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Abstract

We give precise Gaussian upper and lower bound estimates on heat kernels on Riemannian man-
ifolds with poles under assumptions that the Riemannian curvature tensor goes to 0 sufficiently
fast at infinity. Under additional assumptions on the curvature, we give estimates on the loga-
rithmic derivatives of the heat kernels. The proof relies on the Elworthy-Truman’s formula of
heat kernels and Elworthy and Yor’s observation on the derivative process of certain stochastic
flows. As an application of them, we prove logarithmic Sobolev inequalities on pinned path
spaces over such Riemannian manifolds.

1. Introduction

Let p(t, x, y) be the heat kernel of a diffusion semigroup et∆/2 on a d-dimensional
complete Riemannian manifold (M, g), where ∆ denotes the Laplace-Beltrami operator
on (M, g). For some classes of Riemannian manifolds, the following Gaussian upper and
lower bounds are valid (see [30]): For all t > 0, x, y ∈ M , it holds that

(1.1) C1t
−d/2 exp

(
− d(x, y)2

2(1− C2)t

)
≤ p(t, x, y) ≤ C3t

−d/2 exp

(
− d(x, y)2

2(1 + C4)t

)
,

where d(x, y) denotes the Riemannian distance between x and y, C1, C3 are positive
constants and C2, C4 are nonnegative constants with C2 < 1. It is natural to expect that
more precise estimate holds under stronger assumptions on the Riemannian manifold. In
fact, under nonnegativity of the Ricci curvature, Li-Yau’s lower bound estimate [24], (1.1)
with C1 = (2π)−d/2, C2 = 0, holds. Also if the sectional curvature is nonpositive and M is
simply connected, the upper bound in (1.1) holds with C3 = (2π)−d/2 and C4 = 0 by [7].
Note that the lower bound in (1.1) does not hold for t ∈ [0, T ] for any fixed T in the case of
hyperbolic spaces. In [2], the author proved the lower bound with C2 = 0 for any t ∈ [0, T ]
under the assumptions that x is a pole and the derivatives of Riemannian metric go to
0 sufficiently fast at infinity although negative curvature part remains. In this paper, we
prove similar estimates on Riemannian manifolds with poles under the assumptions that
the curvature and the derivatives go to 0 sufficiently fast at infinity. The present proof is
simpler than the previous one. Also we discuss estimates on the logarithmic derivatives
of heat kernels. The second derivative of log p(t, x, y) with respect to y was studied in
connection with parabolic Harnack inequality [24], [32]. On the other hand, it is pointed
out in [18], [22] that ∇2

y log p(t, x, y) is related to a logarithmic Sobolev inequality (=LSI
for short) on loop space over the Riemannian manifold. In [1], sufficient conditions for LSI
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in terms of the heat kernel were given. Malliavin and Stroock [25] showed that the small
time behavior of the second derivative of log p(t, x, y) dramatically changes if y is in the
cut-locus of x. However in our case, there are no cut-locus and we can check the conditions
in [1] by our main theorem. The key ingredients of our arguments are the Elworthy and
Truman’s formula [15] and Elworthy and Yor’s observation on the derivative process of
stochastic flows [16]. In [29], Ndumu studied derivative formulae of heat kernels by using
Elworthy and Truman’s formula. However, his assumptions on the boundedness of the
derivative process is too restrictive. The key point in the present paper is to use Elworthy
and Yor’s observation to avoid the difficulty.

Acknowledgement: I am grateful to David Elworthy for informing me a preprint of
Ndumu [29]. Also I thank the referee for the comment on the heat kernel bound.

2. Elworthy and Truman’s formula and estimates on heat kernels

Let (M, g) be a d-dimensional complete Riemannian manifold with a pole o. That is,
we assume that the exponential map exp : ToM → M is a diffeomorphism. Let

(2.1) θ(x) = det
[
(d expo)exp−1

o (x)

]
,

where (d expo)exp−1
o (x) denotes the derivative of the exponential map at exp−1

o (x). Note that
θ is a positive smooth function on M . This is called a Ruse’s invariant. Now, we embed
M into a higher dimensional Euclidean space RN isometrically and let P (x) : RN → TxM
be the projection operator. Let us consider the following SDE with a singular drift at
time t:

dX(s, x, w) = bs (X(s, x, w)) ds + P (X(s, x, w)) ◦ dw(s) (0 ≤ s < t)(2.2)

X(0, x, w) = x,(2.3)

where

(2.4) bs(x) = − 1

t− s
∇

(
d(o, x)2

2

)
− 1

2
∇ log θ(x).

