ -submartingale property.

§3. L^1 Liouville theorem.

[Known results]

1-1. L^p -Liouville theorem: (Yau '76, P.Li-Schoen '84) If \mathcal{M} is a complete Riemannian manifold and a positive Δ -subharmonic function u is L^p -integrable for p > 1, u is constant.

1-2. Generalization in the context of Dirichlet form (T.Sturm, '94). Under our setting, if a positive L-subharmonic u satisfies

$$\int^\infty rac{r dr}{\int_{B(r)} u^p dm} = \infty$$

for some p>1, then u is constant.

2. L^1 -Liouville theorem. Let \mathcal{M} be a complete Riemannian manifold and u a positive Δ -subharmonic function.

Ricci curvature condition (P.Li '84)

If \mathcal{M} is a complete Riemannian manifold satisfying $Ric \geq -Cr(x)^2 - C$ for some C > 0 and u is L^1 , then u is constant.

3. Weighted
$$L^p$$
-Liouville theorem. (Nadirashvili '85)
If $\int_{\mathcal{M}} rac{f(u(x))}{r(x)^2+1} dv(x) < \infty$ for a nonnegative function on $[0,\infty)$ satisfying $\int_0^\infty 1/f(t) dt < \infty$, then u is constant

[L^1 -Liouville theorem and submartingale property]

We do not assume the conservativeness of (X_t, P_x) in the following proposition.

Prop. If u is a positive, integrable L-subharmonic function and u has the submartingale property, then u is constant a.e. Namely vanishing of default function of u implies L^1 -Liouville theorem.

[(Counter)Example]

Example 1 (recurrent case).

The following example is originally due to Li-Schoen. We give a little modification. Let \overline{M} be a compact 2-dim Riemannian manifold without boundary, equipped with a metric ds_0^2 ,

 $\Delta_{\overline{M}}$ is the Laplacian defined from ds_0^2 and \overline{X} Brownian motion on \overline{M} with its generator $rac{1}{2}\Delta_{\overline{M}}$. Fix $o\in\overline{M}$. Set

$$g(o,x)=2\pi\int_0^\infty (p(t,o,x)-rac{1}{vol(\overline{M})})dt+C,$$

where p(t, x, y) is the transition density of \overline{X} and C is a positive constant such that g(o, x) > 0 for all $x \in \overline{M} \setminus \{o\}$. Remark that $g(o, x) \sim \log \frac{1}{d_{\overline{M}}(o, x)^2} \quad (d_{\overline{M}}(o, x) \to 0)$. Note

$$rac{1}{2}\Delta_{\overline{M}}g(o,x)=-2\pi\delta_o(x)+rac{1}{Vol(\overline{M})}.$$

Let M be $\overline{M}\setminus\{o\}.$ Take σ be a smooth function on M s.t.

$$\sigma(x) \sim t^{-1} (\log rac{1}{t})^{-1} (\log \log rac{1}{t})^{-lpha}$$
 with $1/2 < lpha < 1$

when $t=d_{\overline{M}}(o,x)
ightarrow 0.$

Define a metric $ds^2=\sigma^2 ds_0^2$ on M. Note that Laplacian Δ_M defined from ds^2 has a form

$$\Delta_M=\sigma^{-2}\Delta_{\overline{M}},$$

where $\Delta_{\overline{M}}$ is defined from ds_0^2 . Let X_t be Brownian motion on M with its generator $\frac{1}{2}\Delta_M$. Then X_t is a time changed process of \overline{X}_t which is recurrent. Hence X_t is recurrent, in particular, conservative. (M, ds^2) satisfies

- complete and stochastically complete.
- M is of finite volume w.r.t ds^2 .
- u is a nonnegative smooth subharmonic function on M and integrable w.r.t. ds^2 .
- the curvature $\sim -const.r^{rac{2lpha}{1-lpha}} = -cr^{2+\epsilon}$ as $r o \infty$

(
$$\epsilon=(4lpha-2)/(1-lpha)>0$$
).

