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Abstract

In this paper, we study reflected differential equations driven by continuous paths with
finite p-variation (1 ≤ p < 2) and p-rough paths (2 ≤ p < 3) on domains in Euclidean spaces
whose boundaries may not be smooth. We define reflected rough differential equations and
prove the existence of a solution. Also we discuss the relation between the solution to
reflected stochastic differential equation and reflected rough differential equation when the
driving process is a Brownian motion.
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1 Introduction

In [2], we proved the strong convergence of the Wong-Zakai approximations of the solutions to
reflected stochastic differential equations defined on domains in Euclidean spaces whose bound-
aries may not be smooth. The driving stochastic process in the equation is a Brownian motion.
Recently, many researchers have been studying differential equations driven by more general
stochastic processes and irregular paths. This is due to the development of rough path theory
which gives new meaning of stochastic integrals. The aim of this paper is to study reflected
differential equations driven by rough paths and prove the existence of solutions. We use the
Euler approximation of the differential equations by modifying the idea of Davie [5]. When the
equation has reflection term, the Euler approximation becomes an implicit Skorohod equation
and it is not trivial to see the existence of the solutions. Hence, we need stronger assumptions
than those given in [2] on the boundary of the domain to prove the existence of solutions. At the
moment, we neither have uniqueness of solutions nor continuity theorem with respect to driving
paths.

The paper is organized as follows. In Section 2, we introduce several conditions on the
boundary under which reflected rough differential equations are studied and prepare necessary
lemmas. In Section 3, we study the reflected differential equations driven by continuous path
of finite p-variation with 1 ≤ p < 2. The meaning of the integral in this equation is justified by
the Young integrals. We prove the existence of solutions by using Davie’s approach [5]. This
problem was already studied when D is a half space in [9]. Our existence theorem is valid for
more general domains. In Section 4, we study the case where the driving path is p-rough path
with 2 ≤ p < 3. In this case, we consider stronger assumptions than that in previous sections.
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First, we define reflected rough differential equations and prove the existence of a solution and
give some estimates of the solution. Also we explain the reason of the difficulty to prove the
uniqueness of solutions and continuity theorems with respect to driving rough paths. At the end
of this section, we prove the existence of a measurable solution mapping for geometric rough
paths. In Section 5, we go back to reflected SDEs driven by Brownian motion. We explain the
relation between the solution to reflected rough differential equation and the solution to reflected
stochastic differential equation.

2 Preliminary

First, we prepare necessary definitions and results for our purposes. The following conditions
on the connected domain D ⊂ Rd are standard assumptions for reflected SDE and can be found
in [13, 19, 22] and we will study our equations on domains which satisfy these conditions. We
will introduce other conditions later. For other references of reflected SDEs related with this
paper, we refer the readers to [2, 25, 6, 7, 8, 16, 17, 18, 20, 21]. In [1], we study Wong-Zakai
approximations ([23]) in the two cases, (i) the domain is convex, (ii) the conditions (A) and (B)
are satisfied which are not contained in the result in [2].

Recall that the set Nx of inward unit normal vectors at the boundary point x ∈ ∂D is defined
by

Nx = ∪r>0Nx,r,

Nx,r =
{
n ∈ Rd | |n| = 1, B(x− rn, r) ∩D = ∅

}
,

where B(z, r) = {y ∈ Rd | |y − z| < r}, z ∈ Rd, r > 0.

Definition 2.1. (A) There exists a constant r0 > 0 such that

Nx = Nx,r0 ̸= ∅ for any x ∈ ∂D.

(B) There exist constants δ > 0 and β ≥ 1 satisfying:

for any x ∈ ∂D there exists a unit vector lx such that

(lx,n) ≥ 1

β
for any n ∈ ∪y∈B(x,δ)∩∂DNy.

(C) There exists a C2
b function f on Rd and a positive constant γ such that for any x ∈ ∂D,

y ∈ D̄, n ∈ Nx it holds that

(y − x,n) +
1

γ
((Df)(x),n) |y − x|2 ≥ 0.

We use the following quantities of paths wt as in [2].

∥w∥∞,[s,t] = max
s≤u≤v≤t

|wu − wv|, (2.1)

∥w∥[s,t] = sup
∆

N∑
k=1

|wtk − wtk−1
|, (2.2)
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where ∆ = {s = t0 < · · · < tN = t} is a partition of the interval [s, t]. When the domain D
satisfies the conditions (A) and (B), the Skorohod problem associated with a continuous path
w ∈ C([0, T ] → Rd):

ξt = wt + ϕ(t), ξt ∈ D̄ 0 ≤ t ≤ T, (2.3)

ϕ(t) =

∫ t

0
1∂D(ξs)n(s)d∥ϕ∥[0,s], n(s) ∈ Nξs if ξs ∈ ∂D (2.4)

can be uniquely solved. See [19]. When the mapping w 7→ ξ is unique, we write Γ(w)t = ξt and
L(w)(t) = ϕ(t). The following lemma can be proved by a similar proof to that of Lemma 2.3 in
[2].

Lemma 2.2. Assume conditions (A) and (B) hold. Let wt be a continuous path of finite p-
variation such that

|wt − ws| ≤ ω(s, t)1/p 0 ≤ s ≤ t ≤ T,

where p ≥ 1 and ω(s, t) is the control function of wt. Then the local time term ϕ of the solution
to the Skorohod problem associated with w has the following estimate.

∥ϕ∥[s,t] ≤ β
({

δ−1G(∥w∥∞,[s,t]) + 1
}p

ω(s, t) + 1
) (

G(∥w∥∞,[s,t]) + 2
)
∥w∥∞,[s,t], (2.5)

where

G(a) = 4 {1 + β exp {β (2δ + a) /(2r0)}} exp {β (2δ + a) /(2r0)} , a ∈ R.

3 Reflected differential equations driven by continuous paths of
finite p-variation with 1 ≤ p < 2

Let xt (0 ≤ t ≤ T ) be a continuous path of finite p-variation on Rn with the control function
ω(s, t), where 1 ≤ p < 2. We prove the existence of a solution yt which is also a continuous path
with finite p-variation to the reflected differential equation driven by x:

yt = y0 +

∫ t

0
σ(ys)dxs + Φ(t), y0 ∈ D̄, (3.1)

where σ ∈ C1
b (Rd,Rn⊗Rd). The integral in this equation is a Young integral [24]. The following

is a main result in this section. See Remark 4.6.

Theorem 3.1. Assume that (A) and (B) hold. Then there exists a solution (y,Φ) to (3.1) and
satisfies

|yt − ys| ≤ Cω(s, t)1/p (3.2)

∥Φ∥[s,t] ≤ Cω(s, t)1/p. (3.3)

Here C is a constant which depends on ω(0, T ) and σ and r0, β, δ in Definition 2.1.
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We solve this equation by using the Euler approximation. Let ∆ : 0 = t0 < t1 < · · · < tN = T
be a partition of [0, T ]. We define y∆ by the solution to the Skorohod equation:

y∆t = y∆tk−1
+ σ(y∆tk−1

)(xt − xtk−1
) + Φ∆(t) − Φ∆(tk−1) tk−1 ≤ t ≤ tk.

Let

I∆s (t) = y∆t − y∆s − σ(y∆s )(xt − xs) −
(
Φ∆(t) − Φ∆(s)

)
s ≤ t. (3.4)

By the definition, we have I∆tk (t) = 0 for all tk ≤ t ≤ tk+1 and For any s ≤ t ≤ u,

I∆s (u) − I∆s (t) − I∆t (u) =
(
σ(y∆t ) − σ(y∆s )

)
(xu − xt).

Also we write π∆(t) = max{tk | tk ≤ t, 0 ≤ k ≤ N} for 0 ≤ t ≤ T .
In the following lemma, we use a constant in the estimate (2.5). Let C0 be a positive number

such that C0 > 1 and

∥ϕ∥[s,t] ≤ C0 (ω(s, t) + 1)
(
eC0ω(s,t)1/p + 1

)
ω(s, t)1/p (3.5)

holds. Hence for any positive δ, if ω(s, t) is sufficiently small, ∥ϕ∥[s,t] ≤ (2+δ)C0ω(s, t)1/p holds.

Lemma 3.2. Let 1 ≤ p < γ ≤ 2. Let C1 = 3C0∥σ∥∞, C2 = 1 + 4C0∥σ∥∞ and M = 2C2∥Dσ∥∞
1−21−(γ/p) .

For sufficiently small ε(≤ 1) which depends only on ∥σ∥∞, ∥Dσ∥∞ and C0 such that for any
tk ≤ s ≤ t with ω(tk, t) ≤ ε,

|I∆tk (t)| ≤ Mω(tk, t)
γ/p (3.6)

∥Φ∆∥[s,t] ≤ C1ω(s, t)1/p. (3.7)

Proof. Note that if (3.6) and (3.7) hold, then by taking ε to be sufficiently small, we have for t
with ω(tk, t) ≤ ε,

|y∆t − y∆tk | ≤
(
Mε(γ−1)/p + 3C0∥σ∥∞ + ∥σ∥∞

)
ω(tk, t)

1/p ≤ C2ω(tk, t)
1/p. (3.8)

Let K be a positive integer. Consider a claim which depends on K: The estimates (3.6) and
(3.7) hold for all tk and t, where tk ≤ t ≤ tk+K and 0 ≤ k ≤ N − 1. We prove this claim by
an induction on K. Let K = 1. Then I∆tk (t) = 0 for all tk ≤ t ≤ tk+1. Also by taking ε to be
sufficiently small,

∥Φ∆∥[s,t] ≤ 3C0∥σ∥∞ω(s, t)1/p for tk ≤ s ≤ t, ω(tk, t) ≤ ε.