For simplicity, we denote E(x) = d(o, x)2/2 sometimes. Let p(t, x, y) be the heat
kernel of et∆/2. Elworthy-Truman [15], [12] proved that

Theorem 2.1. (1) X(s, x, w) (0 ≤ s < t) exists for almost all w and lims→t X(s, x, w) =
o. Also the law of the process d(o,X(s, x, w)) is the same as that of the radial part of the
pinned Brownian motion on Rd which starts at a point whose Euclidean norm is d(o, x)
and arrives at the origin at time t.
(2) For any x, it holds that

p(t, o, x) =
exp

(
−d(o,x)2

2t

)

(2πt)d/2
θ(x)−1/2h(t, o, x),(2.5)
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where

h(t, o, x) := E

[
exp

(∫ t

0

V (X(s, x, w)) ds

)]
,(2.6)

V (x) =
1

2
θ(x)1/2∆

(
θ−1/2

)
(x).(2.7)

To state our estimates, we recall basic notions in Riemannian geometry. Let R(X,Y )Z :=
∇X∇Y Z − ∇Y∇XZ − ∇[X,Y ]Z be the Riemannian curvature tensor, where X,Y, Z are
vector fields on M . The Ricci curvature, Ricx ∈ TxM

∗ ⊗ TxM is given by Ric =∑d
i=1 R(·, ei)ei, where {ei} is an orthonormal frame of TxM . Let K be the sectional

curvature, that is Kπ(x) = g(R(X,Y )(Y ), X), where X,Y ∈ TxM are orthogonal unit
vectors and π is the plane spanned by X,Y . We consider the following assumption. We
identify a second covariant derivative of a function with a symmetric operator below.

Assumption 2.2. (A1) The n-th covariant derivatives of log θ(x) (1 ≤ n ≤ 4) are
bounded continuous functions on M .
(A2) There exists a positive constant ε > 0 such that for all x ∈ M ,

(2.8) ∇2
x

{
d(o, x)2

2

}
≥ 1 + ε

2
ITxM .

(A3) There exists a constant C > 0 such that for all x ∈ M ,

(2.9)

∥∥∥∥∇3
x

{
d(o, x)2

2

}∥∥∥∥ +

∥∥∥∥∇2
x

{
d(o, x)2

2

}∥∥∥∥ ≤ C.

(A4) The Riemannian curvature tensor and the first derivative of the Ricci curvature are
bounded.

By using the Levi-Civita connection, the semimartingale X(s, x, w) (0 ≤ s < t) can be
lifted to the orthonormal frame bundle O(M) and stochastic parallel translation τ(X)s :
TxM → TX(s,x,w)M can be defined. Any tensor T on TX(t,x,w)M can be parallel translated

to a tensor T (X)t on TxM along X. We use this notation frequently. The following
derivative formulae are keys in our argument. The formulae (2.10) and (2.11) hold under
weaker assumptions. However, we do not intend to refine the results in this paper.

Lemma 2.3. Assume (A1), (A2), (A3), (A4).Then the following formulae hold:

∇xh(t, o, x)(ξ)(2.10)

= E

[∫ t

0

(
∇V (X)s, v̄1(ξ, s)

)
ds · exp

(∫ t

0

V (X(s, x, w)) ds

)]
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∇2
xh(t, o, x)(ξ1, ξ2)(2.11)

= E

[{∫ t

0

(
(∇V )(X)s, v̄2(ξ1, ξ2, s)−

∫ s

0

R(X)u(v̄1(ξ2, u), ◦dX(u))v̄1(ξ1, s)

)
ds

+

∫ t

0

(∇2V )(X)s(v̄1(ξ1, s), v̄1(ξ2, s))ds

+

∫ t

0

(
(∇V )(X)s, v̄1(ξ1, s)

)
ds

∫ t

0

(
(∇V )(X)s, v̄1(ξ2, s)

)
ds

}

× exp

(∫ t

0

V (X(s, x, w)) ds

)]

where ξ, ξ1, ξ2 ∈ TxM and v̄1(·, s) ∈ TxM
∗ ⊗ TxM , v̄2(·, ·, s) ∈ TxM

∗ ⊗ TxM
∗ ⊗ TxM are

the solutions to the following ODEs:

˙̄v1(ξ, s) =

{
− 1

t− s
∇2E(X)s −

1

2
Ric(X)s −

1

2
∇2 log θ(X)s

}
v̄1(ξ, s)(2.12)

v̄1(ξ, 0) = ξ

˙̄v2(ξ1, ξ2, s)(2.13)

=

{
− 1

t− s
∇2E(X)s −

1

2
Ric(X)s −

1

2
∇2 log θ(X)s

}
v̄2(ξ1, ξ2, s)

+

∫ s

0

R(X)u

(
v̄1(ξ2, u), ◦dX(u)

)
{
− 1

t− s
∇2E(X)s −

1

2
Ric(X)s

−1

2
∇2 log θ(X)s

}
v̄1(ξ1, s)− 1

t− s
∇3E(X)s(v̄1(ξ1, s), v̄1(ξ2, s))

−1

2
∇Ric(X)s(v̄1(ξ1, s), v̄1(ξ2, s))− 1

2
∇3 log θ(X)s(v̄1(ξ1, s), v̄1(ξ2, s))

v̄2(ξ1, ξ2, 0) = 0

and X(s) =
∫ s

0
τ(X)−1

s ◦ dX(s, x, w). Moreover, V,∇V,∇2V and sup0≤s≤t ‖v̄1(t)‖op are

bounded functions of x and w. Also supx E
[
sup0≤s≤t ‖v̄2(s)‖p

op

]
< ∞ for all p > 1. In

particular, ∇xh(t, o, x),∇2
xh(t, o, x) are bounded functions on M .