From these facts we see $u(X_t)$ is a strictly local submartingale and L^1 -Liouville property of M fails.

Example 2 (transient case).

Let M be a unit disc($\{|z|<1\}$)\ $\{o\}$ in ${
m C}.$

Take a (non-degenerate) conformal metric g:

Then g is complete on M and $\log vol B(r) = O(r)$. The Brownian motion defined from g is a time-change of a hyperbolic Brownian motion. Set $u(z) := -\log(2|z| \wedge 1)) = (-\log|z|) \vee \log 2 - \log 2 \ge 0$. u is a nonnegative integrable subharmonic function w.r.t. the volume defined from g.

[Our results]

Theorem 1. Suppose u is an L-subharmonic function. $u_+:=\max\{u,0\}.$ i) Assume there exists lpha>2 and $0\leq p<1$ such that

$$\liminf_{r
ightarrow\infty}rac{1}{r^{2(1-p)}}\log\{m(B(r))\int_{B(r)}u_+(x)^lpha dm(x)\}<\infty.$$

lf

$$\int_{\mathcal{M}} \frac{|u(x)|}{(1+r(x))^{2p}} dm(x) < \infty,$$

then u is constant a.e.

ii) Assume there exists lpha>2 such that

$$\liminf_{r o\infty} rac{1}{(\log r)^2} \log\{m(B(r))\int_{B(r)} u_+(x)^lpha dm(x)\} <\infty.$$

$$\int_{\mathcal{M}} \frac{|u(x)|}{1+r(x)^2} dm(x) < \infty,$$

then u is constant a.e.

lf

Rem. If \mathcal{M} is a complete Riemannian manifold, u is a Δ -subharmonic function and $Ric \geq -Cr(x)^2 - C$, then the assumption of Theorem 1 with p = 0 is satisfied. It implies P.Li's theorem.

[Brownian motion case]

When \mathcal{M} is a complete Riemannian manifold and u is a Δ -subharmonic function, using Ricci curvature condition enables us to simplify the results as follows.

Theorem 2 (A. 2016, 2017 manuscripta math.). Suppose $Ric \geq -k(r(x))$.

Let u be a smooth subharmonic function on M.

i) Assume that k(r) is non-decreasing and there exists $0 \le p \le 1/2$ such that $\liminf_{r \to \infty} \frac{k(r)}{r^{2(1-2p)}} < \infty$. If $\int_M \frac{|u(x)|}{(1+r(x))^{2p}} dv(x) < \infty$, then u is constant.

ii) Assume that k(r) is regularly varying or moderately monotone, and there exists

$$\begin{split} & 0 \leq p < 1 \text{ such that} \\ & \liminf_{r \to \infty} \frac{1}{r^{2(1-p)}} \{k(r)^{1/2} + \int_{1}^{r} k(t)^{1/2} dt + \log vol(\{r(x) < r\})\} < \\ & \infty. \text{ If} \\ & \int_{M} \frac{|u(x)|}{(1+r(x))^{2p}} dv(x) < \infty, \quad \text{then } u \text{ is constant.} \end{split}$$ iii) Assume that k(r) is regularly varying or moderately monotone,

Proof of Theorem 1. As for the case of p = 0 directly from the submartingale property for $u(X_t)$. For the other case use time-change argument as follows. Let ho(t) is a non-increasing, positive function on $(0,\infty)$ such that $\int_0^\infty
ho(t)^{1/2} dt = \infty$. Y_t defined by

$$Y_t = X_{\zeta_t^{-1}}$$
 with $\zeta_t = \int_0^t
ho(r(X_s)) ds.$

Note that Y_t has a generator $\frac{1}{2}\rho(r(x))^{-1}L$ which becomes a self-adjoint operator on $L^2(\rho(r(x))dm)$. Define an exhaustion function $\theta(x)$ on \mathcal{M} by

$$heta(x) = \int_0^{r(x)} \sqrt{
ho(s)} ds.$$

Then $\Gamma(\theta, \theta)$ is bounded. Thus our argument as before is available. Take $ho(t) = (1+t)^{-2p}$ with $0 \le p < 1$ in case of i) and with p = 1 in case of ii).

