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1 Introduction

The Schrödinger operator H = −~2∆+U stands for the Hamiltonian of quantized finitely many
particles moving in the potential U in a Euclidean space. The quantum phenomena are reduced
to the corresponding classical ones under the semiclassical limit ~ → 0 and there have been
many researches on the analysis. However, to the author’s knowledge, there are not so many
mathematically rigorous results in semiclassical analysis in models in infinite dimensional spaces
as well as quantum field models. Here I note just a few pioneering works, Sjöstrand [30, 31],
Arai [6], Dobrokhotov and Kolokoltsov [11]. In this paper, we consider infinite dimensional
Schrödinger-type operators and study the asymptotics of the bottom of the spectrum under the
semiclassical limit.

First, let us recall finite dimensional results. We consider Hλ = −∆ + λ2U instead of
−~2∆ + U , where λ is a large parameter. Here we assume that U is a nonnegative smooth
function and lim inf |x|→∞ U(x) = ∞ for simplicity. The lowest eigenvalue E0(λ) of Hλ is the
ground state energy and it is a basic problem to study the behavior of E0(λ) under the semiclas-
sical limit λ→∞. Intuitively, the ground state localizes near the neighborhood of the minima
of U as λ → ∞. Then by approximating U by quadratic functions near minima, we obtain a
family of quantum Hamiltonians of harmonic oscillators. The divergence order of E0(λ) is de-
termined by these operators. This result is proved rigorously by Combes, Duclos and Seiler [9]

∗This research was partially supported by Grant-in-Aid for Scientific Research (C) No. 12640173 and the
Sumitomo foundation.
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and Simon [27]. Actually, they determined the divergence order of the nth eigenvalue En(λ)
for all n. Previous to these works, the degeneracy problem of the first and the second eigen-
values which is related to tunneling phenomena were studied by Harrell [14] and Jona-Lasinio
et al. [18]. Further studies were made by Simon [28], Helffer and Sjöstrand[17]. On the other
hand, Witten [32] considered a supersymmetric Hamiltonian and proved the Morse inequality
by using the semiclassical behavior. More precisely, let S be a Morse function on a compact
Riemannian manifold X and consider the Witten complex dλ = e−λS/2deλS/2 which is defined
on L2-space of differential forms on X with respect to the Riemannian volume. Let d∗λ be the
adjoint operator and set ¤λ = dλd

∗
λ + d∗λdλ which is called the Witten Laplacian. By a conse-

quence of semiclassical analysis, the number of eigenvalues of ¤λ acting on p-forms which remain
finite under λ→∞ is dominated by the number of critical points of S whose indices are p. This
implies the Morse inequality. Also in the same paper, Witten proposed studying the correspond-
ing problem in the case of quantum field theory, that is, in infinite dimensional cases. Typical
examples of infinite dimensional manifolds are loop spaces, pinned path spaces over a compact
Riemannian manifold. There exist natural probability measures, the Brownian bridge measures,
on them and many probabilists have been interested in proving a Hodge-Kodaira-type theorem
on loop spaces by using the measures. The Brownian bridge measure on the pinned path space
with a constraint γ(0) = x, γ(1) = y is formally written as dνx,y,λ(γ) = Z−1

λ exp (−λS(γ)) dγ,
where S(γ) = 1

2

∫ 1
0 |γ̇(t)|2dt, Zλ is a normalizing constant and dγ denotes a fictitious Rieman-

nian volume on the pinned path space. Note that the energy function S(γ) is a Morse function
for certain x and y. The exterior differential operator d and the adjoint operator d∗νx,y,λ

and
¤x,y,λ = dd∗νx,y,λ

+d∗νx,y,λ
d can be defined as closable operators on L2 space with respect to dνx,y

for some cases. Formally, by using the unitary transformation, Φλ : α→ Z
−1/2
λ exp

(−λ
2S(γ)

) ·α
between L2(dνx,y) and L2(dγ), ¤x,y,λ is unitarily equivalent to the formal corresponding Witten
Laplacian. Some discussions on this topic can be found in [4]. I think that the study of the
semiclassical behavior of ¤x,y,λ is interesting from a mathematical point of view although this is
not related with physical model directly. This is one motivation to study semiclassical analysis
in infinite-dimensional spaces.

The Schrödinger-type operator studied in this paper is a self-adjoint operator, −Lλ,V on an
abstract Wiener space which has a physical meaning. In fact, it is a perturbed Hamiltonian on
an abstract Boson Fock space whose one-particle Hamiltonian A is identity. Let (B,H, µ) be an
abstract Wiener space and L be the Ornstein-Uhlenbeck operator on L2(B,µ). Let V be a Borel
measurable function on B and set Vλ(φ) = λV

(
λ−1/2φ

)
. Lλ,V is given by −Lλ,V = −L+ Vλ on

L2(B,µ). The aim of this paper is to determine the divergence order of E0(λ) = inf σ(−Lλ,V )
when λ→∞. The semiclassical problem for the operator −L+λ2V was studied in [3]. We note
that Arai [6] studied the semiclassical limit of the partition function of the Hamiltonian in the
case where A−1 is a compact operator which fits in with P (φ) type model on a finite volume
region. In this paper, we consider the case where A = I only but the study of general cases
might be much more interesting.

To explain the meaning of the scaling of V , let us consider the case whereH is a d-dimensional
Euclidean space. In this case, dµ(x) = ϕ2(x)dx, where ϕ(x) =

(
1
2π

)d/4 exp(−|x|2/4). Then
−λLλ,V is unitarily equivalent to the Schrödinger operator on L2(Rd, dx) such that

−Hλ,V = −∆ + λ2

( |x|2
4

+ V (x)
)
− d

2
λ. (1.1)
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The unitary transformation is given by −λLλ,V = M−1
ϕ S−1

λ (−Hλ,V )SλMϕ. Here, Mϕf = ϕ · f
and Sλf(x) = λd/4f

(
λ1/2x

)
. Therefore, −λLλ,V on L2(B,µ) is formally unitarily equivalent to

the infinite-dimensional Hamiltonian −∆ + λ2
(

1
4‖φ‖2

H + V (φ)
)− λ

2 dimH on L2(H, dφ), where
dφ denotes “the Lebesgue measure” on H. Now we explain the semiclassical behavior of the
lowest eigenvalue of Hλ,V in finite dimensions more precisely. Assume that the minima of
U(x) = |x|2

4 + V (x) form a finite set {h1, . . . , hn} and take the minimum value 0. Also let us
denote the Hessian of 1