Proof. Note that

V (x) =
1

4

(|∇ log θ(x)|2 − 2∆ log θ(x)
)
.

Hence, (A1) implies V , ∇V , ∇2V are bounded. Let N(x) : Rd → TxM
⊥ be the projection

operator. We also fix a metric connection on the normal bundle π : N(M) → M . Let

b(s) =

∫ s

0

{
τ(X)−1

s P (X(s, x, w)
} ◦ dw(s)(2.14)

β(s) =

∫ s

0

{
τ(X)−1

s N(X(s, x, w)
} ◦ dw(s)(2.15)
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Note that b(s) and β(s) are independent Brownian motions on TxM and TxM
⊥ respec-

tively. Since X(s) satisfies the following SDE,

dX(s) = − 1

t− s
∇E(X)sds− 1

2
∇ log θ(X)sds + db(s),(2.16)

X(0) = 0,(2.17)

X(s) and X(s, x, w) are B-measurable, where B = σ(b(s) | 0 ≤ s < 1). Note that,
formally, v1(ξ, s) = τ(X)−1

s ∂xX(s, x, w)(ξ) satisfies the following SDE:

dv1(ξ, s) = A(X)s(v1(ξ, s), dβ(s))− 1

2
Ric(X)s(v1(ξ, s))(2.18)

− 1

t− s
∇2E(X)s(v1(ξ, s))− 1

2
∇2 log θ(X)s(v1(ξ, s))

v1(ξ, 0) = ξ,

where A denotes the shape operator of M in RN . The non-explosion property of X
implies that X(s, x, w) exists for all 0 < s < t. However, in noncompact cases, we cannot
expect the existence of a differentiable version of X(s, x, w) with respect to x even if
the coefficient of SDE is smooth and conservative. See [33] and references in it. In the
case of compact manifolds, there is a version such that for almost all w and all s > 0,
x → X(s, x, w) is a diffeomorphism and (2.18) holds. See [16], [4]. Roughly speaking,
(2.12) can be obtained by taking the conditional expectation of v1(ξ, s) with respect to
B by noting the independence of B and β. Similarly (2.10) can be proved by taking
the conditional expectation with respect to B in the Wiener functional representation
formula for ∇xh(t, o, x) which is obtained by taking the derivative of (2.6) with the help
of (2.18) and (2.12) as in [16], [4], [13].

However A(X)s may not be integrable function on the Wiener space and so we should
be careful to take derivative and the conditional expectation. Hence, we need consider
the approximate function of h(t, o, x) to differentiate itself. Let

hε,L(t, o, x)(2.19)

= E

[
exp

(∫ t−ε

0

V (X(s, x, w)) ds

)
ϕL

(‖d(o,X(·, x, w))2‖2m
κ,m,t−ε

)]
.

Here ϕL is a smooth cut-off function whose support is in [−L2, L2] and ϕ(u) = 1 for
u ∈ [−L,L] and all derivatives of ϕL goes to 0 uniformly on R when L → ∞. ‖ ‖κ,m,t is
given by

‖γ‖2m
κ,m,t = ‖γ‖2m

L2m([0,t]) +

∫ t

0

∫ t

0

|γ(u)− γ(s)|2m

|u− s|1+2mκ
duds,

where 0 < κ < 1/2, 2κm > 1 and m is an integer. Note that the norm ‖ ‖κ,m,t can
be defined for positive real number m satisfying the above relation on m and κ. Then
limε→0,L→∞ hε,L(t, o, x) = h(t, o, x). In (2.19), we may assume X(s, x, w) is smooth with
respect to x because we may assume X(·, x, w) moves in a compact subset thanks to the
existence of the cut-off function. Thus we can differentiate both sides of (2.19) and we
may assume that the equation (2.18) is valid up to the exit time of X(s, x, w) from a
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compact set. Consequently, we have

(∇hε,N(t, o, x), ξ)(2.20)

= E

[(∫ t−ε

0

(
∇V (X)s, v1(ξ, s)

)
ds

)
exp

(∫ t−ε

0

V (X(s, x, w)) ds

)

×ϕL

(‖d(o,X(·, x, w))2‖2m
κ,m,t−ε

)
]

+E

[
exp

(∫ t−ε

0

V (X(s, x, w)) ds

)
ϕ′L(‖d(o,X(·, x, w))2‖2m

κ,m,t−ε)Φ1(ξ, w)

]
,

where

Φ1(ξ, w) = 4m

∫ t−ε

0

d(o,X(s, x, w))4m−1
(
∇d(o,X)s, v1(ξ, s)

)
ds(2.21)

+4m

∫ t−ε

0

∫ t−ε

0

{d(o,X(u, x, w))2 − d(o,X(s, x, w))2}2m−1

|u− s|1+2mκ

·
{(
∇E(X)u, v1(ξ, u)

)
−

(
∇E(X)s, v1(ξ, s)

)}
duds.