 \S 4. Liouville type theorems for strongly subharmonic functions.

Takegoshi ('06) and Pigola-Rigoli-Setti('03) showed :

Theorem (Takegoshi('06), Pigola-Rigoli-Setti('03) (b < 2)) Let M be a non-compact complete Riemannian manifold and v(r) denote the volume of a geodesic ball of radius r > 0 with center x_0 . $r(x) := d(x_0, x)$. If there exist $u \in C^2(M), C > 0, a > 0, \delta > 0$ such that $\{u > \delta\} \neq \emptyset$ and

$$\Delta u(x) \geq rac{Cu(x)^{a+1}}{(1+r(x))^b} \quad ext{on } \{u > \delta\} \tag{*}$$

holds for
$$b \leq 2$$
, then $\liminf_{r \to \infty} \frac{\log v(r)}{r^{2-b}} = \infty \ (b < 2)$,
 $\liminf_{r \to \infty} \frac{\log v(r)}{\log r} = \infty \ (b = 2).$

Takegoshi called a function satisfying (*) a strongly subharmonic function. This inequality is related to Yamabe type differential inequality :

$$\Delta u(x)+k(x)u(x)\geq l(x)u(x)^{1+a}.$$

cf. Yamabe's equation : Let $f:(M,g) \to (N,h)$ be a conformal immersion such that $f^*h = u^{4/(m-2)}g$ $(m \geq 3)$, $f^*h = ug$ (m = 2). Then u satisfies :

$$c_m \Delta_M - s_g u + K_{f^*h} u^{(m+2)/(m-2)} = 0 \ (m \geq 3),$$

 $\Delta \log u - s_g + K_{f^*h} u = 0 \ (m = 2),$

where $c_m = 4(m-1)/(m-2)$, s_g and K_{f^*h} are scalar curvatures of g and f^*h , respectively.

We can extend the above result by Takegoshi and Pigola et. al to the case of our symmetric diffusion case.

Theorem 3. Let
$$\rho$$
 be a non-increasing, positive continuous function on \mathbb{R} s.t.
 $\int_0^\infty \sqrt{\rho}(t) dt = \infty$. Set $\Phi(t) := \int_0^t \sqrt{\rho}(s) ds$. If $u \in \mathcal{F}_{loc}$ satisfies that $\{u > \delta\} \neq \emptyset$ for some $\delta > 0$ and

$$Lu(x)\geq
ho(r(x))u^{a+1}(x) \quad ext{on } \{u>\delta\}$$

holds for some
$$a > 0$$
, then $\liminf_{r o \infty} rac{\log m(\Phi(r(x)) < r)}{\Phi(r)^2} = \infty.$

Cor. Takegoshi's theorem holds replacing the conclusion in the case of b=2 by $\liminf_{r\to\infty} \frac{\log v(r)}{(\log r)^2} = \infty.$

Proof of Theorem 3. By time-change argument it is sufficient to consider the case that ho = 1. The problem can be deduced to consider u satisfying

$$Lu \ge Cu^{a+1}$$
 (**)

on M.

Lemma. If $u \in \mathcal{F}_{loc}$ satisfies (**), there exists a constant $C_1 > 0$ such that

$$\int_{B(r)} u(x)^{2+a} dm(x) \leq C_1 V(2r),$$

where $V(r):=m(\{x|r(x)\leq r\}).$

Hence by Theorem 0, if u satisfies (**) and

$$\liminf_{r\to\infty}\frac{\log V(r)}{r^2}<\infty,$$

then u has L-submartingale property.

 $\S5$. Liouville theorems for holomorphic maps.