Suppose the claim holds for all K which is smaller than or equal to K ′ − 1. We prove the case
K = K ′. Let tl be the largest partition point such that tk ≤ tl < t ≤ tk+K′ and ω(tk, tl) ≤
1
2ω(tk, t). There are two cases, (a) tl < π∆(t) and (b) tl = π∆(t). We consider the case (a).
In this case, tl < tl+1 ≤ π∆(t). By the definition, we have ω(tk, tl+1) ≥ 1

2ω(tk, t). By the
superadditivity of ω, we have

ω(tl+1, t) ≤
1

2
ω(tk, t).
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We have

|I∆tk (t)| ≤ |I∆tk (tl)| + |I∆tl (tl+1)| + |I∆tl+1
(t)| + |σ(y∆tl+1

) − σ(y∆tl )||xt − xtl+1
|

+ |σ(y∆tl ) − σ(y∆tk)||xt − xtl |

By the assumption of the induction, we have

|I∆tk (tl)| ≤ Mω(tk, tl)
γ/p, |I∆tl+1

(t)| ≤ Mω(tl+1, t)
γ/p

|σ(y∆tl+1
) − σ(y∆tl )||xt − xtl+1

| ≤ C2∥Dσ∥∞ω(tl, tl+1)
1/pω(tl+1, t)

1/p

|σ(y∆tl ) − σ(y∆tk)||xt − xtl | ≤ C2∥Dσ∥∞ω(tk, tl)
1/pω(tl, t)

1/p

Therefore

|I∆tk (t)| ≤ M
(

21−(γ/p) + (1 − 21−(γ/p))ε(2−γ)/p
)
ω(tk, t)

γ/p ≤ Mω(tk, t)
γ/p.

In the case of (b), by using the assumption of the induction, we obtain

|I∆tk (t)| ≤ |I∆tk (tl)| + |I∆tl (t)| + |σ(ytl) − σ(ytk)||xt − xtl |
≤ Mω(tk, tl)

γ/p + C2∥Dσ∥∞ω(tk, tl)
1/pω(tl, t)

1/p

≤ M
(

2−γ/p + 2−1
(

1 − 21−(γ/p)
)
ε(2−γ)/p

)
ω(tk, t)

γ/p

≤ 2−1Mω(tk, t)
γ/p.

Next we show ∥Φ∆∥[tk,t] ≤ C1ω(tk, t)
1/p for tk, s, t with tk ≤ s ≤ t ≤ tk+K′ and ω(tk, t) ≤ ε. To

this end, we note that Φ∆(t) − Φ∆(tk) = L(z∆)(t), where z∆t = I∆tk (t) + y∆tk + σ(y∆tk)(xt − xtk).
By (3.5), it suffices to estimate z∆t . Take s, t such that tk ≤ s < t ≤ tk+K′ and ω(tk, s) ≤
ε, ω(tk, t) ≤ ε. We estimate I∆tk (t) − I∆tk (s) by using

I∆tk (t) − I∆tk (s) = I∆s (t) +
(
σ(y∆s ) − σ(y∆tk)

)
(xt − xs). (3.9)

Let tm be the largest number such that tm ≤ s. That is tm = π∆(s). Then we have two cases,
(a) tk ≤ tm ≤ s < tm+1 < t and (b) tk ≤ tm ≤ s < t ≤ tm+1. First we consider the case (a). We
have

I∆s (t) = I∆s (tm+1) + I∆tm+1
(t) + (σ(y∆tm+1

) − σ(y∆s ))(xt − xtm+1).

Since I∆s (tm+1) = −
(
σ(y∆s ) − σ(y∆tm)

)
(xtm+1 − xs), we have

|I∆s (tm+1)| ≤ C2∥Dσ∥∞ω(tm, s)1/pω(s, tm+1)
1/p ≤ C2∥Dσ∥∞ε1/pω(s, t)1/p.

By the hypothesis of the induction, |I∆tm+1
(t)| ≤ Mω(tm+1, t)

γ/p ≤ Mε(γ−1)/pω(s, t)1/p. Also,

|(σ(y∆tm+1
) − σ(y∆s ))(xt − xtm+1)| ≤ 2C2∥Dσ∥∞ω(tm, tm+1)

1/pω(tm+1, t)
1/p

≤ 2ε1/pC2∥Dσ∥∞ω(s, t)1/p.
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By the assumption of the induction and (3.8), we have |y∆s − y∆tk | ≤ C2ω(tk, s)
1/p. Hence

|I∆s (t)| ≤
(

3C2∥Dσ∥∞ε1/p + Mε(γ−1)/p
)
ω(s, t)1/p

|I∆tk (t) − I∆tk (s)| ≤
(

4C2∥Dσ∥∞ε1/p + Mε(γ−1)/p
)
ω(s, t)1/p

and

|z∆t − z∆s | ≤
(

4C2∥Dσ∥∞ε1/p + Mε(γ−1)/p + ∥σ∥∞
)
ω(s, t)1/p (3.10)

We consider the case (b). In this case, I∆s (t) = −
(
σ(y∆s ) − σ(y∆tm)

)
(xt − xs). Noting m ≤

k + K ′ − 1 and using the assumption of the induction, we have

|y∆s − y∆tk | ≤ |y∆s − y∆tm | + |y∆tm − y∆tk |
≤ C2ω(tm, s)1/p + C2ω(tm, tk)1/p

≤ 2C2ε
1/p.

So, we have

|z∆t − z∆s | ≤ ∥σ∥∞ω(s, t)1/p + 3C2∥Dσ∥∞ε1/pω(s, t)1/p. (3.11)

(3.5), (3.10) and (3.11) implies that for sufficiently small ε

∥Φ∆∥[s,t] ≤ 3C0∥σ∥∞ω(s, t)1/p for tk ≤ s ≤ t with ω(tk, s) ≤ ε, ω(tk, t) ≤ ε.

Actually, the proof of Lemma 3.2 shows

Lemma 3.3. Let ∆ = {tk} be a partition of [0, T ]. Let C1, C2 be the same numbers as in
Lemma 3.2. Then for sufficiently small 0 < ε ≤ 1 which depends only on ∥σ∥∞, ∥Dσ∥∞ and C0

such that for any s, t with ω(tk, s) ≤ ε, ω(tk, t) ≤ ε for some tk, we have

|y∆t − y∆s | ≤ C2ω(s, t)1/p. (3.12)

By Lemma 3.3, we can prove the following.

Lemma 3.4. Let ε be a positive number in Lemma 3.3. Let ∆ = {tk}Nk=0 be a partition of [0, T ]
such that

sup
0≤k≤l≤N−1

|ω(tk, tl+1) − ω(tk, tl)| ≤ ε/2. (3.13)

Then there exists C > 0 such that for any 0 ≤ s ≤ t ≤ T the following estimates hold. The
constant C depends only on σ, p and D.

(1) |y∆t − y∆s | ≤ C (1 + ω(0, T ))ω(s, t)1/p

(2) ∥Φ∆∥[s,t] ≤ C (1 + ω(0, T ))ω(s, t)1/p.
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Proof of Lemma 3.4. We note that the statement is true if tk ≤ s ≤ t ≤ tk+1 for some k by
Lemma 2.2. Let us consider general cases. We define a subsequence {sk}N

′
k=0 of {tk} in the

following way. Let s0 = t0 = 0. When sk is defined, we define sk+1 is the smallest ti such
that ω(sk, ti) > ε/2 and ti > sk. If there does not exist such a ti, we set sk+1 = tN . By the
assumption (3.13), ω(sk, sk+1) ≤ max (ω(sk, ti−1) + ε/2, ε/2) ≤ ε. Hence by Lemma 3.3,

|y∆sk+1
− y∆sk | ≤ C2ω(sk, sk+1)

1/p.

By the superadditivity of ω, we have

ω(0, T ) ≥
N ′−1∑
k=0

ω(sk, sk+1) ≥ (N ′ − 1)ε/2

which implies N ′ ≤ 1 + 2ω(0, T )/ε. For 0 ≤ s < t ≤ T , let us choose the numbers l,m so that
sl ≤ s < sl+1 ≤ sm ≤ t < sm+1. Then

|y∆t − y∆s | ≤ |y∆t − y∆sm | +
m−1∑
k=l+1

|y∆sk+1
− y∆sk | + |y∆(sl+1) − y∆(s)|

≤ C2ω(sm, t)1/p +

m−1∑
k=l+1

C2ω(sk, sk+1)
1/p + C2ω(s, sl+1)

1/p

≤ C2 (2ω(0, T )/ε + 3)ω(s, t)1/p.

For Φ∆, similarly, we have

∥Φ∆∥[s,t] = ∥Φ∆∥[sm,t] +

m−1∑
k=l+1

∥Φ∆∥[sk,sk+1] + ∥Φ∆∥[s,sl+1]

≤ C1ω(sm, t)1/p +

m−1∑
k=l+1

C1ω(sk, sk+1)
1/p + C1ω(s, sl+1)

1/p

≤ C1 (2ω(0, T )/ε + 3)ω(s, t)1/p.

These estimates complete the proof.

Proof of Theorem 3.1. Let us consider a sequence of partitions ∆(n) = {t(n)k} of [0, T ] such
that

(a) the estimate (3.13) holds for all ∆(n),

(b) limn→∞ maxk≥0 |t(n)k+1 − t(n)k| = 0.

These partitions exist because the mapping (s, t) 7→ ω(s, t) is continuous. By Lemma 3.4, there
exists a subsequence y∆(nk) and Φ∆(nk) converge uniformly to continuous paths y∞ and Φ∞

respectively which also satisfy (3.2) and (3.3). Then these subsequences converge in p′-variation
norm for any p′ > p. The solution y∆(nk) satisfies

y
∆(nk)
t = y0 +

∫ t

0
σ
(
y∆(nk)(π∆(u))

)
dxu + Φ∆(nk)(t).