If X(s, x, w) moves in a compact subset in (2.20), (2.21), A(X)s are bounded and so it
holds that for all 1 ≤ p < ∞ and 0 < l < ∞,

(2.22) E

[
sup

0≤s≤t−ε
‖v1(ξ, s)‖p : sup

0≤s≤t−ε
d(o,X(s, x, w)) < l

]
< ∞.

Therefore sup0≤s≤t−ε ‖v1(ξ, s)‖p is integrable in (2.20) and (2.21) for all 1 ≤ p < ∞. Since

Φ1(ξ, w) ≤ 4m‖d(o,X(·, x, w))‖4m−1
L4m−1([0,t−ε]) sup

0≤s≤t−ε
‖v1(ξ, s)‖

+4Cm‖d(o,X(·, x, w))2‖2m
2mκ/(2m−1),m−(1/2),t−ε sup

0≤s≤t−ε
‖v1(ξ, s)‖,

we can take conditional expectation with respect to B in (2.20). Then we can replace
v1(ξ, s) by v̄1(ξ, s) in (2.20) which we call equation (2.20)’. If the boundedness of v̄1 can
be proved, by taking the limit ε → 0, L → ∞, we obtain (2.10). By taking derivative
with respect to x in (2.20)’, (2.11) follows from the same argument as (2.10) noting that

(2.23)
(
∇xT (X)s, ξ

)
=

(
∇T (X)s, v1(ξ, s)

)
+

∫ s

0

R(X)u

(
v1(ξ, u), ◦dX(u)

)
T (X)s.

Now we need only to prove the boundedness of v̄i. Let

(2.24) C(X)s = ∇2E(X)s − αITxM ,

where α is a positive number such that 1
2

< α < 1+ε
2

. Note that C(X)s is a positive
symmetric operator. Let N(X)s be the TxM

∗ ⊗ TxM -valued process such that

Ṅ(X)s =

{
−C(X)s

t− s
− 1

2
Ric(X)s −

1

2
∇2 log θ(X)s

}
N(X)s(2.25)

N(X)0 = I(2.26)
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Then v̄1(ξ, s) = (t− s)αN(X)sξ. Also explicitly, we have

v̄2(ξ1, ξ2, s) = (t− s)α

∫ s

0

(t− u)−αN(X)sN(X)−1
u

[
− 1

t− u
∇3E(X)u(v̄1(ξ1, u), v̄1(ξ2, u))

−1

2
∇Ric(X)u(v̄1(ξ1, u), v̄1(ξ2, u))− 1

2
∇3 log θ(X)u(v̄1(ξ1, u), v̄1(ξ2, u))

+

∫ u

0

R(X)τ

(
v̄1(ξ2, τ), ◦dX(τ)

){− 1

t− u
∇2E(X)u −

1

2
Ric(X)u

−1

2
∇2 log θ(X)u

}
v̄1(ξ1, u)

]
du.

Since sup0≤u≤s≤t ‖N(X)sN(X)−1
u ‖ ≤ C (see Lemma 3.2 in [1]), ‖v̄1(ξ, s)‖ ≤ C(t − s)α.

Also by the boundedness of the Riemannian curvature tensor and ∇2E, we can complete
the proof of the uniform boundedness of Lp-norm of v̄2. ¤

We introduce a function ϕa(t) for a ≥ 0 such that

ϕa(t) =

{
e
√

at−1√
a

if a > 0

t if a = 0

The following are our main estimates.

Theorem 2.4. We assume that

(2.27) −a := inf
x,π

Kπ(x) > −∞

and a ≥ 0. We denote

Rn(t) = sup
{
‖∇kR(x)‖

∣∣∣ d(o, x) = t, 0 ≤ k ≤ n
}

.(2.28)

(1) Further we assume that

δ :=

∫ ∞

0

ϕa(t)R0(t)dt < 1.(2.29)

Then for any x ∈ M ,

(2.30)
1− δ

1 + δ
ITxM ≤ ∇2

x

{
d(o, x)2

2

}
≤ 1 + δ

1− δ
ITxM .

(2) Assume (2.29) and

(2.31)

∫ ∞

0

ϕa(t)t
2R2(t)dt < ∞.

Then it holds that 0 < inf θ(x) ≤ sup θ(x) < ∞, sup |∇nθ(x)| < ∞ for n = 1, 2 and

(2.32) sup
x

∥∥∥∥∇3
x

{
d(o, x)2

2

}∥∥∥∥ < ∞.
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(3) Assume the same assumptions as in (2). Set

(2.33) f(t, x) = (2πt)d/2 exp

(
d(o, x)2

2t

)
p(t, o, x).

Then for fixed 0 < T < ∞, there exist positive constants C1(T ) < C2(T ) such that for all
x ∈ M , 0 < t ≤ T ,

(2.34) C1(T ) ≤ f(t, x) ≤ C2(T ).