Let \mathcal{M} be a complete Kähler manifold, \mathcal{N} a Hermitian manifold, and $f: \mathcal{M} \to \mathcal{N}$ a holomorphic map. $R(x) := \inf_{\xi \in T_x \mathcal{M}, ||\xi||=1} Ric(\xi, \xi)$, $R_-(x) := \max\{0, -R(x)\}, B(r) := \{x \in M | r(x) < r\},$ K(y): holomorphic bisectional curvature of \mathcal{N} . Let ρ be a non-increasing, positive continuous function on \mathbb{R} s.t. $\int_0^\infty \sqrt{\rho}(t) dt = \infty$ as Theorem 3. Theorem 4. Assume Brownian motion on $\mathcal M$ is transient. If $K(f(x)) \leq ho(r(x)), \int_M R_-(x) dv(x) < \infty$ and

$$\liminf_{r\to\infty}\frac{1}{\Phi(r)^2}\log vol(B(r))<\infty,$$

then
$$f$$
 is constant, where $\Phi(r) = \int_0^r \sqrt{
ho(t)} dt.$

Cor. If
$$\int_{\mathcal{M}} R_-(x) dv(x) < \infty$$
 and $\liminf_{r o \infty} rac{1}{r^2} \log vol(B(r)) < \infty,$

then every bounded holomorphic function on $\mathcal M$ is constant.

Rem.

- This type result is originally due to Li and Yau(1990) where they treated the case that ρ was constant.
- Pigola-Rigoli-Setti('08) showed the above theorem when $ho(t)=ct^{-b}~(b<2).$
- In recurrent cases Theorem 4 does not always hold. In particular, it does not hold when $\dim_{
 m C}M=1.$

Idea of proof. Let $e(x) := tr_{g_{\mathcal{M}}} f^* g_{\mathcal{N}}$ (energy density of f). Chern-Lu formula implies

$$rac{1}{2}\Delta \log e(x) \geq -K(f(x))e(x)-R_{-}(x)$$
 if $e(x)
eq 0.$

Then the problem can be deduced to

Theorem 5. Suppose that L-diffusion (X_t, P_x) is transient and that

$$\liminf_{r\to\infty}\frac{\log m(B(r))}{r^2}<\infty,$$

where $B(r) = \{x \in M \mid r(x) < r\}$. If a > 0 and a nonnegative $u \in \mathcal{F}_{loc} \cap L^\infty_{loc}(M)$ satisfies

$$L\log u(x) \ge u(x)^a - g(x), \qquad (***)$$

where g is a nonnegative m-integrable function, then u = 0.

Transience assumption is effectively used as follows:

Lemma. If u satisfies (***) and

$$\log w(x) = \log u(x) - E_x [\int_0^\infty g(X_s) ds],$$

then w satisfies

$$Lw \ge w^{1+a}.$$

Then the problem can be deduced to Theorem 3.

\S 6. Picard type theorems.

Consider the value distribution of meromorphic functions on negatively curved Kähler manifolds. Let f be a nonconstant meromorphic function on M: Kähler manifold i.e. $f: M \to P^1(C)$ holomorphic.

[x,y] denotes the chordal distance on $\mathrm{C}\cup\{\infty\}\cong\mathrm{P}^1(\mathrm{C})$ defined by

$$[x,y] = egin{cases} rac{|x-y|}{\sqrt{|x|^2+1}} & (x,y<\infty)\ rac{1}{\sqrt{|x|^2+1}} & (y=\infty). \end{cases}$$

Let (X_t, P_x) be a Brownian motion defined from the Kähler metric. In this section we consider default function $\log[f(X_t), a]^{-2}$ $(a \in P^1(C))$.

Assume (X_t, P_x) is conservative (i.e. (M, g) is stochastically complete).