By taking the limit nk → ∞ and by the continuity theorem of Young integral and the continuity
of the Skorohod map, we see that (y∞,Φ∞) is a solution to the equation.
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Before closing this section, we make a simple remark on the continuity of the solution map
x 7→ y when x is a bounded variation path.

Remark 3.5. Let xt and x′t be continuous bounded variation paths on Rn starting at 0. Let
D be the domain which satisfies (A), (B), (C). Let us consider two reflected ODEs and their
solutions yt, y

′
t:

yt = y0 +

∫ t

0
σ(ys)dxs + Φ(t)

y′t = y0 +

∫ t

0
σ(y′s)dx

′
s + Φ′(t)

Let mt = |yt − y′t|2e
− 2

γ
(f(yt)+f(y′t)). Then by calculating dmt as in [13, 19], and by the Gronwall

inequality, we obtain

sup
0≤s≤t

|ys − y′s| ≤ CeC
′(∥x∥[0,t]+∥x′∥[0,t])∥x− x′∥[0,t].

This implies the solution map x 7→ y is a Lipschitz continuous map between the set of bounded
variation paths and the set of continuous paths.

4 Reflected differential equations driven by p-rough path with
2 ≤ p < 3

In this section, we prove the existence of a solution to reflected differential equations driven by
rough path. We mainly follow the formulation of rough path in [14, 15, 5]. See also [4, 10, 11, 12].
First, we define reflected differential equation driven by rough path.

Definition 4.1. Let D be a connected domain in Rd for which the condition (A) holds. Let
2 ≤ p < 3. Let Xs,t = (1, X1

s,t, X
2
s,t) ∈ Ωp(Rn) (0 ≤ s ≤ t ≤ T ) be a p-rough path. Let

Ys,t = (1, Y 1
s,t, Y

2
s,t) ∈ Ωp(Rd) be a p-rough path and Φ(t) (0 ≤ t ≤ T ) be a continuous bounded

variation path on Rd. Let σ ∈ C2
b (Rd,Rn ⊗ Rd). The pair (Y,Φ) is called a solution to a rough

differential equation on D driven by X with normal reflection with the starting point y0 ∈ D̄:

dYt = σ(Yt)dXt + dΦ(t) 0 ≤ t ≤ T, Y0 = y0, (4.1)

if the following hold.

(1) Let Yt = y0 + Y 1
0,t. Then Yt ∈ D̄ (0 ≤ t ≤ T ) and it holds that there exists a Borel

measurable map s(∈ [0, T ]) 7→ n(s) ∈ Rd such that n(s) ∈ NYs if Ys ∈ ∂D and

Φ(t) =

∫ t

0
1∂D(Ys)n(s)d∥Φ∥[0,s] 0 ≤ t ≤ T. (4.2)

(2) Ys,t is a solution to the following rough differential equation.

dYt = σ̂(Yt)dX̂t 0 ≤ t ≤ T, Y0 = y0, (4.3)
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where σ̂(x) is a linear mapping from Rn ⊕Rd to Rd defined by σ̂(x)(ξ, η) = σ(x)ξ + η and
the driving rough path X̂ ∈ Ωp(Rn ⊕ Rd) is given by

X̂1
s,t = (X1

s,t,Φ(t) − Φ(s))

X̂2
s,t =

(
X2

s,t,

∫ t

s
X1

s,u ⊗ dΦ(u),

∫ t

s
(Φ(u) − Φ(s)) ⊗ dX1

s,u,

∫ t

s
(Φ(u) − Φ(s)) ⊗ dΦ(u)

)
.

Note that if Xs,t is a rough path defined by a continuous path Xt of finite q-variation with
1 ≤ q < 2, then the solution Yt coincides with the solution in the sense of Section 2. Below,
we assume σ ∈ C2

b . To solve this equation, we consider the Euler approximation modifying the
Davies’ approximation for rough differential equations without reflection terms. Let ∆ : 0 =
t0 < t1 < · · · < tN = T be a partition of [0, T ]. Let us consider a Skorohod problem :

y∆t = y∆tk−1
+ σ(y∆tk−1

)(xt − xtk−1
) + (Dσ)(y∆tk−1

)(σ(y∆tk−1
)X2

tk−1,t
)

+ (Dσ)(y∆tk−1
)

(∫ t

tk−1

(Φ∆(r) − Φ∆(tk−1)) ⊗ dxr

)
+ Φ∆(t) − Φ∆(tk−1)

y∆t ∈ D̄, y∆0 = y0, tk−1 ≤ t ≤ tk, 1 ≤ k ≤ N, (4.4)

where xt = X1
0,t. That is, the pair (y∆t ,Φ∆

t − Φ∆
tk−1

) is the solution to the Skorohod problem
associated with the continuous path

y∆tk−1
+ σ(y∆tk−1

)(xt − xtk−1
) + (Dσ)(y∆tk−1

)(σ(y∆tk−1
)X2

tk−1,t
)

+ (Dσ)(y∆tk−1
)

(∫ t

tk−1

(Φ∆(r) − Φ∆(tk−1)) ⊗ dxr

)
tk−1 ≤ t ≤ tk.

Since this is an implicit Skorohod problem, the existence of the solution is not trivial. In view
of this, we consider the following condition (D) and assumptions (H1) and (H2) on D.

Assumption 4.2. (D) Condition (A) is satisfied and there exist constants K1 ≥ 0 and 0 <
K2 < r0 such that

|x̄− ȳ| ≤ (1 + K1ε)|x− y|

holds for any x, y ∈ Rd with |x− x̄| ≤ K2, |y − ȳ| ≤ K2, where ε = max{|x− x̄|, |y − ȳ|}.
Here x̄ denotes the nearest point of x in D̄.

(H1) The condition (A) holds and the Skorohod problem (2.3), (2.4) is uniquely solved for any
w. Moreover, there exists a positive constant CD such that for all continuous paths w on
Rd

∥L(w)∥[s,t] ≤ CD∥w∥∞,[s,t] 0 ≤ s ≤ t ≤ T.

(H2) The condition (A) holds and the Skorohod problem (2.3), (2.4) is uniquely solved for any
w. Moreover, there exists a positive constant C ′

D such that for all continuous paths w,w′

on Rd

∥L(w) − L(w′)∥∞,[0,t] ≤ C ′
D

{
∥w − w′∥[0,t] + |w(0) − w′(0)|

}
.
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Remark 4.3. It is proved in [22] that the condition (H1) holds if D is convex and there exists
a unit vector l ∈ Rd such that

inf{(l,n(x)) | n(x) ∈ Nx, x ∈ ∂D} > 0.

The condition (H2) holds if the conditions (B) and (D) are satisfied. This is due to [19].

About the existence and uniqueness of solutions to (4.4), we have the following.

Lemma 4.4. Let ηt be a continuous path on Rd with η0 = 0 and xt be a continuous path of
finite p-variation on Rn with x0 = 0 for some p ≥ 1. Let F be a linear mapping from Rd ⊗ Rn

to Rd. We consider the following implicit Skorohod equation:

yt = y0 + ηt + F

(∫ t

0
Φ(r) ⊗ dxr

)
+ Φ(t) y0 ∈ D̄ 0 ≤ t ≤ T, (4.5)

where yt ∈ D̄ (0 ≤ t ≤ T ) and Φ(t) is a continuous bounded variation path which satisfies

L

(
y0 + η· + F

(∫ ·

0
Φ(r) ⊗ dxr

))
(t) = Φt 0 ≤ t ≤ T, Φ0 = 0.

(1) Assume (H2) are satisfied and xt is bounded variation. Then there exists a unique solution
(yt,Φ(t)) to (4.5).

(2) Assume (H1) holds. There exists a solution (yt,Φ(t)) to (4.5).

Proof. (1) By (H2), we see the unique existence of Φ, by a standard iteration procedure on
continuous path spaces with the norm ∥ ∥∞,[0,T ] considering the equation in the small interval,
if necessary. This arguments produce the solution for the whole interval [0, T ].
(2) First we prove the existence of a solution on a small interval [0, T ′], where T ′ < T . We
specify T ′ later. Let ∆ = {tk}Nk=0 be a partition of [0, T ′]. We consider the Euler approximation
of y.

y∆t = y∆tk + ηt − ηtk + F
(
Φ∆(tk) ⊗ (xt − xtk)

)
+ Φ∆(t) − Φ∆(tk) tk ≤ t ≤ tk+1.

That is, y∆,Φ∆ satisfies

y∆t = y0 + ηt + F

(∫ t

0
Φ∆(π∆(r)) ⊗ dxr

)
+ Φ∆(t) 0 ≤ t ≤ T ′.

Let 0 ≤ s < t ≤ T ′. If tk−1 ≤ s < t ≤ tk for some k, then∫ t

s
Φ∆(π∆(r)) ⊗ dxr = Φ∆(tk−1) ⊗ (xt − xs). (4.6)

We consider the case where 0 ≤ tk−1 ≤ s < tk < · · · < tl ≤ t < tl+1 ≤ T ′. Then∫ t

s
Φ∆(π∆(r)) ⊗ dxr = Φ∆(tk−1) ⊗ (xtk − xs) + Φ∆(tl) ⊗ (xt − xtl)

+ Φ∆(tl−1) ⊗ xtl − Φ∆(tk) ⊗ xtk

+

l−2∑
m=k

(
Φ∆(tm) − Φ∆(tm+1)

)
⊗ xtm+1 . (4.7)
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Therefore we have for all 0 ≤ s < t ≤ T ′,∣∣∣∣∫ t

s
Φ∆(π∆(r)) ⊗ dxr

∣∣∣∣ ≤ 3∥Φ∆∥[0,T ′]∥x∥∞,[s,t] + 2∥Φ∆∥[s,t]∥x∥∞,[0,T ′] (4.8)

≤ 5∥Φ∆∥[0,T ′]∥x∥∞,[0,T ′].