(4) Assume (2.29) with δ < 1/3 and
∫ ∞

0

ϕa(t)t
4R4(t)dt < ∞.(2.35)

Then there exists positive constant C3(T ) such that

(2.36) sup
0<t≤T,x∈M

‖∇k
xf(t, x)‖ ≤ C3(T ),

where k = 1, 2.

When a = 0, that is, M is a nonnegative curvature manifold, by the results in [7, 24],
the lower bound estimate in (2.34) holds with C1(T ) = 1. Note that infx,π Kπ(x) ≤ 0
because M is noncompact. If M is a nonpositive curvature manifold, all points of M are
poles and we can prove the following.

Corollary 2.5. Assume

(2.37) −∞ < −a := inf
x,π

Kπ(x) ≤ sup
x,π

Kπ(x) ≤ 0.

Let us fix a point p ∈ M and set

(2.38) Sn(t) = sup
{
‖∇kR(x)‖

∣∣∣ d(p, x) ≥ t, 0 ≤ k ≤ n
}

.

(1) Further we assume that
∫ ∞

0

ϕa(t)S0(t)dt < ∞.(2.39)

Then there exists a positive constant C such that for any x, y ∈ M ,

(2.40) ITyM ≤ ∇2
y

{
d(x, y)2

2

}
≤ C · ITyM .

(2) Assume

(2.41)

∫ ∞

0

ϕa(t)t
2S2(t)dt < ∞.

Then it holds that 0 < infx,y θx(y) ≤ supx,y θx(y) < ∞, supx,y |∇n
yθx(y)| < ∞ (n = 1, 2)

and

sup
x,y

∥∥∥∥∇3
y

{
d(x, y)2

2

}∥∥∥∥ < ∞.

Here θx(y) denotes the Ruse’s invariant in the case where the pole is x.
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(3) Assume the same assumptions as in (2). Set

(2.42) f(t, x, y) = (2πt)d/2 exp

(
d(x, y)2

2t

)
p(t, x, y).

Then for fixed 0 < T < ∞, there exists a positive constant D1(T ) < D2(T ) such that for
all x, y ∈ M , 0 < t ≤ T ,

(2.43) D1(T ) ≤ f(t, x, y) ≤ D2(T ).

(4) Assume
∫ ∞

0

ϕa(t)t
4S4(t)dt < ∞.(2.44)

Then there exists positive constants D3(T ) such that

(2.45) sup
0<t≤T,x,y∈M

‖∇k
yf(t, x, y)‖ ≤ D3(T ),

where k = 1, 2.

In the above corollary, if a = 0, then M is a Euclidean space and all estimates are
trivial. Note that assumptions (2.39), (2.41), (2.44) does not depend on the choice of p.
Now we prove the above theorem and the corollary.

Proof of Theorem 2.4. Below, we proceed as if a > 0. When a = 0, the proof works by
replacing a by a positive number ε first and taking the limit ε → 0. Take ξ ∈ ToM and let
lξ(s) = expo(sξ). For v1, v2 ∈ ToM , let J(s, v1, v2) be the solution to the following Jacobi
equation:

(2.46) J̈(s) = −R(lξ)s(J(s), ξ)(ξ), J(0) = v1, J̇(0) = v2.

J(s, 0, v) has the following explicit form:

(2.47) J(s, 0, v) = s · τ(lξ)
−1
s

(
(d expo)sξ (v)

)
.

Here we use the identification Tsξ(ToM) = ToM . By the definition, we have θ(lξ(1)) =
det J(1, 0, ·) and we see

(2.48) ∇2E(lξ)1 (J(1, 0, v), J(1, 0, v)) =
(
J̇(1, 0, v), J(1, 0, v)

)
.

Thus if v → J(s, 0, v) is invertible, then ∇2E(lξ)1 = J̇(1, 0, J−1(1, 0, ·)). Hence, we give

estimates on J, J̇ . Let U(s) = J(s, 0, v) and V (s) = U̇(s)√
a‖ξ‖ . Then ρ(s) = ‖U(s)‖2+‖V (s)‖2

satisfies

ρ̇(s) = 2
√

a‖ξ‖
(

(U(s), V (s))−
(

a−1R(lξ)t(U(s),
ξ

‖ξ‖)
ξ

‖ξ‖ , V (s)

))
.(2.49)

Since T (X,Z) = (R(X,Y )Y, Z) is a symmetric form of X,Z, (R(X,Y )Y, Z) ≥ −a‖X‖‖Z‖
holds when ‖Y ‖ = 1. Therefore, we have ρ̇(s) ≤ 2

√
a‖ξ‖ρ(t) and

(2.50) max{‖U(s)‖, ‖V (s)‖} ≤
√

ρ(s) ≤ exp(
√

a‖ξ‖s)√
a‖ξ‖ ‖v‖.
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Also by the definition of U(s), we have

(2.51) ‖J(s, 0, v)‖ = ‖U(s)‖ =
√

a‖ξ‖
∫ s

0

‖V (u)‖du ≤ exp(
√

a‖ξ‖s)− 1√
a‖ξ‖ ‖v‖.