Define

$$egin{aligned} ilde{m}_x(t,a) &= E_x[\log[f(X_t),a]^{-2}],\ ilde{N}_x(t,a) &= \lim_{\lambda o \infty} \lambda P_x(\sup_{0 \leq s \leq t} \log[f(X_s),a]^{-2} > \lambda),\ ilde{T}_x(t) &= E_x[\int_0^t e(X_s)ds] \end{aligned}$$

provided that $f(x) \neq a$. As before by Ito's formula, we have an analogy of the First Main Theorem of Nevanlinna theory:

$$\tilde{m}_x(t,a) - \log[f(x),a]^{-2} + \tilde{N}_x(t,a) = \tilde{T}_x(t)$$

provided that f(x)
eq a and $ilde{T}_x(t) < \infty.$

Let r(x) be a distance function from a reference point on M and, set $R(x) = \inf_{|\xi|=1, \ \xi \in T_x M} \operatorname{Ric}(\xi, \xi)$ and $B(r) = \{r(x) < r\}.$

Lemma. Assume $R(x) \geq -Cr(x)^2 - C$ for some C > 0. If f omits $a \in \operatorname{P}^1(\operatorname{C})$ and

$$\liminf_{r\to\infty}\frac{1}{r^2}\log\int_{B(r)}e(x)dv(x)<\infty,$$

then $ilde{N}_x(t,a)=0$ for orall t>0, a.e. x.

Theorem 5 (A. 2017 Forum Math.) Let M be a complete Kähler manifold whose sectional curvature is non-positive and its Ricci curvature satisfies

$$R(x) \geq -Cr(x)^eta - C$$
 for $eta < 2.$

Let f be a nonconstant meromorphic function on M, a_1, a_2, \ldots, a_q distinct points of $P^1(C)$ and $x \in M$ such that $f(x) \neq a_j$ $(j = 1, \ldots, q)$. Assume that f cannot omit any sets of positive logarithmic capacity. Then

(i) f omits at most two points or

(ii)

a

$$\sum_{i=1}^{q} \tilde{m}_x(t,a_i) + \tilde{N}_1(t,x) \leq 2\tilde{T}_x(t) + \tilde{N}_x(t,\operatorname{Ric}) + O(\log \tilde{T}_x(t))$$

holds for $t\in(0,\infty)$ except for a set of finite Lebesgue measure, where

$$ilde{N}_x(t, \operatorname{Ric}) = -E_x [\int_0^t R(X_s) ds].$$

Rem. 1) The assumption that f cannot omit any sets of positive logarithmic capacity implies $\tilde{T}_x(t) \to \infty$ $(t \to \infty)$. 2) The case when $\tilde{T}_x(t) = \infty$ for a finite t > 0 is included in the case (i). 3) When $dim_{\rm C}M = 1$, the negativity assumption of the sectional curvature of M can be removed. Cor. Let M and f be as above.

lf

$$lpha:=\limsup_{t o\infty}rac{ ilde{N}_x(t, ext{Ric})}{ ilde{T}_x(t)}<\infty,$$

then f can omit at most 2+lpha points.

Examples. 1) Let M be a Riemann surface of finite total curvature and $Ric \geq -Cr^{eta} - C$ for some eta < 2. Then we have

$$lpha = \lim_{t o \infty} rac{ ilde{N}_x(t, \operatorname{Ric})}{ ilde{T}_x(t)} = rac{K_M}{e(f)},$$

where K_M is the total curvature of M and $e(f) = \int_M e(x) dV(x) \; (\leq \infty).$ Hence

$$\#(\operatorname{P}^1(\operatorname{C})\setminus f(M))\leq 2+rac{K_M}{e(f)}.$$

2) Assume that $dim_{C}M \geq 2$, $Sect_{M} \leq 0$, $\int_{M} R_{-}dv < \infty$ and $Ric \geq -Cr^{\beta} - C$ for some $\beta < 2$. If X is transient, $\tilde{N}_{x}(\infty, \operatorname{Ric}) < \infty$. Hence

$$Cap(\operatorname{P}^1(\operatorname{C})\setminus f(M))=0$$
 implies $\#(\operatorname{P}^1(\operatorname{C})\setminus f(M))\leq 2.$

If X is recurrent,

$$\#(\operatorname{P}^1(\operatorname{C})\setminus f(M))\leq 2+rac{\int_M R_-dv}{e(f)}$$

as before.