Hence by (H1),

∥Φ∆∥[0,T ′] ≤ CD

(
∥η∥∞,[0,T ′] + 5∥F∥∥x∥∞,[0,T ′]∥Φ∆∥[0,T ′]

)
.

Therefore if ∥x∥∞,[0,T ′] ≤ 1/ (10CD∥F∥),

∥Φ∆∥[0,T ′] ≤ 2CD∥η∥∞,[0,T ′]. (4.9)

Substituting this into (4.8), we obtain for any 0 ≤ s ≤ t ≤ T ′,∣∣∣∣∫ t

s
Φ∆(π∆(r)) ⊗ dxr

∣∣∣∣ ≤ 6CD∥η∥∞,[0,T ′]∥x∥∞,[s,t] + 2∥Φ∆∥[s,t]∥x∥∞,[0,T ′]. (4.10)

Hence, again by applying (H1), we obtain

∥Φ∆∥[s,t] ≤ CD∥η∥∞,[s,t] + 6C2
D∥F∥ ∥η∥∞,[0,T ′]∥x∥∞,[s,t] + 2CD∥F∥ ∥Φ∆∥[s,t]∥x∥∞,[0,T ′]. (4.11)

Consequently, if

∥x∥∞,[0,T ′] ≤ (10CD∥F∥)−1 (4.12)

then

∥Φ∆∥[s,t] ≤
5

4
CD∥η∥∞,[s,t] + 10C2

D∥F∥ ∥η∥∞,[0,T ′]∥x∥∞,[s,t] 0 ≤ s ≤ t ≤ T ′.

Now we choose T ′ so that (4.12) holds. Then {Φ∆}∆ is a family of equicontinuous and bounded
functions on [0, T ′] and so there exists a sequence |∆n| → 0 such that Φ∆n converges to a
certain Φ uniformly on [0, T ′]. By the estimate (4.9), this convergence takes place for all p-

variation norm (p > 1) on [0, T ′]. Therefore F
(∫ t

0 Φ∆n(π∆n(r)) ⊗ dxr

)
converges uniformly to

F
(∫ t

0 Φ(r) ⊗ dxr

)
. Here we use the property of Young integrals. Also y∆n

t converges uniformly.

We denote the limit by y. Then (yt,Φ(t)) (0 ≤ t ≤ T ′) is a solution to (4.5). Next, we need to
construct a solution after time T ′. For t ≥ T ′, (4.5) reads

yt = yT ′ + (ηt − ηT ′) + F (ΦT ′ ⊗ (xt − xT ′))

+ F

(∫ t

T ′
(Φ(r) − Φ(T ′)) ⊗ dxr

)
+ Φt − ΦT ′ . (4.13)

Since T ′ depends only on CD and ∥F∥, by iterating the above procedure, we can get a solution
defined on [0, T ].

By the above lemma, we see that there exist a solution (y∆,Φ∆) to the implicit Skorohod
equation (4.4). Using this approximation solution, we can prove the existence of a solution to
reflected rough differential equations. Now we state our main theorem in this section.
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Theorem 4.5. Assume (H1) and σ ∈ C3
b . Let ω be the control function of Xs,t, i.e., it holds

that

|X i
s,t| ≤ ω(s, t)i/p 0 ≤ s ≤ t ≤ T, i = 1, 2.

Then there exists a solution (Y,Φ) to the reflected rough differential equation (4.1) such that for
all 0 ≤ s ≤ t ≤ T ,

|Y i
s,t| ≤ C(1 + ω(0, T ))3ω(s, t)i/p, i = 1, 2, (4.14)

∥Φ∥[s,t] ≤ C(1 + ω(0, T ))3ω(s, t)1/p, (4.15)

where the positive constant C depends only on σ,CD, p.

In the proof of this theorem, we use Lyons’ continuity theorem. That is why we assume
σ ∈ C3

b . However, it may not be necessary. Actually σ ∈ C2
b is sufficient for the proof of

Lemma 4.7 and Lemma 4.8. Here we make remarks on this theorem together with Theorem 3.1.

Remark 4.6. (1) At the moment, I do not prove the uniqueness yet and it is not clear to see
whether the functional X 7→ Φ, X 7→ Y is continuous or not. Actually, at the moment, I do not
know the existence of Borel measurable selection of the mapping. We consider this measurable
selection problem for geometric rough path at the end of this section. If there are no boundary
terms, the functional X 7→ Y is continuous and this is known as Lyons’ continuity theorem and
universal limit theorem. If the continuity theorem would hold, then by applying it to the case
of Brownian rough path, it would imply the strong convergence of Wong-Zakai approximation
which was proved in [2] under general conditions on the boundary. We discuss the relation
between the solution to reflected rough differential equation driven by Brownian rough path and
the solution to reflected SDE driven by Brownian motion later.
(2) We consider the case where D is a half space. In this simplest case too, we have difficulties
to prove the uniqueness of solutions and continuity theorems with respect to driving paths
(rough paths) in the equations (3.1) and (4.1). We explain the reason. When D is a half space,
the Skorohod mapping Γ is given explicitly and it is globally Lipschitz continuous in the set of
continuous path spaces with the sup-norm. This nice result is used in the studies [3, 6]. However,
it is not Lipschitz continuous in the λ-Hölder continuous path spaces Cλ. This is pointed out by
Ferrante and Rovira [9] who studied reflected differential equations driven by Hölder continuous
paths on half spaces. This implies the difficulty of the study of the uniqueness of solutions to
reflected differential equations as pointed out in their paper. We may need to restrict the set of
solutions to reflected rough differential equations to obtain the uniqueness. In the usual rough
differential equations, we have locally Lipschitz continuities of the solutions with respect to the
driving rough paths. On the other hand, it is not difficult to show that Γ is Hölder continuous
mapping in Cλ. Hence it may be possible to prove such a weaker continuity of the solution
mapping for reflected rough differential equation.

To prove this theorem, we argue similarly to the case 1 ≤ p < 2. When Φ∆(t) is defined, let

J∆
s (t) = I∆s (t) −Dσ(y∆s )(σ(y∆s ))(X2

s,t)

− (Dσ)(y∆s )

(∫ t

s

(
Φ∆(r) − Φ∆(s)

)
⊗ dxr

)
s ≤ t.
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The definition of I∆s (t) is similar to (3.4) just replacing Φ∆ by a solution to (4.4). By the
definition of y∆, we have J∆

tk
(t) = 0 for tk ≤ t ≤ tk+1. We define J∆(s, t, u) = J∆

s (u) − J∆
s (t) −

J∆
t (u). By an easy calculation, we have for s ≤ t ≤ u,

J∆(s, t, u) =
(
σ(y∆t ) − σ(y∆s ) − (Dσ)(y∆s )(y∆t − y∆s ) + (Dσ)(y∆s )(I∆s (t))

)
(xt − xu)

+
(
(Dσ)(y∆t )(σ(y∆t )) − (Dσ)(y∆s )(σ(y∆s ))

)
(X2

t,u)

+
(
(Dσ)(y∆t ) − (Dσ)(y∆s )

)(∫ u

t

(
Φ∆(r) − Φ∆(t)

)
⊗ dxr

)
.

This relation plays important role as in [5] and the proof in Lemma 3.2 in the calculation below.

Lemma 4.7. Suppose (H1) hold. Let 2 ≤ p < γ ≤ 3. There exist positive constants M and ε
which depend only on σ and CD such that if ω(tk, t) ≤ ε(≤ 1) and tk ≤ s ≤ t, then

|J∆
tk

(t)| ≤ Mω(tk, t)
γ/p (4.16)

∥Φ∆∥[s,t] ≤ C3ω(s, t)1/p, (4.17)

where C3 = 2CD∥σ∥∞. The constant M is specified in (4.20).

Proof. If (4.16) and (4.17) hold, then

|y∆t − y∆tk | ≤
(
Mε(γ−1)/p + ∥σ∥∞ + C3 + ∥Dσ∥∞∥σ∥∞ε1/p + 2C3∥Dσ∥∞ε1/p

)
ω(tk, t)

1/p

≤ C4ω(tk, t)
1/p,

where C4 = 1 + C3 + ∥σ∥∞ and we have used the relation∫ t

tk

(
Φ∆(r) − Φ∆(tk)

)
⊗ dxr =

(
Φ∆(t) − Φ∆(tk)

)
⊗ (xt − xtk) −

∫ t

tk

dΦ∆(r) ⊗ (xr − xtk).

Also

|I∆tk (t)| ≤ Mω(tk, t)
γ/p + ∥Dσ∥∞∥σ∥∞ω(tk, t)

2/p + 2C3∥Dσ∥∞ω(tk, t)
2/p

≤ C5ω(tk, t)
2/p,

where C5 = 1 + 2C3∥Dσ∥∞ + ∥Dσ∥∞∥σ∥∞. Let

z∆t = y∆tk + σ(y∆tk)(xt − xtk) + (Dσ)(y∆tk)(σ(y∆tk)X2
tk,t

)

+ (Dσ)(y∆tk)

(∫ t

tk

(Φ∆(r) − Φ∆(tk)) ⊗ dxr

)
+ J∆

tk
(t) t ≥ tk.