2V (x) at hj by Kj . Assume that the Hessian of U(x) at hj , 1
4I +Kj are

nondegenerate for all 1 ≤ j ≤ n and lim inf |x|→∞ U(x) > 0.
Then by the previous mentioned works,

lim
λ→∞

E0(λ) =
1
2

min
1≤j≤n

tr
(√

I + 4Kj − I
)
. (1.2)

We will prove the same asymptotics in infinite-dimensional cases.
The organization of this paper is as follows. In Section 2, we will introduce assumptions on

a potential function V and define a Schrödinger operator −Lλ,V . Note that the assumptions
are standard ones in finite-dimensional cases which we already mentioned. Also we recall the
semiboundedness theorem of the Schrödinger operator which is called the GNS(=Glimm, Nelson
and Segal) bound [26]. After that, main theorem (Theorem 2.6) will be stated. In Section 3,
we approximate U(φ) = 1

4‖φ‖2
H + V (φ) by quadratic functions near the minimizers and obtain

a family of approximate Schrödinger operators. By using the ground states of them as trial
functions, we will prove the upper bound estimate of E0(λ) in Section 4. In Section 5, we will
prove a rough lower bound estimate lim infλ→∞E0(λ) > −∞. Most of part of our proof of
main theorem proceeds in the parallel way as the finite dimensional cases as in [27]. However
this rough estimate as well as precise lower bound estimate are nontrivial because our “true”
potential function is U(φ) and a part of it is hidden in the measure µ. Also there is a renormalized
part −λ

2 dimH. These difficulties are overcome by using Schilder’s classical Laplace asymptotic
formula and the GNS bound. Note that the scaling λV (φ/

√
λ) is meaningless on function

spaces over curved space. Therefore, we will explain another unitarily equivalent representation
of −Hλ,V in infinite dimensions. We will consider such kind of operator in Remark 5.3 in Section
5. See also [4]. In Section 6, we will prove the lower bound estimate by using the rough estimate
in Section 5 and IMS(=Ismagilov, Morgan, Sigal, Simon) localization formula [27]. In Section
7, we will present examples. We might expect tunneling phenomena in such examples.

In this paper, we consider differentiable potential functions in the sense of Fréchet. Note
that in our analysis, we need some continuity property of the potential function. In a recent
preprint [5], I make use of Lyons’ continuity theorem [23] of solutions of stochastic differential
equations in a problem in infinite dimensional spaces which have difficulties coming from the
discontinuity of the solutions with respect to usual topologies of Wiener spaces. I think that
such kind of regularity properties play important role in the semiclassical analysis on path spaces
over Riemannian manifolds.

2 Preliminaries and main result

Let (B,H, µ) be an abstract Wiener space. That is, B is a real separable Banach space and H is
a real separable Hilbert space continuously embedded in B. µ is the unique Gaussian measure
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on B satisfying that for all h ∈ B∗,
∫

B
exp

[√−1B∗(h, φ)B

]
dµ(φ) = exp

(
−1

2
‖h‖2

H

)
.

Here we use the natural embedding and the identification, H ' H∗ ⊃ B∗. Let us introduce the
following assumptions on potential functions on B.

Assumption 2.1 Let V be a continuous function on B and set Vλ(φ) = λV (φ/
√
λ).

(A1) Let U(φ) = 1
4‖φ‖2

H + V (φ). Then minφ∈H U(φ) = 0 and the minima form a finite set
N = {h1, . . . , hn}.
(A2) V is a C2 function in a neighborhood of N in B. (Then the symmetric operator Ki =
1
2D

2V (hi) is a trace class operator on H for all i. See Theorem 4.6 in page 83 in [19]). Assume
that 1

4IH +Ki is a strictly positive self-adjoint operator.
For φ ∈ H, let

Ri(φ) = U(φ)− 1
2
D2U(hi)(φ− hi, φ− hi). (2.1)

Then actually Ri is a continuous function on B. See Lemma 2.3 (1). We consider assumptions
which depend on positive numbers R and ε.
(A3(ε,R)) There exists a constant ξ(R) such that

|Ri(φ)| ≤ ξ(R)‖φ− hi‖2+ε
B for ‖φ‖B < R. (2.2)

(A3(ε)) (A3(ε,R)) holds for all R > 0.
(A4) For any ε > 0 and R > 0, we have

inf {U(φ) | dB(φ) ≥ ε, ‖φ‖B ≤ R,φ ∈ H} =: θ(ε,R) > 0, (2.3)

where dB(φ) = min{‖φ− hi‖B | 1 ≤ i ≤ n}.
(A5) For any λ > 0,

Vλ ∈ L1(B,µ). (2.4)

(A6) There exists a positive number α > 2 such that

lim sup
λ→∞

λ−1 logE
[
e−αVλ(φ)

]
<∞. (2.5)

Remark 2.2 (1) Actually (A4) follows from (A1) if we take another Banach space B0 instead
of B. We explain it. There exists a separable Banach space B0 such that H ⊂ B0 ⊂ B and
the inclusion maps are compact. Furthermore µ(B0) = 1 and (B0,H, µ) itself is an abstract
Wiener space. Define θ′(ε,R) by replacing B by B0 in the definition of θ(ε,R). Then we
have θ′(ε,R) > 0 for any ε,R > 0. Assume θ′(ε,R) = 0. Then there exists {φn} such that
supn ‖φn‖B0 ≤ R, dB0(φn) ≥ ε and limn→∞

{
1
4‖φn‖2

H + V (φn)
}

= 0. Then there exists a
subsequence {φn(k)} such that limk→∞ φn(k) = ψ in the norm of B. So limk→∞ V (φn(k)) exists.
So supk ‖φn(k)‖H <∞. Taking subsequence {φm(k)} again, we see that limk→∞ φm(k) = ψ in B0,
strongly and limk→∞ φm(k) = ψ in H, weakly. Since dB0(ψ) ≥ ε and U(ψ) = 0, this contradicts
with (A1). For simplicity, we assume (A4).
(2) If V is a C3-function on B, then by replacing B by B0 in (1), the assumption (A3(1)) holds.
(3) Number 2 in (A6) has a special meaning. It is the same number 2 which will appear in
logarithmic Sobolev inequality (2.9) and GNS bound in Lemma 2.4. We need (A6) for the Large
deviation result in the proof of Lemma 5.2.
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We will give examples of potential functions in Section 7. As a consequence of the assump-
tions, we have the following lemma.