Moreover by the definition, we have

‖J̇(s, 0, v)− v‖ ≤
∫ s

0

‖R(lξ)s(U(s), ξ)(ξ)‖ds(2.52)

≤
∫ s

0

R0(‖ξ‖u)‖ξ‖2 exp(
√

a‖ξ‖u)− 1√
a‖ξ‖ ‖v‖du

≤
∫ ‖ξ‖s

0

R0(u)ϕa(u)du‖v‖.

This implies (1− δ)‖v‖ ≤ ‖J̇(s, 0, ·)‖ ≤ (1 + δ)‖v‖. By this, we have for all s > 0,

‖J(s, 0, v)− sv‖ ≤ s

∫ ∞

0

R0(u)ϕa(u)du‖v‖(2.53)

and ‖J(s, 0, v)− sv‖ ≤ sδ‖v‖. This implies {s(1 + δ)}−1 ≤ ‖J(s, 0, ·)−1‖ ≤ {s(1− δ)}−1.
These prove (2.30). Since θ(lξ(1)) = det J(1, 0, ·), θ(·) is bounded from below and above by
positive constants. Next we prove the bound on∇θ,∇2θ in (2). To this end, differentiating
the Jacobi equation for U(s) with respect to ξ, we get an equation for U1(s) := ∂ξU(s)
such that

Ü1(s)(·) = −R(lξ)s(U1(s)(·), ξ)(ξ) + W (s, v),(2.54)

where U1(0) = U̇1(0) = 0 and

W (s, v) = −∇R(lξ)s(J(s, 0, ·), U(s), ξ)(ξ)

−
(∫ s

0

R(lξ)u(J(u, 0, ·), ξ)du

)
R(lξ)s(U(s), ξ)(ξ)

−R(lξ)(U(s), ·)(ξ)−R(lξ)(U(s), ξ)(·).
We represent U1(s) by the method of constant variation. To this end, for t, τ ≥ 0, let

Kτ (t) =

(
0 I

−R(lξ)t+τ (·, ξ)ξ 0

)
.(2.55)

Let us consider the following ODE:

Q̇(t) = Kτ (t)Q(t)(2.56)

Q(0) = I.(2.57)

We denote the solution by Qτ (t). Noting that Q0(t)Q
−1
0 (s) = Qs(t− s) for t ≥ s, we have

(
U1(s)

U̇1(s)

)
= Q0(t)

∫ t

0

Q0(s)
−1

(
0

W (s, v)

)
ds(2.58)

=

∫ t

0

Qs(t− s)

(
0

W (s, v)

)
ds
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We denote the first component of Qs(t)
t(0, v) by Js(t, 0, v). Then, by the same method

as in the case of J(s, 0, v), we have

(2.59) ‖Js(t, 0, v)‖ ≤ Ct‖v‖.
Note that there exists a constant C which is independent of ξ such that

∫ 1

0
|W (s, v)|ds ≤

C‖v‖. For example,
∫ 1

0

∥∥∥∇R(lξ)s(J(s, 0, ·), U(s), ξ)(ξ)
∥∥∥ ds ≤

∫ 1

0

R1(s‖ξ‖) · Cs · e
√

a‖ξ‖s − 1√
a

‖ξ‖ds(2.60)

=

∫ ‖ξ‖

0

sR1(s)ϕa(s)ds.

Other terms are also estimated in similar way. This implies sup0≤s≤1 ‖U1(s)‖ ≤ C‖v‖,
where C does not depend on ξ. Noting U1(s) = ∇J(s, 0, v)(J(s, 0, )), we get for any

0 ≤ s ≤ 1, supξ ‖∇J(s, 0, v)‖ < ∞. This implies ∇θ is bounded. By the calculation
similar to this, we obtain the boundedness of ∇2θ under (2.31). We prove (2.32). Noting

∂ξ∇2E(lξ)1 = ∇3E(lξ)1(·, ·, J(1, 0, ·)),
we need only to prove supξ ‖∂ξ

(
J̇(1, 0, J−1(1, 0, ·))

)
‖ < ∞. This follows from the formula

for U̇1 and estimates on W (s, v), J̇s(t − s, 0, v). The estimate on J̇s(t − s, 0, v) is similar
to that of J̇(t− s, 0, v). We prove (3). If (2.29) holds with δ < 1/3, then (A2) holds. By
(2) and the explicit expression of V in terms of θ, (3) is obvious. For the proof (2.36),
it suffices to prove that ∇3θ,∇4θ are bounded. To this end, it is sufficient to prove that
Ui(s) = ∂i

ξU(s) are matrices valued functions for i = 3, 4 satisfying that

(2.61) ‖∂i
ξU(s)‖ ≤ C ·min

{
es
√

a‖ξ‖ − 1√
a‖ξ‖ , s

}
‖v‖.