Then Φ∆(t) − Φ∆(tk) = L(z∆)(t) for t ≥ tk. We use this relation to estimate Φ∆. Let K be a
positive integer. Consider a claim which depends on K: The estimates (4.16) and (4.17) hold
for all tk and t, where tk ≤ t ≤ tk+K and 0 ≤ k ≤ N − 1. We prove this claim by an induction
on K. Let K = 1. By the definition, J∆

tk
(t) = 0 for any tk ≤ t ≤ tk+1. We estimate the bounded

variation norm of Φ∆. Let tk ≤ s ≤ t ≤ tk+1. Noting Chen’s identity

X2
tk,t

−X2
tk,s

= X2
s,t + (xs − xtk) ⊗ (xt − xs). (4.18)
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and by (H1),

∥Φ∆∥[s,t] ≤ CD

(
∥σ∥∞ + 2∥Dσ∥∞∥σ∥∞ε1/p

)
ω(s, t)1/p + CDε

1/p∥Dσ∥∞∥Φ∆∥[s,t]

+ CD∥Dσ∥∞∥Φ∆∥[tk,t]ω(s, t)1/p

which implies for sufficiently small ε,

∥Φ∆∥[s,t] ≤ 2CD∥σ∥∞ω(s, t)1/p.

Suppose the claim holds for all K which is smaller than or equal to K ′ − 1. We prove the case
K = K ′. Let tl be the largest partition point such that tk ≤ tl < t ≤ tk+K′ and ω(tk, tl) ≤
1
2ω(tk, t). There are two cases, (a) tl < π∆(t) and (b) tl = π∆(t). We consider the case (a).
In this case, tl < tl+1 ≤ π∆(t). By the definition, we have ω(tk, tl+1) ≥ 1

2ω(tk, t). By the
superadditivity of ω, we have

ω(tl+1, t) ≤
1

2
ω(tk, t). (4.19)

We have

|J∆
tk

(t)| ≤ |J∆
tk

(tl)| + |J∆
tl

(tl+1)| + |J∆
tl+1

(t)|

+ |J∆(tk, tl, t)| + |J∆(tl, tl+1, t)|

By the assumption of the induction and the choice of tl,

|J∆
tk

(tl)| ≤ 2−γ/pMω(tk, t)
γ/p, |J∆

tl+1
(t)| ≤ 2−γ/pMω(tk, t)

γ/p.

By the assumption of the induction, we have

|J∆(tk, tl, t)| ≤ (C4/2)∥D2σ∥∞ω(tk, tl)
2/pω(tl, t)

1/p + C5∥Dσ∥∞ω(tk, tl)
2/pω(tl, t)

1/p

+ C4

(
∥D2σ∥∞∥σ∥∞ + ∥Dσ∥2∞

)
ω(tk, tl)

1/pω(tl, t)
2/p

+ 2C4C3∥D2σ∥∞ω(tk, tl)
1/pω(tl, t)

2/p.

Here we have used that if tk < tl we can use the assumption of the induction and so,∣∣∣∣∫ t

tl

(
Φ∆(r) − Φ∆(tl)

)
⊗ dxr

∣∣∣∣ =

∣∣∣∣(Φ∆(t) − Φ∆(tl)
)
⊗ (xt − xtl) −

∫ t

tl

dΦ∆(r) ⊗ (xr − xtl)

∣∣∣∣
= 2∥Φ∆∥[tl,t]ω(tl, t)

1/p

≤ 2C3ω(tl, t)
2/p.

Similarly,

|J∆(tl, tl+1, t)| ≤ (C2
4/2)∥D2σ∥∞ω(tl, tl+1)

2/pω(tl+1, t)
1/p + C5∥Dσ∥∞ω(tl, tl+1)

2/pω(tl+1, t)
1/p

+ C4

(
∥D2σ∥∞∥σ∥∞ + ∥Dσ∥2∞

)
ω(tl, tl+1)

1/pω(tl+1, t)
2/p

+ 2C3C4∥D2σ∥∞ω(tl, tl+1)
1/pω(tl+1, t)

2/p.
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Consequently,

|J∆
tk

(t)| ≤ 21−(γ/p)Mω(tk, t)
γ/p + ε(3−γ)/pC6ω(tk, t)

γ/p,

where

C6 = C2
4∥D2σ∥∞ + 2C5∥Dσ∥∞ + 2C4

(
∥D2σ∥∞∥σ∥∞ + ∥Dσ∥2∞

)
+ 4C3C4∥D2σ∥∞.

Therefore, if M satisfies

M ≥ C6

1 − 21−(γ/p)
, (4.20)

then the desired estimate for J∆
tk

(t) holds. In the case of (b), by using the assumption of the
induction and noting J∆

tl
(t) = 0, we obtain

|J∆
tk

(t)| ≤ |J∆
tk

(tl)| + |J∆
tl

(t)| + |J∆(tk, tl, t)|
≤ Mω(tk, tl)

γ/p + |J∆(tk, tl, t)|

≤ 2−γ/pMω(tk, t)
γ/p +

(
ε(3−γ)/p/2

)
C6ω(tk, t)

γ/p.

Hence, under the condition (4.20), the desired estimate for J∆
tk

(t) holds. We show ∥Φ∆∥[s,t] ≤
C3ω(s, t)1/p for tk ≤ s < t ≤ tk+K′ with ω(tk, t) ≤ ε. We have

J∆
tk

(t) − J∆
tk

(s) = J∆
s (t) + J∆(tk, s, t).

Let tm be the largest number such that tm ≤ s. Then we have two cases, (a) tk ≤ tm ≤ s <
tm+1 < t and (b) tk ≤ tm ≤ s < t ≤ tm+1. We consider the case (a). We can apply the
assumption of the induction to tk, s and we obtain,

|J∆(tk, s, t)| ≤ 2−1C2
4∥D2σ∥∞C2

4ω(tk, s)
2/pω(s, t)1/p

+ C5∥Dσ∥∞ω(tk, s)
2/pω(s, t)1/p

+ C4

(
∥D2σ∥∞∥σ∥∞ + ∥Dσ∥2∞

)
ω(tk, s)

1/pω(s, t)2/p

+ 2C4∥D2σ∥∞ω(tk, s)
1/p∥Φ∆∥[s,t]ω(s, t)1/p.

We have

J∆
s (t) = J∆

s (tm+1) + J∆
tm+1

(t) + J∆(s, tm+1, t).

Since J∆
s (tm+1) = −J∆(tm, s, tm+1),

|J∆
s (tm+1)| ≤ 2−1∥D2σ∥∞ω(tm, s)2/pω(s, tm+1)

1/p + C5∥Dσ∥∞ω(tm, s)2/pω(s, tm+1)
1/p

+ C4

(
∥D2σ∥∞∥σ∥∞ + ∥Dσ∥2∞

)
ω(tm, s)1/pω(s, tm+1)

2/p

+ 2C4∥D2σ∥∞ω(tm, s)1/p∥Φ∆∥[s,tm+1]ω(s, tm+1)
1/p.

Note that

|I∆s (tm+1)| ≤ |I∆tm(tm+1)| + |I∆tm(s)| + |σ(y∆s ) − σ(y∆tm)| · |xtm+1 − xs|
≤ C5ω(tm, tm+1)

2/p + C5ω(tm, s)2/p + ∥Dσ∥∞C4ω(tm, s)1/pω(s, tm+1)
1/p

≤ (2C5 + C4∥Dσ∥∞)ε1/pω(tk, t)
1/p

|y∆s − y∆tm+1
| ≤ 2C4ω(tm, tm+1)

1/p.

15



Hence,

|J∆(s, tm+1, t)| ≤ 2C2
4∥D2σ∥∞ω(tm, tm+1)

2/pω(tm+1, t)
1/p

+ ∥Dσ∥∞(2C5 + C4∥Dσ∥∞)ε1/pω(tk, t)
1/pω(tm+1, t)

1/p

+ 2C4

(
∥D2σ∥∞∥σ∥∞ + ∥Dσ∥2∞

)
ω(tm, tm+1)

1/pω(tm+1, t)
2/p

+ 4C4∥D2σ∥∞ω(tm, tm+1)
1/p∥Φ∆∥[tm+1,t]ω(tm+1, t)

1/p.

By the assumption of induction,

|J∆
tm+1

(t)| ≤ Mω(tm+1, t)
γ/p.

Because∫ t

s

(
Φ∆(r) − Φ∆(tk)

)
⊗ dxr =

(
Φ∆(t) − Φ∆(tk)

)
⊗ (xt − xs) −

∫ t

s
dΦ∆(r) ⊗ (xr − xs),

we have ∣∣∣∣∫ t

s

(
Φ∆(r) − Φ∆(tk)

)
⊗ dxr

∣∣∣∣ ≤ ∥Φ∆∥[tk,t]ω(s, t)1/p + ∥Φ∆∥[s,t]ω(s, t)1/p

≤ C3ε
1/pω(s, t)1/p + ε1/p∥Φ∆∥[s,t].

By Chen’s identity and putting the estimates above together, by (H1), for sufficiently small ε,
we have

∥Φ∆∥[s,t] ≤ CD∥z∆∥∞,[s,t]

≤ CD∥σ∥∞ω(s, t)1/p + ε1/pCD (2∥Dσ∥∞∥σ∥∞ + C3∥Dσ∥∞)ω(s, t)1/p

+ CD∥Dσ∥∞(C6ε
2/p + 2ε1/p)∥Φ∆∥[s,t]

+ CDC7ε
1/pω(s, t)1/p, (4.21)

where C7 depends only on p, σ,D. Therefore, for sufficiently small ε, we obtain ∥Φ∆∥[s,t] ≤
C3ω(s, t)1/p. We consider the case (b). Since I∆tk (s) = I∆tk (tm) + I∆tm(s) + (σ(ytm) − σ(ytk)) (xs −
xtm), by using the assumption of the induction, we have

|I∆tk (s)| ≤ C5ω(tk, tm)2/p + C5ω(tm, s)2/p + C4∥Dσ∥∞ω(tk, tm)1/pω(tm, s)1/p

≤ (2C5 + C4∥Dσ∥∞)ε2/p.