Lemma 2.3 (1) For all φ ∈ H,

Ri(φ) = V (φ)− V (hi)−DV (hi)(φ− hi)− 1
2
D2V (hi)(φ− hi, φ− hi). (2.6)

In particular, Ri(φ) can be extended to a continuous function on B.
(2) hi ∈ B∗ (1 ≤ i ≤ n).

Proof. Since hi is a critical point of U , we have for all φ ∈ H,

1
2
(φ, hi) +DV (hi)(φ) = 0. (2.7)

This implies hi ∈ B∗. Since 1
4‖φ‖2

H is a quadratic function,

Ri(φ) = U(φ)− U(hi)−DU(hi)(φ− hi)− 1
2
DU2(hi)(φ− hi, φ− hi)

= V (φ)− V (hi)−DV (hi)(φ− hi)− 1
2
D2V (hi)(φ− hi, φ− hi). (2.8)

Since the right-hand side is a continuous function on B, (2.6) holds for all φ ∈ B.
Here we recall the definition of the Schrödinger operator −Lλ,V = −L+Vλ. Before doing so,

we recall semi-boundedness theorem (Lemma 2.4). This estimate is standard in quantum field
theory and it is proved by using the hypercontractivity of the Ornstein-Uhlenbeck semigroup or
the equivalent logarithmic Sobolev inequality:

∫

B
u(φ)2 log

(
u(φ)2/‖u‖2

L2(µ)

)
dµ(φ) ≤ 2

∫

B
|Du(φ)|2Hdµ. (2.9)

We refer the readers to Theorem 7 in [13] for the proof.

Lemma 2.4 (GNS bound) Assume that E[e−2Vλ ] < ∞ and Vλ ∈ L1(B,µ). Consider a
densely defined symmetric form:

D := D1
2(B) ∩ L∞(B,µ), (2.10)

Eλ(u, v) :=
∫

B
(Du(φ), Dv(φ))Hdµ(φ) +

∫

B
Vλ(φ)u(φ)v(φ)dµ(φ) (u, v ∈ D). (2.11)

Then Eλ is a closable form such that, for any u ∈ D with ‖u‖L2(µ) = 1,

Eλ(u, u) ≥ −1
2

log
(∫

B
e−2Vλ(φ)dµ(φ)

)
. (2.12)

From now on, we always assume that Vλ satisfies the assumptions in the lemma above.

Definition 2.5 Let −Lλ,V be the semi-bounded self-adjoint operator which corresponds to the
smallest closed extension of Eλ. Let E0(λ) = inf σ(−Lλ,V ).
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It is easy to see that the domain of Eλ is nothing but D1
2(B) ∩ L2(|Vλ|µ). See [2]. Actually

it is known that E0(λ) is a simple eigenvalue and the corresponding eigenfunction is called the
ground state. However we do not use these general results in this paper. We use the existence of
the ground state for the quadratic approximate Schrödinger operator in Section 3. In that case,
we have the explicit expression of the ground state. The estimate in Lemma 2.4 and Laplace
asymptotic formula implies lim infλ→∞E0(λ) > −∞. This rough estimation is a first step to
prove the precise asymptotics below which is a main result of this paper.

Theorem 2.6 Assume (A1),(A2), (A3(ε)),(A4),(A5),(A6).Then

lim
λ→∞

E0(λ) =
1
2

min
1≤i≤n

tr
(√

IH + 4Ki − IH

)
. (2.13)

We will use the following Fernique’s inequality several times:
There exist positive constants C and C ′ such that for all R > 0,

µ (‖φ‖B ≥ R) ≤ Ce−C′R2
. (2.14)

3 Approximate Schrödinger operators

Let K be a trace class self-adjoint operator on H and assume that IH + 4K is strictly positive.
For h ∈ H, let us consider a Schrödinger operator:

−Lh,K = −L− 1
2
(φ, h) +

1
4
‖h‖2

H + (K(φ− h), (φ− h))H . (3.1)

Let

ϕh,K(φ) = det(IH + 4K)1/8 exp
{(

−1
4

(√
IH + 4K − IH

)
(φ− h), (φ− h)

)}

× exp
{(

1
2
(φ, h)− 1

4
‖h‖2

H

)}
(3.2)

and fh,K(φ) = logϕh,K(φ).

Lemma 3.1 Let µh,K be the Gaussian measure on B whose covariance operator is (IH +
4K)−1/2 and mean is h. Then we have the following.
(1) µh,K and µ are equivalent to each other and the density is given by dµh,K

dµ (φ) = ϕh,K(φ)2.
Moreover, there exists a positive number δ such that ϕh,K ∈ L2+δ(B,µ).
(2) ϕh,K is in the domain of −L and it holds that

−Lh,Kϕh,K =
1
2
tr

(√
IH + 4K − IH

)
ϕh,K (3.3)

Proof. (1) Let us consider the linear transformation Sφ = φ+
(
(IH + 4K)1/4 − IH

)
φ. Note that

S is an invertible operator. Let µ̃S be the image measure of µ by the map φ→ S−1φ. Then, for
any k ∈ H, ∫

B
(φ, k)2Hdµ̃S =

(
S−2k, k

)
H

=
(
(IH + 4K)−1/2 k, k

)
. (3.4)
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So µ̃S = µ0,K . Therefore, µh,K is the image measure of µ by the map φ → S−1φ + h. By the
transformation law of the Gaussian measure (see Theorem 5.4 in page 141 in [19]), we obtain
the desired results. Now we prove the latter part. Note that

−1
4

(√
IH + 4K − IH

)
= −K(

√
IH + 4K + IH)−1. (3.5)

Since IH +4K is strictly positive, 1+η
2

(√
IH + 4K − IH

)
+ 1

2IH is also a strictly positive operator
for sufficiently small positive η. This implies ϕh,K ∈ L2(1+η)(B,µ).

(2) By ϕh,K ∈ L2+δ(B,µ), it is easy to see that ϕh,K is in the domain of −L and

−Lϕh,K =
(−Lfh,K − |Dfh,K |2

)
ϕh,K

=
(

1
2
(φ, h)H − 1

4
‖h‖2

H − (K(φ− h), (φ− h))H

)
ϕh,K

+
1
2
tr

(√
IH + 4K − IH

)
ϕh,K . (3.6)

Since ϕh,K(φ) > 0 for almost all φ, ϕh,K is the ground state of −Lh,K . −Lh,K is an ap-
proximate operator of more general Schrödinger operator. Indeed, −Lki,Ki

is the quadratic
approximate Schrödinger operator of −Lλ,V at ki :=

√
λhi, where hi ∈ N and Ki = 1

2D
2V (hi).