The proof is essentially the same as the estimate on U1 by the assumption. So we omit
it. ¤

Proof of Corollary 2.5 Since M is negatively curved manifold, ∇2
y

{
d(x,y)2

2

}
≥ ITyM and

‖J(1, 0, v)‖ ≥ ‖v‖. See, for example, Corollary 4.6.1 and Theorem 4.6.1 in [23]. Therefore,
θx(y) ≥ 1. By using these estimates, the proof in Theorem 2.4 works. We omit the details.

¤
Let Px,y(M) = C([0, 1] → M | γ(0) = x, γ(1) = y) and we denote the pinned Brownian

motion measure by νx,y. On Px,y(M), a Dirichlet form is naturally defined by the H-
derivative D on Px,y(M). See [1]. Let FC∞

b be the set of all smooth cylindrical functions
on Px,y(M). The following inequality is called a logarithmic Sobolev inequality(=LSI):
There exists C > 0 such that for all F ∈ FC∞

b

(2.62)

∫

Px,y(M)

F 2(γ) log
(
F 2(γ)/‖F‖2

L2(νx,y)

)
dνx,y(γ) ≤ C

∫

Px,y(M)

|DF (γ)|2dνx,y(γ).

When M is a Euclidean space, (2.62) holds with C = 2 by Gross’ result [17]. Driver and
Lohrenz [8] proved LSI on loop group for the heat kernel measure which is equivalent to
the pinned Brownian motion measure [3, 9]. On the other hand, Eberle [10] proved that
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Poincaré’s inequality does not hold on a loop space with pinned measure over certain
simply connected compact Riemannian manifold. Therefore, LSI does not hold in such a
case. But the validity of LSI for pinned measure is still an open problem generally. In
the case of Riemannian manifolds with poles, we can prove the following.

Theorem 2.6. (1) Assume that (2.27), (2.29) with δ < 1/3 and (2.35) hold. Then
(2.62) holds in the case where x = o and for all y. The constant C depends only on a and
δ.
(2) Assume (2.37), (2.39), (2.41) and (2.44). Then (2.62) holds for any x and y.

Proof. This follows from Theorem 3.6 in [1] immediately. ¤

3. Rotationally symmetric case

In this section, we consider rotationally symmetric Riemannian manifolds. We fix an
orthonormal frame {ei}d

i=1 ⊂ ToM and identify ToM with Rd. Let Φ : R+×Sd → ToM be
the natural map, Φ(r, ω) = rω, where r = d(o, x), x = exp(rω), (r ≥ 0, ω ∈ Sd−1), Sd−1

is the unit sphere centered at the origin in ToM . g is called a rotationally symmetric if
the pull back of g by Φ can be expressed as

(3.1) (Φ · exp)∗g = dr2 + f(r)2dω2,

dω2 denotes the standard Riemannian metric on the sphere. We introduce ϕ(r) by f(r) =
reϕ(r). Then by the definition of θ,

Lemma 3.1.

(3.2) θ(x) = e(d−1)ϕ(r).

Under the assumption of the rotationally symmetry, there exists a smooth function
of r, p(t, r) such that p(t, o, x) = p(t, d(o, x)). Note that f is a C∞ function on [0,∞)
satisfying f(0) = 0, f ′(0) = 1 ( [19]). Since f ′(0) = 1, note that ϕ(0) = 0. Let K(r) be
the radial curvature at x. Then the following Jacobi equation holds (see page 30 in [19]).

(3.3) f ′′(r) = −K(r)f(r).

In Section 2, we have given estimates on heat kernels under assumptions on the Riemann-
ian curvature. In this section, we will give similar type estimates on heat kernels in terms
of ϕ(r). In rotationally symmetric case, we can go further than general cases. To explain
it, let us consider the hyperbolic space with constant negative curvature. In that case, it
holds that for any fixed T > 0,

(3.4) sup
0<t≤T,x∈M

{‖∇x log f(t, x)‖, ‖∇2
x log f(t, x)‖} < ∞

where f(t, x) is defined in (2.33) although infx f(t, x) = 0 which is excluded under the

assumption (2.41). Also supx

∥∥∥∇2
x

{
d(o,x)2

2

}∥∥∥ = ∞. In rotationally symmetric case, we

can prove (3.4) under an assumption (Assumption 3.2) which is valid for hyperbolic space.
Of course, the similar estimate should hold without rotationally symmetry under suitable
assumptions. We study this in future papers. We use the following assumption on ϕ.

Assumption 3.2. The k-times derivative ϕ(k)(r) is a bounded function on [0,∞) for
all k ≥ 1. Moreover there exists a C∞ function φ on [0,∞) such that ϕ(r) = φ(r2).
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Remark 3.3. (1) When M is the hyperbolic space with sectional curvature −a, then

K(t) ≡ −a and f(r) = sinh
√

ar√
a

. Thus

(3.5) ϕa(r) = log
sinh

√
ar√

ar
,

where we write subscript a to denote the dependence of the curvature. Since the following
Taylor expansion holds for all r ≥ 0,

sinh
√

ar√
ar

= 1 +
∞∑

n=1

(ar)n

(2n + 1)!
,

ϕa(
√

r) is a smooth function on [0,∞). Also

(3.6) ϕ′a(r) =
√

a

(
coth(

√
ar)− 1√

ar

)
.