Since J∆
s (t) = −J∆(tm, s, t), we have

|J∆
s (t)| ≤ 2−1C2

4∥D2σ∥∞ω(tm, s)2/pω(s, t)1/p + C5∥Dσ∥∞ω(tm, s)2/pω(s, t)1/p

+ C4

(
∥D2σ∥∞∥σ∥∞ + ∥Dσ∥2∞

)
ω(tm, s)1/pω(s, t)2/p

+ 2C4∥D2σ∥∞ω(tm, s)1/pω(s, t)1/p∥Φ∆∥[s,t].

Therefore, by the same argument as the case (a), we complete the proof of the case (b) and the
proof of the lemma is finished.
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Actually, the above proof shows stronger estimates similarly to the case 1 ≤ p < 2. For
tk ≤ s ≤ t with ω(tk, t) ≤ ε

|J∆
tk

(t) − J∆
tk

(s)| ≤ C8ε
1/pω(s, t)1/p.

Thus taking smaller ε if necessary, we have

|y∆t − y∆s | ≤ C4ω(s, t)1/p for tk ≤ s ≤ t with ω(tk, t) ≤ ε.

For general s, t, we have the following estimates.

Lemma 4.8. Let ε be a positive number specified in the above argument. Let ∆ = {tk}Nk=1 be a
partition of [0, T ] which satisfies (3.13). Then there exists C > 0 such that for any 0 ≤ s ≤ t ≤ T
the following estimates hold. The constant C depends only on σ, p and D.

(1) |y∆t − y∆s | ≤ C (1 + ω(0, T ))ω(s, t)1/p

(2) ∥Φ∆∥[s,t] ≤ C (1 + ω(0, T ))ω(s, t)1/p.

Proof. The proof of this lemma is similar to that of Lemma 3.4.

Now we prove our main theorem.

Proof of Theorem 4.5. Let X̂∆ be the naturally defined p-rough path associated with the p-rough
path X and Φ∆ as in Definition 4.1 (2). Thanks to the above lemma, this family of p-rough path
has a common control function Cω for some positive constant C which is independent of ∆.

Let p′ > p. Since the two-parameter function (s, t) 7→ X̂∆
s,t and y∆t are equicontinuos (we need

Chen’s identity to prove the equicontinuity of the former), there exist subseqeunces X̂∆n , y∆n ,
a p-rough path X̂ ∈ Ωp(Rn⊕Rd), a continuous path y and a positive decreasing sequence δn ↓ 0
such that ∣∣∣X̂∆ns,t − X̂s,t

∣∣∣ ≤ δnω(s, t)1/p
′

0 ≤ s ≤ t ≤ T,

lim
n→∞

max
0≤t≤T

|y∆n
t − yt| = 0,

where ∆n+1 is a subdivision of ∆n and |∆n| → 0. We denote the limit of Φ∆n(t) by Φ(t).
Clearly, the estimate (4.15) holds for this Φ. The limit X̂ is naturally defined rough path by X
and Φ as in Definition 4.1 (2). Also we have for all 0 ≤ s ≤ t ≤ T ,∣∣∣∣∣yt − ys − σ(ys)(xt − xs) − (Φ(t) − Φ(s))

− (Dσ)(ys)(σ(ys)X
2
s,t) − (Dσ)(ys)

(∫ t

s
(Φ(r) − Φ(s)) ⊗ dxr

)∣∣∣∣∣ ≤ Cω(s, t)γ/p. (4.22)

(4.16) shows (4.22) for s = tk ∈ ∪n∆n with ω(tk, t) ≤ ε. By the denseness of ∪n∆n and the
continuity of the functions on the both sides in (4.22), we see that this estimate holds for s, t
with ω(s, t) ≤ ε. When ω(s, t) ≥ ε, the estimate clearly holds. This shows yt is a solution to

dyt = σ̂(yt)dX̂t
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in the sense of Davie [5]. Also we can find a p-rough path Ys,t ∈ Ωp(Rd) so that yt = y0 + Y 1
0,t

and the equation (4.1) is satisfied. We refer the reader for the construction of Ys,t to [5]. We
write Yt = y0 + Y 1

0,t. Since X̂s,t has the control function C(1 + ω(0, T ))ω(s, t), the estimate on
the rough differential equations implies the estimate (4.14). We have to show Yt and Φ(t) is the
solution to the Skorohod problem associated with the first level path y0 +

∫ t
0 σ(Ys)dX

1
s . To this

end, we consider the solution Y ∆n
s,t associated with X̂∆ns,t. Let Y ∆n

t = y0+(Y ∆n)10,t. Since X̂∆n

converges to X̂ in Ωp′(Rn ⊕Rd), by Lyons’ continuity theorem of solutions to rough differential
equations, we have limn→∞ ∥Y ∆n − y∥∞,[0,T ] = 0. Hence

lim
n→∞

∥Y ∆n − y∆n∥∞,[0,T ] = 0.

Also by Lyons’ continuity theorem for the integrals of p′-rough path,

lim
n→∞

∥∥∥∥∫ ·

0
σ(Y ∆n

s )dX1
s −

∫ ·

0
σ(Ys)dX

1
s

∥∥∥∥
∞,[0,T ]

= 0.

Let z∆n
t = y∆n

t − Φ∆n
t . Then (y∆n

t ,Φ∆n
t ) is the solution to the Skorohod problem associated

with z∆n
t . Since z∆n

t = y∆n
t − Y ∆n

t + y0 +
∫ t
0 σ(Y ∆n

s )dX1
s , z∆n

t converges to y0 +
∫ t
0 σ(Ys)dX

1
s

uniformly. By the continuity of the Skorohod map (see [19]), this shows the desired result.

Let GΩp(Rn) be the set of geometric rough paths with 2 ≤ p < 3. That is, this set is the
closure of the set of smooth rough paths in p-variation norm. For solutions to reflected rough
differential equations driven by geometric rough path, we can prove the existence of measurable
selection of the solution mapping.

Theorem 4.9. Assume D satisfies (H1) and σ ∈ C3
b . There exists a universally measurable

map I : GΩp(Rn) → GΩp(Rd) × Vp(Rd) such that the following hold. Here Vp(Rd) denotes the
set of continuous paths of finite p-variation in Rd defined on [0, T ].
(1) For any X ∈ GΩp(Rn), I(X) is a solution to (4.1) and satisfies the estimates (4.14) and
(4.15).
(2) There exists a sequence of smooth rough paths {XN} ⊂ GΩp(Rn) such that limN→∞XN = X
and limN→∞ I(XN ) = I(X), where the convergences take place in the topology GΩp(Rn) and the
product topology of GΩp′(Rd) × Vp(Rd) for all p < p′ < 3 respectively.

Proof. For any X ∈ GΩp(Rn), there exists a sequence of smooth rough paths {XN} such that
limN→∞ ∥XN −X∥p = 0. Let (YN ,ΦN ) be the solution to reflecting rough differential equation

driven by XN . Let X̃N ∈ GΩp(Rn ⊕ Rd ⊕ Rd) be the smooth rough path associated with
(XN ,ΦN , YN ) similarly to Definition 4.1 (2). By the estimate (4.14) and (4.15), there exists a

subsequence X̃Nk
which converges to an element X̃ in GΩp(Rn ⊕ Rd ⊕ Rd) in the topology of

GΩp′(Rn ⊕ Rd ⊕ Rd) for any p < p′ < 3. A pair of the rough path and the bounded variation

path π(X̃) = (Y,Φ) ∈ GΩp(Rd) ⊗ Vp(Rd) which is obtained by a projection of X̃ is a solution
to (4.1) driven by X. This follows from the Lyon’s continuity theorem and the continuity
of the Skorohod map. Let Θ ⊂ GΩp(Rn ⊕ Rd ⊕ Rd) × GΩp(Rn) be the set consisting of all

limit points (X̃,X). Then clearly Θ is a closed subset. Hence by the measurable selection
theorem, there exists a universally measurable map I : GΩp(Rn) → GΩp(Rn ⊕ Rd ⊕ Rd) such
that {(I(X), X) | X ∈ GΩp(Rn)} ⊂ Θ. The mapping I(X) = π(I(X)) is the desired map.
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5 Reflected stochastic differential equation

In this section, we consider stronger topology than p-variation topology of geometric rough
path. The set of geometric rough paths GΩp(Rn) is the closure of the set of smooth rough
paths defined by continuous bounded variation paths with respect to the distance dp below
and consists Xs,t = (1, X1

s,t, X
2
s,t) where X1

s,t, X
2
s,t are Rn and Rn ⊗ Rn-valued continuous maps

satisfying Chen’s identity and

sup
0≤s<t≤T

|X i
s,t|

|t− s|i/p
< ∞. (5.1)

The distance is given by

dp(X,X ′) =

2∑
i=1

sup
0≤s<t≤T

|Xi
s,t − (X

′
)is,t|

|t− s|i/p
, X,X ′ ∈ GΩp(Rn).