To be more precise, we prove the following lemma.

Lemma 3.2 (1) For any smooth cylindrical function f , it holds that

−Lλ,V f = −Lf +
(

1
4
‖ki‖2

H − 1
2

(φ, ki)H + (Ki(φ− ki), (φ− ki))H

)
f + λRi

(
λ−1/2φ

)
f. (3.7)

(2) Let g ∈ D(Eλ). Moreover, we assume that Dg and g belong to L2+δ(B,µ) for some δ > 0.
Then we have

Eλ (g, g) =
∫

B
|Dg(φ)− g(φ)Dfki,Ki

(φ)|2Hdµ(φ) + λ

∫

B
Ri(λ−1/2φ)g(φ)2dµ(φ)

+
1
2
tr

(√
IH + 4Ki − IH

) ∫

B
g(φ)2dµ(φ). (3.8)

Proof. (1) By (2.6),

V

(
φ√
λ

)
= V (hi) +DV (hi)(λ−1/2φ− hi) +

1
2
D2V (hi)

(
(λ−1/2φ− hi), λ−1/2φ− hi

)

+Ri(λ−1/2φ)

= V (hi) +
1
2
‖hi‖2

H − 1
2

(
φ√
λ
, hi

)

H

+ λ−1 (Ki(φ− ki), (φ− ki))H

+Ri(λ−1/2φ). (3.9)

In (3.9), we have used that for all φ ∈ B,

−1
2

(
λ−1/2φ, hi

)
H

= −1
2
‖hi‖2

H +DV (hi)
(
λ−1/2φ− hi

)
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which follows from (2.7). Thus, noting 1
4‖hi‖2

H + V (hi) = 0, we get the desired result.
(2) We have

∫

B
|Dg(φ)− g(φ)Dfki,Ki

(φ)|2Hdµ(φ)

=
∫

B
|Dg(φ)|2Hdµ(φ)−

∫

B

(
Dfki,Ki

(φ), D(g(φ)2)
)
H
dµ(φ) +

∫

B
|Dfki,Ki

(φ)|2Hg(φ)2dµ(φ)

=
∫

B
|Dg(φ)|2Hdµ(φ) +

∫

B

(
Lfki,Ki

(φ) + |Dfki,Ki
(φ)|2H

)
g(φ)2dµ(φ)

=
∫

B
|Dg(φ)|2Hdµ(φ) +

∫

B

(
1
4
‖ki‖2

H − 1
2

(φ, ki)H + (Ki(φ− ki), (φ− ki))H

)
g(φ)2dµ(φ)

−1
2
tr

(√
IH + 4Ki − IH

) ∫

B
g(φ)2dµ(φ). (3.10)

This and (3.7) imply (3.8).

4 Upper bound estimate

We prove that

Lemma 4.1 Assume (A1), (A2), (A3(ε)), (A5). Then it holds that

lim sup
λ→∞

E0(λ) ≤ min
1≤i≤n

1
2
tr

(√
IH + 4Ki − IH

)
. (4.1)

Proof. Take a positive number ε′ such that (2 + ε)(1 − ε′) > 2. By Fernique’s theorem, there
exists C > 0 such that

µki,Ki

(
‖φ− ki‖B ≥ λ

ε′
2

)
= µ0,Ki

(
‖φ‖B ≥ λε′/2

)
≤ e−Cλε′

. (4.2)

Let χ be a C∞ function such that χ(t) = 1 for |t| ≤ 1 and χ(t) = 0 for |t| ≥ 2. Let us take a
trial function Φλ(φ) = Cλϕki,Ki

(φ)χ(‖φ− ki‖2
Bλ

−ε′). Here Cλ is the normalizing constant such
that ‖Φλ‖L2(µ) = 1. By (4.2), limλ→∞Cλ = 1. Note that (3.8) holds by replacing g by Φλ. By
Fernique’s inequality,∫

B
|DΦλ(φ)− Φλ(φ)Dfki,Ki

(φ)|2Hdµ(φ)

≤ C

∫

B
χ′(‖φ− ki‖2

Bλ
−ε′)2λ−2ε′‖φ− ki‖2

Bdµki,Ki
(φ) ≤ e−C′λε′

. (4.3)

Now we estimate λ
(
Ri(λ−1/2φ)Φλ(φ),Φλ(φ)

)
L2(µ)

.
∣∣∣λ(Ri(λ−1/2φ)Φλ(φ),Φλ(φ))L2(µ)

∣∣∣

≤ λ

∫

‖λ−1/2φ−hi‖B≤
√

2λ(−1+ε′)/2

Ri(λ−1/2φ)Φλ(φ)2dµ(φ) (4.4)

≤ C ′′λ · λ (ε′−1)(2+ε)
2 . (4.5)

In (4.4), we have used the support property of χ. In (4.5), we have used (2.2). This completes
the proof.
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5 Rough lower bound estimate

In this section, by combining Lemma 2.4 and the Laplace asymptotic formula, we give a lower
bound on E0(λ).

Lemma 5.1 (Rough lower bound) Suppose (A1), (A2), (A4), (A5), (A6).
Let R > max1≤i≤n ‖hi‖B and assume (A3(ε,R)). Let ρκ,B(φ) = κmin(dB(φ), 1)2, where κ is a
nonnegative number.
(1) There exists a positive number κ satisfying the following:

(a) min{U(φ)− ρκ,B(φ) | φ ∈ H} = 0,

(b) The zero point set of U − ρκ,B is N = {h1, . . . , hn},
(c) For any ε > 0 and R > 0, inf {U(φ)− ρκ,B(φ) | dB(φ) ≥ ε, ‖φ‖B ≤ R,φ ∈ H} > 0,

(d) ∫

B
e−2(Kiφ,φ)+3κ‖φ‖2Bdµ(φ) <∞ for all 1 ≤ i ≤ n. (5.1)

(2) Here we assume that R is sufficiently large positive number. Let κ be a nonnegative num-
ber satisfying the assumptions in (1). Let E0,κ(λ) be the lowest eigenvalue of the Schrödinger
operator −L+ Vλ(φ)− λρκ,B(λ−1/2φ). Then it holds that

lim inf
λ→∞

E0,κ(λ) ≥ −1
2

log

(
n∑

i=1

∫

B
exp

[
−2(Kiφ, φ) + 2κ‖φ‖2

B

]
dµ(φ)