It is easy to see that this function and its all derivatives are bounded functions on [0,∞).
Therefore Assumption 3.2 holds for hyperbolic spaces.

(2) By the Jacobi equation, we have

K(r) = −
(

ϕ′(r)2 + ϕ′′(r) + 2
ϕ′(r)

r

)
,(3.7)

= − (
4r2φ′(r2)2 + 6φ′(r2) + 4r2φ′′(r2)

)
.

Therefore, by the lemma below, under Assumption 3.2, it holds that

sup
r>0

|K(r)| < ∞.

Lemma 3.4. Under Assumption 3.2, for any k ≥ 1,

(3.8) sup
r≥0

rk/2|φ(k)(r)| < ∞.

Proof. We prove this by induction on k. Because ϕ(r) = φ(r2), ϕ′(r) = 2rφ′(r2)
holds. Since ϕ′ is a bounded function, we have r1/2φ′(r) is also bounded. We assume that
(3.8) holds up to k. Taking (k + 1)-times derivative, we have

ϕ(k+1)(r) = (2r)k+1φ(k+1)(r2) + Gk(r).

Here Gk(r) is the sum of the function rmφ(l)(r2), where nonnegative integers m and l
satisfy that m < l < k + 1. Hence by the assumption of induction, Gk(r) is a bounded
function on [0,∞). Noting that ϕ(k+1) is also bounded, we see that induction is completed.

¤

The following follows from a formula in page 30 in [19].

Lemma 3.5. Let F be a C2-function on R. Then we have

(3.9) ∇2
xF (r) = F ′(r)

(
1

r
+ ϕ′(r)

)
P⊥

x + F ′′(r)Px. (r 6= 0),

where Px denotes the projection operator onto the 1-dimensional subspace in TxM spanned
by vx ∈ TxM where expx vx = o and P⊥

x denotes the orthogonal projection.
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When M is rotationally symmetric, Elworthy and Truman’s formula reads the follow-
ing simple one.

Lemma 3.6. Assume Assumption 3.2. Then V in Theorem 2.1 is given by V (x) =
Ṽ (r2), where

Ṽ (z2) = −d− 1

4

(
ϕ′′(z) + (d− 1)

ϕ′(z)

z
+

d− 1

2
ϕ′(z)2

)
.(3.10)

Consequently, we have the following representation of h(t, r) = h(t, o, x) using the pinned
standard Brownian motion {Ws}0≤s≤t on Rd with W0 = Wt = 0:

(3.11) h(t, r) = E

[
exp

(∫ t

0

Ṽ (|Ws +
t− s

t
rη|2)ds

)]
,

where η denotes a unit vector in Rd and the expectation is independent of η. Moreover,
Ṽ is a smooth function and Ṽ (z), Ṽ ′(z)z1/2, Ṽ ′′(z)z are bounded functions on [0,∞).

Proof. (3.11) follows from Theorem 2.1. Boundedness of Ṽ and its derivatives follows
from Lemma 3.4. ¤

Comparing to general cases, we do not encounter with the differentiability problem
with respect to the initial point of the solution of SDE and we obtain

Theorem 3.7. Assume Assumption 3.2. We have the following explicit expression
and an estimate for the Hessian of the logarithm of the heat kernel.

∇2
x log p(t, o, x) = −1

t

(
I + rϕ′(r)P⊥

x

)−
(

d− 1

2
ϕ′′(r)− ∂2

∂r2
log h(t, r)

)
Px

−
(

1

r
+ ϕ′(r)

)(
d− 1

2
ϕ′(r)− ∂

∂r
log h(t, r)

)
P⊥

x

and for any T > 0,

sup
x∈M,0<t≤T

∥∥∥∇x log p(t, o, x)− vx

t

∥∥∥ < ∞,(3.12)

sup
x∈M,0<t≤T

∥∥∥∥∇2
x log p(t, o, x) +

1

t
(I + rϕ′(r)P⊥

x )

∥∥∥∥ < ∞,(3.13)

where vx is defined in Lemma 3.5 (1). The estimates in (3.12) and (3.13) depends only
on ϕ and T .

Proof. This follows from Lemma 3.5 and Lemma 3.6. ¤

The following theorem also follows from Theorem 3.6 in [1] and Theorem 3.7.

Theorem 3.8. Assume Assumption 3.2 and infr≥0 rϕ′(r) > −1
2
, supr≥0 |rϕ′(r)| < ∞.

Then (2.62) holds in the case where x = o and any y ∈ M .



15

References

[1] S. Aida, Logarithmic derivatives of heat kernels and logarithmic Sobolev inequalities with unbounded
diffusion coefficients on loop spaces, J. Funct. Anal. 174 (2000) No.2 430–477.

[2] S. Aida, Precise Gaussian lower bound on heat kernels, “Stochastics in finite and infinite dimensions”,
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