(GΩp(Rn), dp) is a complete separable metric space. Let Wn = C([0, T ] → Rn | B(0) = 0) be
the classical Wiener space. That is, Wn is a probability space with the Wiener measure µ. The
coordinate process t 7→ B(t) is a realization of Brownian motion. Let

BN (t) = B(tNk−1) +
B(tNk ) −B(tNk−1)

∆N
(t− tNk−1) tNk−1 ≤ t ≤ tNk ,

where tNk = kT/(2N ) (1 ≤ k ≤ 2N ), ∆N = 2−NT and ∆kB
N = B(tNk ) −B(tNk−1). We may omit

superscript N in the notation tNk . Consider a smooth rough path BN
s,t over BN . Then we can see

that there exists a subset Ω ⊂ Wn such that µ(Ω) = 1 and any B ∈ Ω satisfies that BN
s,t converges

in GΩp(Rn). The limit which is denoted by Bs,t is called a Brownian rough path. We can take
control function ω(s, t) such that ω(s, t) = C(X)(t−s), where C(X) =

(
dp(0, X)p + dp(0, X)p/2

)
and Xs,t = Bs,t, B

N
s,t. It is not difficult to see that

E[C(B)q] + sup
N

E[C(BN )q] < ∞ for any q ≥ 1. (5.2)

Now, again, we assume σ ∈ C2
b (Rd,Rn ⊗ Rd) throughout this section. Let Y N be the solution

to reflected ODE on a domain D ⊂ Rd:

dY N (t) = σ(Y N (t))dBN (t) + dΦN (t), Y N (0) = y0. (5.3)

Under the assumption (H1), by Theorem 4.5 in the Section 4, we have

|Y N (B)is,t| ≤ g(dp(0, B
N ))(t− s)i/p i = 1, 2, (5.4)

∥ΦN (B)∥[s,t] ≤ g(dp(0, B
N ))(t− s)1/p, (5.5)

where g is a polynomial function. Therefore, by the same reasoning as in the proof of Theo-
rem 4.5, for any B ∈ Ω, there exists a subsequence Nk(B) ↑ +∞ such that Y Nk(B)(B)s,t and
ΦNk(B)(B)(t) converge in the topology of p′-rough path and p′-variation path respectively. The
limit is a solution to reflected rough differential equation driven by Bs,t. However, we cannot
conclude that the limit and the solution is unique by this argument. On the other hand, the
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solution Y N is the Wong-Zakai approximation of Y S(t) which is the solution to the reflected
SDE driven by Brownian motion:

dY S(t) = σ(Y S(t)) ◦ dB(t) + dΦS(t), Y S(0) = y0,

where ◦dB(t) denotes the Stratonovich integral and ΦS is the local time term. We use the
notation Y S to distinguish the solution in the sense of Itô calculus from the solution in the sense
of rough path. Note that in [2], we used the notation XN (t) for the Wong-Zakai approximation.
Let us consider the case D = Rd. Then Lyon’s continuity theorem and the coincidence of the
solution in the sense of Itô’s SDE and rough differential equations, imply that the Wong-Zakai
approximation of the solution converges to the solution in the sense of Itô calculus uniformly.
However, we cannot do such a thing if ∂D ̸= ∅ because we do not prove the continuity theorem
yet. In [2], we proved that Y N (t) converges to Y S(t) uniformly on [0, T ] for almost all B. By
the results in [2], we can prove the following lemma.

Lemma 5.1. Assume conditions (A), (B), (C) are satisfied for D. Then for any ε > 0, there
exists a positive constant Cε(T ) independent of N such that

E

[
max
0≤t≤T

∣∣∣∣∫ t

0
σ(Y N (s))dBN (s) −

∫ t

0
σ(Y S(s)) ◦ dB(s)

∣∣∣∣2
]
≤ Cε(T ) · 2−(1−ε)N/6.

Thanks to the lemma above, applying the Borel-Cantelli lemma, we see that there exists a
full measure subset Ω′ ⊂ Wn such that

max
0≤t≤T

∣∣∣∣∫ t

0
σ(Y N (s))dBN (s) −

∫ t

0
σ(Y S(s)) ◦ dB(s)

∣∣∣∣→ 0 for all B ∈ Ω′.

Hence by the continuity property of the Skorohod mapping, ΦN (t) also converges to ΦS(t)
uniformly for all B ∈ Ω′. Therefore, Y N (B)s,t converges to a certain p-rough path Y (B)s,t for
all B ∈ Ω′ ∩ Ω, without taking subsequences. The pair (Y (B)s,t,Φ

S(t)) is a solution to rough
differential equation driven by B ∈ Ω∩Ω′ and Y S(t) = y0 +Y (B)10,t. Also (5.4) and (5.5) imply
the following.

Theorem 5.2. Assume (A), (B), (C), (H1). Then we have for 0 ≤ s ≤ t ≤ T ,

|Y S(t) − Y S(s)| ≤ C (1 + dp(0, B))3 |t− s|1/p,
∥ΦS∥[s,t] ≤ C (1 + dp(0, B))3 |t− s|1/p,

where C is a positive constant which depends only on σ,D, p.

Proof of Lemma 5.1. In this proof, we use the estimate obtained in [2]. Note that some notation
there are different from those in this paper. Take points such that tl < t ≤ tl+1. We have∣∣∣∣∫ t

0
σ(Y N (s))dBN (s) −

∫ tl

0
σ(Y N (s))dBN (s)

∣∣∣∣ ≤ C|∆lB
N |.
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Hence

E

[
max
0≤s≤t

∣∣∣∣∫ s

0
σ(Y N (u))dBN (u) −

∫ s

0
σ(Y S(u)) ◦ dB(u)

∣∣∣∣2
]

≤ 3E

[
max
0≤k≤l

∣∣∣∣∫ tk

0
σ(Y N (s))dBN (s) −

∫ tk

0
σ(Y S(s)) ◦ dB(s)

∣∣∣∣2
]

+ 3CE

[
max
k

|∆kB
N |2
]

+ 3E

[
max

|u−v|≤2−NT,0≤u≤v≤T

∣∣∣∣∫ v

u
σ(Y S(s)) ◦ dB(s)

∣∣∣∣2
]

≤ 3E

[
max
0≤k≤l

∣∣∣∣∫ tk

0
σ(Y N (s))dBN (s) −

∫ tk

0
σ(Y S(s)) ◦ dB(s)

∣∣∣∣2
]

+ Cε

(
2−NT

)1−ε
,

where ε is any positive number. Let πN (t) = max{tNk | tNk ≤ t}.∫ tl

0
σ(Y N (s))dBN (s) −

∫ tl

0
σ(Y S(s)) ◦ dB(s)

=

∫ tl

0

(
σ(Y N (πN (s))) − σ(Y S(s))

)
dB(s)

+

{
l∑

k=1

∫ tk

tk−1

∫ s

tk−1

(Dσ) (Y N (u))

(
σ(Y N (u))

∆kB
N

∆N
du

)(
∆kB

N

∆N

)
ds

−
∫ tl

0

1

2
tr (Dσ) (Y S(s))(σ(Y S(s)))ds

}

+

l∑
k=1

∫ tk

tk−1

∫ s

tk−1

(Dσ) (Y N (u))
(
σ(Y N (u))dΦN (u)

)(∆kB
N

∆N

)
ds

=: IN1 (tl) + IN2 (tl) + IN3 (tl).

Noting

IN1 (t) =

∫ t

0

(
σ(Y N (πN (s))) − σ(Y S(πN (s)))

)
dB(s)

+

∫ t

0

(
σ(Y S(πN (s))) − σ(Y S(s))

)
dB(s),

and by using Burkholder-Davis-Gundy’s inequality and estimates in Theorem 2.9 and Lemma 4.5
in [2], we obtain

E

[
max
0≤s≤t

|IN1 (s)|2
]
≤ Ct

(
2−NT

)(1−ε)/6
+ C · 2−N tT.
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IN2 (tl) =
1

2

∫ tl

0

(
tr (Dσ) (Y N (πN (s)))(σ(Y N (πN (s)))) − tr (Dσ) (Y S(s))(σ(Y S(s)))

)
ds

+

l∑
k=1

∫ tk

tk−1

∫ s

tk−1

{
(Dσ) (Y N (u))

(
σ(Y N (u))

∆kB
N

∆N

)

− (Dσ) (Y N (πN (u)))

(
σ(Y N (πN (u)))

∆kB
N

∆N

)}
du

(
∆kB

N

∆N

)
ds

+
1

2

l∑
k=1

{
(Dσ) (Y N (tk−1))

(
σ(Y N (tk−1))∆kB

N
) (

∆kB
N
)

−
n∑

i=1

(Dσ) (Y N (tk−1))
(
σ(Y N (tk−1))ei

)
(ei) 2−NT

}
,

=: IN2,1(tl) + IN2,2(tl) + IN2,3(tl)

where ei is a unit vector in Rd whose i-th element is equal to 1. We have

|IN2,1(tl)| ≤ C

∫ tl

0
|Y N (s) − Y S(s)|ds

+ Ctl max
0≤u≤v≤T,|v−u|≤2−NT

(
|Y N (v) − Y N (u)| + |Y S(v) − Y S(u)|

)
,

|IN2,2(tl)| ≤ C

l∑
k=1

max
0≤u≤v≤T,|v−u|≤2−NT

|Y N (v) − Y N (u)| · |∆kB
N |2.

By Burkholder-Davis-Gundy’s inequality, we have

E

[
max
1≤k≤l

|IN2,3(tk)|2
]
≤ CE

[
l∑

k=1

ηk

]
,

where

ηk =
n∑

i=1

(
(ξik)2 − 2−NT

)2
+

∑
1≤i<j≤n

(ξik)2(ξjk)2.