)
> −∞. (5.2)

Proof of Lemma 5.1 (1) Note that
∫
B exp

[
−2(Kiφ, φ)

]
dµ(φ) = det(IH + 4Ki)−1/2 <∞. So by

Fernique’s theorem, (5.1) holds for sufficiently small κ. We prove (a), (b) and (c) for sufficiently
small κ. Let MB be a number such that ‖φ‖B ≤MB‖φ‖H for all φ ∈ H and ν be the minimum
of the bottoms of the spectrum of 1

4IH + Ki for 1 ≤ i ≤ n. Let δ be a positive number such
that δ < min

(
1
2 mini6=j ‖hi − hj‖B, 1

)
. By the definition of Ri, for φ ∈ H with ‖φ − hi‖B ≤ δ,

it holds that

U(φ)− ρκ,B(φ) =
((

1
4
IH +Ki

)
(φ− hi), (φ− hi)

)
+Ri(φ)− ρκ,B(φ)

≥ νM−1
B ‖φ− hi‖2

B − ξ(‖hi‖B + δ)‖φ− hi‖2+ε
B − κ‖φ− hi‖2

B

≥ (
νM−1

B − ξ(‖hi‖B + δ)δε − κ
) ‖φ− hi‖2

B. (5.3)

Also for φ ∈ H with dB(φ) ≥ δ and ‖φ‖B ≤ R, it holds that U(φ) ≥ θ(δ,R). In addition to
the assumption above on δ, assume that νM−1

B − ξ(‖hi‖B + δ)δε > 0. Then for κ satisfying
κ < min

(
νM−1

B − ξ(‖hi‖B + δ)δε, θ(δ,R)
)
, (a), (b) and (c) hold for U − ρκ,B.

(2) By Lemma 2.4, it suffices to prove the following Laplace asymptotic formula.

Lemma 5.2 We assume the same assumptions in Lemma 5.1 for V . Let κ be a nonnegative
number satisfying the assumptions in (1) in the lemma above. Then we have

lim
λ→∞

∫

B
e−2Vλ(φ)+2λρκ,B(λ−1/2φ)dµ(φ) =

n∑

i=1

∫

B
exp

[
−2(Kiφ, φ) + 2κ‖φ‖2

B

]
dµ(φ). (5.4)
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This was proved essentially in Theorem B in Schilder [25]. For more general results, we refer
the readers to Ben Arous [7], Kusuoka and Stroock [20], [21]. We omit the proof.

Remark 5.3 First, we give a remark on the scaling of V . Let µλ(·) = µ(
√
λ·). This is the

Gaussian measure on B whose covariance operator is IH/λ. By the unitary transformation
f(φ) → f(

√
λφ) from L2(B,µ) onto L2(B,µλ), −Lλ,V is unitarily equivalent to λ−1(D∗

µλ
D +

λ2V (φ)). Here D∗
µλ

denotes the adjoint operator of D with respect to the inner product of
L2(B, dµλ). The scaling λV (φ/

√
λ) cannot be defined on path spaces over Riemannian manifolds

but the probability measure corresponding to µλ exists and we can formulate the semiclassical
problems. Now let us consider a rough lower bound estimate on E0(λ) on a path space over a
Riemannian manifold. Let (M, g) be a complete Riemannian manifold whose Ricci curvature is
bounded. Let µλ be the Brownian motion measure on Px(M) := C([0, 1] →M | γ(0) = x) such
that

µλ (γ(t1) ∈ dx1, . . . , γ(tm) ∈ dxm)

=

(
m∏

i=1

p
(
λ−1(ti − ti−1), xi−1, xi

)
)
dx1 · · · dxm, (5.5)

where t0 = 0, x0 = x, p(t, x, y) = et∆/2(x, y) and ∆ is the Laplace-Beltrami operator. Let us
define the tangent space along γ by the Levi-Civita connection and denote theH-derivative byD.
Let V be a continuous function on Px(M). Let −Lλ := D∗

µλ
D and −Lλ,V := λ−1(−Lλ + λ2V ).

As already noted, this operator is unitarily equivalent to −L + λV (λ−1/2φ) on L2(B,µ) when
M is a Euclidean space. Let E0(λ) = inf σ(−Lλ,V ). We refer the readers to [1] for the notations
below.

Let Ft be the augmented filtration of σ(γs | 0 ≤ s ≤ t) and take a smooth function F on
Px(M). Then, the following martingale representation holds.

Eµλ
[F | Ft] = Eµλ

[F ] +
∫ t

0
(H(γ)s, db(s))TxM . (5.6)

where b(t) =
∫ t
0 τ(γ)

−1
s ◦ dγ(s) and τ(γ)t denotes the stochastic parallel translation and

H(γ)t := E

[
ḣ(γ)t − 1

2λ

∫ 1

t

(
Mλ(γ)−1

t

)∗
Mλ(γ)∗sRic(γ)sḣ(γ)sds

∣∣∣∣∣ Ft

]
(5.7)

h(γ)t := DF (γ)t (5.8)

Mλ(γ)t is the operator satisfying

d

dt
Mλ(γ)t = − 1

2λ
Ric(γ)tM

λ(γ)t (5.9)

M(γ)0 = I. (5.10)

Note that b(t) is a Brownian motion such that Eµλ
[(b(t), b(s))TxM ] = dim M

λ · t ∧ s. (5.6) can be
proven by the same method as in [8] by using the integration by parts formula on (Px(M), µλ).
Then, by the same proof of logarithmic Sobolev inequality as in [8], we have

Eµλ

[
F 2 log

(
F 2/‖F‖2

L2(µλ)

)]
≤ 2
λ

(
1 +

Cλ

λ

)
Eµλ

[|DF |2H
]
. (5.11)
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Here, Cλ is a positive number depending on the norm of Ric such that lim supλ→∞Cλ <∞. By
the estimate in Theorem 7 in [13] again, we have

E0(λ) ≥ − λ

2(λ+ Cλ)
log

(∫

Px(M)
e−2λ(1+

Cλ
λ

)V (γ)dµλ(γ)

)
. (5.12)

Consequently, under suitable assumptions on V (e.g., min
{

1
4

∫ 1
0 ‖γ̇(t)‖2dt+ V (γ)

}
= 0, non-

degeneracy of the Hessian at minimizers, etc), Laplace type asymptotics formulae [7],[20], [21]
imply the boundedness of the right-hand side in (5.12) as λ→∞. However, note that it is not
obvious to see that lim supλ→∞E0(λ) < ∞ under the assumptions on V above which seems to
be natural. The detailed study will appear in elsewhere.

6 Proof of the lower bound estimate

Now we prove the lower bound estimate.

Lemma 6.1 Assume (A1),(A2),(A3(ε)),(A4),(A5),(A6). Then,

lim inf
λ→∞

E0(λ) ≥ min
1≤i≤n

1
2
tr

(√
IH + 4Ki − IH

)
. (6.1)

This lemma and Lemma 4.1 imply Theorem 2.6.
Proof of Lemma 6.1. Let χ(t) be a smooth nonnegative function such that χ(t) = 1 for |t| ≤ 2,
χ(t) = 1 − exp

(
− 1

t2−4

)
for 2 ≤ t ≤ 3 and χ(t) = 0 for |t| ≥ 4. Also we assume χ′(t) ≤ 0 for

t ≥ 0. Take a positive number ε′ such that (2 + ε)(1− ε′) > 2.
Let Ji(φ) = χ

(
λ−ε′‖φ− ki‖2

B

)
and J0(φ) =

(
1−∑n

i=1 Ji(φ)2
)1/2 for sufficiently large λ.

Here, ki =
√
λhi. Take a smooth cylindrical function u with ‖u‖L2(µ) = 1. Then, by an

elementary calculation, we have

Eλ(u, u) =
n∑

i=0

Eλ(Jiu, Jiu)

−
n∑

i=0

∫

B
|DJi(φ)|2Hu(φ)2dµ(φ) (6.2)

which is called the IMS localization formula [27]. We give estimates on each term.

|DJi(φ)|2H ≤ Cχ′
(
λ−ε′‖φ− ki‖2

B

)2
λ−2ε′‖φ− ki‖2

B ≤ Cλ−ε′ . (6.3)

As for DJ0, noting that there exists a positive constant C such that χ′(t)2 ≤ C(1 − χ(t)2) for
any t ∈ R,

|DJ0(φ)|2H ≤ C ·
n∑

i=1

Ji(φ)2|DJi(φ)|2
1−∑n

i=1 Ji(φ)2
≤ C ′λ−ε′ . (6.4)

Let 1 ≤ i ≤ n. We use the notation in Lemma 3.2. By (3.8),
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Eλ(Jiu, Jiu) ≥ λ

∫

B
Ri

(
λ−1/2φ

)
Ji(φ)2u2(φ)dµ(φ)

+
1
2
tr

(√
IH + 4Ki − IH

) ∫

B
Ji(φ)2u(φ)2dµ(φ). (6.5)

If Ji(φ) 6= 0, then by (A3(ε)), Ri(λ−1/2φ) ≤ C ′λ−
1
2
(2+ε)(1−ε′). So we get

λ

∣∣∣∣
∫

B
Ri

(
φ√
λ

)
Ji(φ)2u2(φ)dµ(φ)

∣∣∣∣ ≤ C ′λ · λ− 1
2
(2+ε)(1−ε′). (6.6)

Thus, for 1 ≤ i ≤ n, we obtain for some 0 < δ < 1,

Eλ(Jiu, Jiu) ≥ 1
2
tr

(√
IH + 4Ki − IH

) ∫

B
Ji(φ)2u(φ)2dµ(φ)

−C ′′ · λ−δ. (6.7)

Now we estimate Eλ(J0u, J0u). Let ρκ,B be the function in Lemma 5.1 (2). Take a sufficiently
large C > 0. Then by applying the rough lower bound (5.2),

Eλ(J0u, J0u) = E(J0u, J0u) +
∫

B

(
Vλ(φ)− λρκ,B

(
φ√
λ

))
J0(φ)2u(φ)2dµ(φ)

+λ
∫

B
ρκ,B

(
φ√
λ

)
J0(φ)2u(φ)2dµ(φ)

≥ −C
∫

B
u(φ)2J0(φ)2dµ(φ) + λ

∫

B
ρκ,B

(
φ√
λ

)
J0(φ)2u(φ)2dµ(φ)

:= I1 + I2. (6.8)

We estimate the second term. Noting when J0 6= 0, ρκ,B(λ−1/2φ) ≥ C ′λ−(1−ε′) for sufficiently
large λ. Therefore, we have

I2 ≥ C ′λε′
∫

B
u(φ)2J0(φ)2dµ(φ) (6.9)

Hence
Eλ(J0u, J0u) ≥ (C ′λε′ − C)

∫

B
J0(φ)2u(φ)2dµ(φ). (6.10)

Consequently, combining all the above and
∑n

i=0 Ji(φ)2 = 1, we obtain

Eλ(u, u) ≥ 1
2

min
1≤i≤n

tr
(√

IH + 4Ki − IH

)
− Cλ−δ, (6.11)

where 0 < δ < 1. This completes the proof.

Corollary 6.2 Assume that V0 is a C3 function on B satisfying that there exist a, b ≥ 0 such
that

sup
‖φ‖B≤R

‖D3V0(φ)‖L(B×B×B) < ∞ for all R > 0, (6.12)

V0(φ) ≥ −a‖φ‖B − b for all φ ∈ B. (6.13)
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Then we have the following.
(1) Let U0(φ) = 1

4‖φ‖2
H + V0(φ). Then the minimizers of U0(φ) exist.

(2) Let V (φ) = V0(φ)−minU0(φ). For this V , (A6) holds for all α > 0.
(3) Further assume (A1), (A2), (A5) for V in (2). Then (2.13) holds for −Lλ,V .

Proof. Let m := inf U0(φ). Take a sequence {φn} ⊂ H such that limn→∞ U0(φn) = m. Since
the norm of H is stronger than that of B, lim‖φ‖H→∞ U0(φ) = ∞. So we may assume that
supn ‖φn‖H < ∞. Then there exists a subsequence {φn(k)}∞k=1 such that φn(k) → φ∞ ∈ H
weakly and strongly in B. Then by the continuity of V , we have U0(φ∞) = m. This implies (1).
We prove (2). By [22], for H-Lipschitz continuous function F with |F (φ+ h)−F (φ)| ≤ C‖h‖H

for all φ ∈ B, h ∈ H and E[F ] = 0, we have
∫
B e

αFdµ ≤ e
C2α2

2 . Take a positive number
MB such that ‖φ‖B ≤ MB‖φ‖H for all φ ∈ H. Let α > 0. By the assumption, −αVλ(φ) ≤
aα
√
λ‖φ‖B + (b+m)αλ. Therefore

E[e−αVλ(φ)] ≤ exp
[{

(aMBα)2

2
λ+ α

√
λ
(
aE[‖φ‖B] +

√
λ(b+m)

)}]
(6.14)

which proves (A6) for all α. We prove (3). By the Taylor expansion, we see that (A3(1)) holds.
We prove (A4). Set Dδ = {φ ∈ H | dB(φ) ≥ δ}. Assume that there exists a sequence {φn}∞n=1 ⊂
Dδ such that limn→∞ U(φn) = 0. Then supn ‖φn‖H < ∞. So by the same argument as in (1),
a subsequence {φn(k)}∞k=1 converges to φ∞ ∈ H weakly and strongly in B and U(φ∞) = 0. But
φ∞ ∈ Dδ. This is a contradiction. Consequently, our main theorem implies the conclusion.