Here ξik = Bi(tk) − Bi(tk−1) (1 ≤ i ≤ n) which is the increment of the i-th element of the
Brownian motion. By the estimates in Lemma 2.8, Theorem 2.9 and Lemma 4.5 in [2] and
arguing similarly to pages 3813 and 3814 in [2], we have

E

[
max
1≤k≤l

|IN2,1(tk)|2
]
≤ Ct2l

(
2−NT

)(1−ε)/6
+ Ct2l

(
2−NT

)1−ε

E

[
max
1≤k≤l

|IN2,2(tk)|2
]
≤ C

(
2−NT

)1−ε

E

[
max
1≤k≤l

|IN2,3(tk)|2
]
≤ C · 2−NT.
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Finally, since max0≤t≤T |IN3 (t)| ≤ C∥ΦN∥[0,T ] maxk |∆kB
N | we have

E

[
max
0≤t≤T

|IN3 (t)|2
]
≤ (2−NT )1−ε

which completes the proof.

Finally, we discuss the relation between the solution to reflected rough differential equation
which is obtained as a limit of the Euler approximation defined in (4.4) and Y S . For each Bs,t,
we see the existence of the solution y∆(B, t). However, it is not trivial to see that a certain
version of y∆(B, t) is a semimartingale. Therefore we need the following proposition.

Proposition 5.3. Assume D is convex and satisfies (H1). Let {Bt(w)} be an Ft-Brownian
motion on a probability space (S,F , P ) and ηt(w) be a continuous Ft-semimartingale with
E[∥η∥q∞,[s,t]] ≤ Cq(t − s)q/2 for all q ≥ 1 and 0 ≤ s ≤ t ≤ T . We consider the following
equation.

Yt(w) = y0 + ηt(w) + F

(∫ t

0
Φ(r, w) ⊗ dBr(w)

)
+ Φ(t, w) 0 ≤ t ≤ T, (5.6)

where Yt(w) is an Ft-adapted continuous process and Φ(t, w) is an Ft-adapted continuous bounded
variation process, and (Yt(w),Φ(t, w)) is the solution to the Skorohod problem associated with

y0 + ηt(w) + F
(∫ t

0 Φ(r, w) ⊗ dBr(w)
)
. For this problem, there exists a unique solution.

Proof. We consider again an Euler approximation. Let ∆ = {tk} be a partition of [0, T ]. We
write |∆| = maxk(tk − tk−1) and π∆(t) = max{tk | tk ≤ t}. Let Y ∆

t be the solution to the
Skorohod equation:

Y ∆
t = Y ∆

tk−1
+ ηt − ηtk−1

+ F
(
Φ∆(tk−1) ⊗ (Bt −Btk−1

)
)

+ Φ∆(t) − Φ∆(tk−1) tk−1 ≤ t ≤ tk.

Then Y ∆,Φ∆ satisfy

Y ∆
t = y0 + ηt +

∫ t

0
F
(
Φ∆(π∆(t)) ⊗ dBt

)
+ Φ∆(t).

Let q ≥ 2. By the assumption (H1), we have

E
[
∥Φ∆∥q∞,[s,t]

]
≤ Cq(t− s)q/2 + Cq(t− s)(q−2)/2

∫ t

s
E
[
|Φ∆(π∆(u))|q

]
du.

Hence by considering the case where s = 0, we have

E
[
∥Φ∆∥q∞,[0,t]

]
≤ Cqt

q/2 + Cqt
(q−2)/2

∫ t

0
E
[
∥Φ∆∥q∞,[0,u]

]
du

and by the Gronwall inequality, we get E
[
∥Φ∆∥q∞,[0,t]

]
≤ CqT

q/2 exp
(
T q/2

)
. Thus, we obtain

E
[
∥Φ∆∥q∞,[s,t]

]
≤ Cq

(
1 + T q/2 exp

(
T q/2

))
(t− s)q/2 0 ≤ s ≤ t ≤ T. (5.7)
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Let ∆′ be another partition of [0, T ]. Define

Z(t) = Y ∆(t) − Y ∆′
(t),

k(t) = |Z(t)|2.

By the Itô formula, we have

dk(t) = 2
(
Z(t), F

((
Φ∆(π∆(t)) − Φ∆′

(π∆′
(t))
)
⊗ dBt

))
+

d∑
i=1

∣∣∣F (Φ∆(π∆(t)) − Φ∆′
(π∆′

(t)), ei

)∣∣∣2dt}
+ 2

(
Z(t), dΦ∆(t) − dΦ∆′

(t)
)
. (5.8)

By the convexity of D, we obtain

E
[
|Y ∆

t − Y ∆′
t |2

]
≤ CF

∫ t

0
E
[
|Φ∆(u) − Φ∆′

(u)|2
]
du + C(|∆| + |∆′|)t,

where we have used the estimate (5.7) and the positive constant CF depends on the (Hilbert-
Schmidt) norm of F . Combining the above inequality and the identity

Φ∆(t) − Φ∆′
(t) = Y ∆(t) − Y ∆′

(t) −
∫ t

0
F
((

Φ∆(u) − Φ∆′
(u)
)
⊗ dBu

)
, (5.9)

we obtain

E
[
|Y ∆

t − Y ∆′
t |2

]
≤ C(|∆| + |∆′|)t + 2CF

∫ t

0
E[|Y ∆

u − Y ∆′
u |2]du

+ 2C2
F

∫ t

0

∫ u

0
E[|Φ∆(r) − Φ∆′

(r)|2]drdu.

Iterating this procedure, we have

E[|Y ∆
t − Y ∆′

t |2] ≤ C(|∆| + |∆′|)t + C

∫ t

0
E[|Y ∆

s − Y ∆′
s |2]ds.

By the Gronwall inequality, we obtain

E[|Y ∆
t − Y ∆′

t |2] ≤ C(|∆| + |∆′|)eCtt.

Therefore, by (5.9),

E
[
|Φ∆(t) − Φ∆′

(t)|2
]
≤ 2C(|∆| + |∆′|)eCtt + CF

∫ t

0
E
[
|Φ∆(s) − Φ∆′

(s)|2
]
ds

and

E
[
|Φ∆(t) − Φ∆′

(t)|2
]
≤ 2C(|∆| + |∆′|)e(C+CF )tt.

24



Therefore L2-limit Yt := lim|∆|→0 Y
∆
t and Φ(t) := lim|∆|→0 Φ∆(t) exist. Moreover there exists a

subsequence ∆ such that
∫ t
0 F

(
Φ∆(π∆(s)) ⊗ dB(s)

)
converges to

∫ t
0 F (Φ(s) ⊗ dB(s)) 0 ≤ t ≤ T

uniformly P -a.s. ω. Thus, by the continuity of the Skorohod mapping, we see that the pair (Y,Φ)
is a solution. We prove the uniqueness. Let (Y,Φ) and (Y ′,Φ′) be solutions to (5.6). Then by
a similar calculation to (5.8), we have

E
[
|Y (t) − Y ′(t)|2

]
≤ CF

∫ t

0
E[|Φ(s) − Φ′(s)|2]ds.

By arguing similarly to the above, we complete the proof.

We consider solutions to (4.4) when Xs,t = Bs,t. By applying the above proposition, we
see that the solution (y∆(B),Φ∆(B)) is unique in the set of semimartingales. We obtain the
following convergence speed of y∆(B). Below we denote y∆(B) by y∆ simply.

Theorem 5.4. Assume that D is convex and (H1) is satisfied. Let ∆N = {2−NkT}2Nk=0. There
exists a full measure set Ω′ ⊂ Ω such that for any B ∈ Ω′, y∆N and Φ∆N converge to Y S and
ΦS uniformly respectively and

E

[
sup

0≤t≤T
|y∆N

t − Y S(t)|2
]
≤ CT∆

4/p
N . (5.10)

Proof. Semimartingales y∆N
t and Φ∆N (t) satisfied the following reflected SDE

dy∆N
t = σ

(
y∆N
t

)
◦ dB(t) + RN (t) + Φ∆N (t), y∆N (B)0 = y0

where

RN (t) =

l−1∑
k=1

Mtk−1,tk + Mtl−1,t tl−1 ≤ t ≤ tl

and

Mtk−1,t =

∫ t

tk−1

∫ s

tk−1

{((
Dσ(y∆N

u )
)

(σ(y∆N
u )) −

(
Dσ(y∆N

tk−1
)
)

(σ(y∆N
tk−1

))
)
◦ dB(u)

}
◦ dB(s)

+

∫ tk

tk−1

∫ s

tk−1

{((
Dσ(y∆N

u )
)
−
(
Dσ(y∆N

tk−1
)
))

dΦ∆N (u)
}
◦ dB(s) tk−1 ≤ t ≤ tk.

RN (t) is an Rd-valued semimartingale and its quadratic variation satisfies that for any unit
vectors ξ and q ≥ 1,

⟨(RN , ξ)⟩T ≤ CN∆
4/p
N ,

sup
N

E
[
Cq
N

]
< ∞.

These estimates follow from Lemma 4.8 and the estimate on the control function ω of Bs,t. Set

ZN (t) = Y S(t) − y∆N
t , kN (t) = |ZN (t)|2.
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Then by a similar calculation to the proof of Theorem 3.1 in [2], we obtain for 0 ≤ T ′ ≤ T ,

E

[
sup

0≤t≤T ′
kN (t)

]
≤ CT∆

4/p
N + CT

∫ T ′

0
E

[
sup
0≤s≤t

kN (s)

]
dt

which shows (5.10) and E
[
sup0≤t≤T kN (t)

]
≤ C ′

T∆
4/p
N and sup0≤t≤T |Y S(t) − y∆N

t | → 0 for
almost all B. These estimates imply that

lim
N→∞

sup
0≤t≤T

∣∣∣∣∫ t

0
σ
(
y∆N (s)

)
◦ dB(s) −

∫ t

0
σ(Y S(s)) ◦ dB(s)

∣∣∣∣ = 0 a.s.

and so we have limN→∞ sup0≤t≤T |Φ∆N (t) − ΦS(t)| = 0 a.s.
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