7 Examples

Let us consider a classical Wiener space. That is, the Cameron-Martin subspaceH is the space of
H1-path φ = {φ(t)}0≤t≤1 with values in R starting at 0. The norm is given by ‖φ‖2

H =
∫ 1
0 φ̇(t)2dt.

Let B be the Banach space consisting of continuous functions on [0, 1] with φ(0) = 0. The norm
is given by ‖φ‖B = sup0≤t≤1 |φ(t)|. Now let us introduce a potential function V . Take a C3-
function W on R satisfying that there exist positive constants Ci such that −C1|x| − C2 ≤
W (x) ≤ C3|x|C4 + C5 for all x ∈ R. Define

V0(φ) =
∫ 1

0
W (φ(t))dt, (7.1)

U0(φ) =
1
4
‖φ‖2

H + V0(φ) (7.2)

Note that V0 is a C3 function on B.

Lemma 7.1 (1) V0 satisfies (6.12) and (6.13).
(2) Set m = minU0(φ), V (φ) = V0(φ)−m and U(φ) = 1

4‖φ‖2
H + V (φ). If (A1) and (A2) hold

for this V , then (2.13) holds for −Lλ,V .

Proof. (1) This is obvious.
(2) This is an immediate consequence of Corollary 6.2.

It is well-known that (A1) and (A2) holds for U defined by W (x) = a(x2 − 1)2 when a
is sufficiently large. In this case, the minimizers are two points set {φ0,−φ0} and φ0(t) > 0
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holds for all t > 0. We give a self-contained proof of it below for slightly more general potential
functions. The decomposition formula (7.11) seems to be new and the fact that the minimizers
are two point set naturally follows from the formula. However, of course, the conclusion holds
for more general potential functions. See Remark 7.3. In these symmetric cases, it might be an
interesting problem to consider the tunneling phenomena.

Theorem 7.2 Suppose that W satisfies the following.
(H1) There exists a nonnegative C3 function f(x) on R such that W (x) = f(x2).
(H2) There exists a unique x0 > 0 such that f(x0) = 0.
(H3) infx f ′′(x) > 0.
(H4) There exists C > 0 and p ∈ N such that

|f(x)| ≤ C(1 + |x|)p. (7.3)

Then, the following hold.
(1) Let Ua(φ) = 1

4‖φ‖2
H + aV (φ). Then for sufficiently large a, the minimizers of Ua is a

two point set {±φ0}.
(2) For sufficiently large a, (A1), (A2) holds for the potential function V a = a · V −

minφ U
a(φ).

(3) For sufficiently large a, (2.13) holds for −Lλ,V a.

Remark 7.3 (A1) and (A2) hold for W satisfying that
(C1) W ∈ C2(R) and W (x) = W (−x) for x ∈ R,
(C2) W (x) > 0 for x 6= ±x0 and W (±x0) = 0,
(C3) W ′′(±x0) > 0.

The above remark is due to Professor Kazunaga Tanaka. As for potential functions in
Theorem 7.2, we can give different proof of Theorem 2.6 without using the rough lower bound
estimate in Lemma 5.1 since we have explicit expression (7.11). But the proof cannot work for
the potential functions satisfying (C1), (C2) and (C3) in which case the expression like (7.11)
probably does not hold.

In the rest of this section, we prove Theorem 7.2.

Lemma 7.4 Let Ua(φ) be the function in Theorem 7.2. For sufficiently large a, Ua(φ) has
at least two minimizers φ0(·) and −φ0(·).

Proof. Let l(t) = t
√
x0. Then

Ua(l) =
1
4
x0 +

a√
x0

∫ √
x0

0
W (u)du.

On the one hand, Ua(0) = aW (0). By the assumption on f , W (x) (−√x0 ≤ x ≤ √
x0) has

maximum at 0. So for sufficiently large a, Ua(l) < Ua(0). So 0 is not the minimizer. Since
Ua(φ) = Ua(−φ), there exist at least two minimizers.

Lemma 7.5 (1) For any C2 functions φ, k ∈ H,

DU0(φ)(k) =
1
2
φ̇(1)k(1) +

∫ 1

0

(
−1

2
φ̈(t) +W ′(φ(t))

)
k(t)dt. (7.4)
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(2) For any φ, k1, k2 ∈ H,

D2U0(φ)(k1, k2) =
1
2

∫ 1

0
k̇1(t)k̇2(t)dt+

∫ 1

0
W ′′(φ(t))k1(t)k2(t)dt. (7.5)

(3) Each critical point φ of U0 is a C2 function and satisfies that

−1
2
φ̈(t) + q(φ(t))φ(t) = 0 (7.6)

with Dirichlet-Neumann boundary condition φ(0) = φ̇(1) = 0. Here q(x) = W ′(x)/x.
(4) Assume that nonzero minimizer exists. Then there exists a C2 minimizer such that h(t) > 0
for all t > 0. (We call this minimizer a positive minimizer.)
(5) Assume the existence of a positive C2 minimizer h. Let −Hq = −1

2
d2

dt2
+ q(h(t)) be the

Schrödinger operator with Dirichlet-Neumann boundary condition φ(0) = φ̇(1) = 0. Then
inf σ(−Hq) = 0 and 0 is the simple eigenvalue and the eigenfunction is h.

Proof. (1) and (2) is proved by the standard calculation.
(3) This follows from (1) and the elliptic regularity of the Laplacian.
(4) Suppose that φ is a minimizer. Then φ1(·) = |φ(·)| ∈ H is also a minimizer. So (7.6)

holds in distribution sense. So by the elliptic regularity of the Laplacian, φ1 is a C2 function
and (7.6) holds in classical sense. By the maximum principle, for any t > 0, φ1(t) > 0.

(5) This follows from the fact that the eigenfunction corresponding to the lowest eigenvalue
is almost nonnegative or nonpositive.

By using Lemma 7.5 (2), we have

Lemma 7.6 Let h be a critical point of U0. Then the Hessian is given by

1
2
D2U0(h) =

1
4
IH +Kh,

where Kh is the trace class operator such that

(Khφ)(t) =
1
2

∫ t

0

(∫ 1

s
W ′′(h(u))φ(u)du.

)
ds. (7.7)

Remark 7.7 Note that if h is a critical point, then −h is also a critical point and the Hessian
at −h is also 1

4IH +Kh.

We calculate the error term when U0(φ)−U0(h)(= U0(φ)−U0(−h)) is approximated by the
quadratic Taylor expansion.

Lemma 7.8 Let h be a critical point of U0.
(1) Let Rh be the function such that

Rh(φ) = V0(φ)− V0(h)−DV0(h)(φ− h)−
(

1
2
D2V0(h)(φ− h), (φ− h)

)
. (7.8)
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Then we have

Rh(φ) =
∫ 1

0

1
2
f ′′

(
h(t)2

)
(φ(t)− h(t))3(φ(t) + 3h(t))dt

+
∫ 1

0
dt

∫ 1

0
ds

∫ s

0
du

∫ u

0
f ′′′

(
h(t)2 + τ(φ(t)2 − h(t)2)

)
dτ

(
φ(t)2 − h(t)2

)3
.(7.9)

(2) Let

(Thφ)(t) =
1
2

∫ t

0

(∫ 1

s
q(h(u))φ(u)du

)
ds. (7.10)

Then

U(φ)− U(h) =
((

1
4
IH + Th

)
(φ− h), (φ− h)

)

H

+ R̃h(φ), (7.11)

where

R̃h(φ) =
∫ 1

0

(∫ 1

0
ds

∫ s

0
f ′′

(
h(t)2 + u(φ(t)2 − h(t)2)

)
du

) (
φ(t)2 − h(t)2

)2
dt. (7.12)

Proof. (1) We have

Rh(φ) =
∫ 1

0

{
W (φ(t))−W (h(t))−W ′(h(t))(φ(t)− h(t))

−1
2
W ′′(h(t))(φ(t)− h(t))2

}
dt

=
∫ 1

0

{
f(φ(t)2)− f(h(t)2)− 2h(t)f ′(h(t)2)(φ(t)− h(t))

−f ′(h(t)2)(φ(t)− h(t))2

−2h(t)2f ′′(h(t)2)(φ(t)− h(t))2
}
dt

=
∫ 1

0

(
f(φ(t)2)− f(h(t)2)− f ′(h(t)2)(φ(t)2 − h(t)2)− 1

2
f ′′(h(t)2)(φ(t)2 − h(t)2)2

)
dt

+
∫ 1

0

f ′′(h(t)2)
2

(φ(t)− h(t))3 (φ(t) + 3h(t))dt. (7.13)

By using the Taylor expansion, we complete the proof.
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(2) Using (2.6), we have

U(φ)− U(h)

=
1
2
D2U0(h) ((φ− h), (φ− h))

+V0(φ)−
{
V0(h) +DV0(h)(φ− h) +

1
2
D2V0(h) ((φ− h), (φ− h))

}

=
((

1
4
IH + Th

)
(φ− h), (φ− h)

)

H

+
∫ 1

0

(
W (φ(t))−W (h(t))−W ′(h(t))(φ(t)− h(t))− 1

2
q(h(t))(φ(t)− h(t))2

)
dt

=
((

1
4
IH + Th

)
(φ− h), (φ− h)

)

H

+
∫ 1

0

{
f(φ(t)2)− f(h(t)2)− f ′(h(t)2)(φ(t)2 − h(t)2)

}
dt (7.14)

So by the Taylor’s theorem, we complete the proof.
Th and Kh have the following properties.

Lemma 7.9 (1) Th is a trace class self-adjoint operator.
(2) Assume h is a positive minimizer of U0. Then −1

4 is the lowest simple eigenvalue of Th and
h is the corresponding eigenfunction.
(3) Assume h is a positive minimizer. Then 1

4IH +Kh is a strictly positive self-adjoint operator.
(4) Assume the existence of nonzero minimizer of U0. Then positive minimizer h is unique and
the set of minimizers is {h,−h}.

Proof. (1) This is a standard fact.
(2) Suppose Thφ = ξφ. Then φ is a C2 function and satisfies that ξφ̈(t) + 1

2q(h(t))φ(t) = 0.
So

−ξ‖φ‖2
H +

1
2

∫ 1

0
q(h(t))φ(t)2dt =

1
2

(−Hqφ, φ)L2 −
(

1
4

+ ξ

)
‖φ‖2

H = 0. (7.15)

Since the Schrödinger operator−Hq is nonnegative operator, ξ ≥ −1/4 is valid. Also if ξ = −1/4,
then Lemma 7.5 implies φ = c · h.

(3) Noting W ′′(x)− q(x) = 4x2f ′′(x2), we see that

1
4
IH +Kh =

1
4
IH + Th + T1, (7.16)

where (T1φ1, φ2)H = 2
∫ 1
0 h(t)

2f ′′(h(t)2)φ1(t)φ2(t)dt. Let inf σ((1
4IH + Th)|{h}⊥) = κ. Then

by (2), κ > 0. Take ψ such that (ψ, h) = 0 with ‖ψ‖H = 1 and set φ = xh + yψ. By the
nonnegativity of T1, we have

((
1
4
IH +Kh

)
φ, φ

)

H

≥ max
{
κy2, Ax2 − 2B|xy|} .

Here A = (T1h, h)H > 0 and B = |(T1h, ψ)|. Since max
{
κy2, Ax2 − 2B|xy| | x2 + y2 = 1

}
> 0,

the proof is completed.
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(4) Now the uniqueness is obvious by the expression (7.11), (7.12), inf f ′′(x) > 0 and 1
4IH +

Th ≥ 0.

Proof of Theorem 7.2. This follows from the lemma above immediately.
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295–308.

[28] B. Simon, Semiclassical analysis of low lying eigenvalues, II. Tunneling, Annals of
Math. 120, (1984), 89–118.

[29] B. Simon, Semiclassical analysis of low lying eigenvalues, IV. The flea on the elephant,
J. Funct. Anal. 63 (1985), no.1, 123–136.
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