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1. Introduction

Let (M, g) be a compact Riemannian manifold of dimension n. The loop space Lx(M) :=
C([0, 1] → M ; γ(0) = γ(1) = x) is equipped with the pinned Brownian motion measure νx

which is defined by the Levi Civita Laplacian. The gradient operator D on Lx(M) is defined
through a Riemannian connection ∇ on (M, g) as follows: for F (γ) = f(γ(t1), . . . , γ(tm)) ∈
FC∞b (Lx(M)),

DF (γ)t =
m∑

i=1

τ(γ)−1
ti

(∇(i)f)(γ(t1), . . . , γ(ti), . . . , γ(tm))(t ∧ ti − tti), (1.1)

where FC∞b (Lx(M)) denotes the set of the smooth cylindrical functions and ∇(i) denotes
the covariant derivative with respect to the i−th variable. Also τ(γ)t : TxM → Tγ(t)M
is the stochastic parallel translation along γ. Among Riemannian connections, we restrict
ourselves to the torsion skew symmetric (=TSS in short) connection, Namely the torsion T
must satisfy that

g(T (X, Y ), Y ) = 0.

for any vector fields X, Y . Then for the associated derivative D on Lx(M) is a closable
operator on L2(Lx(M), νx). This is an immediate consequence of the integration by parts
formula [D]. We denote the closure by the same notation D and the domain of the smallest
closed extension by D. Next we consider the topology on Lx(M). Let us assume that M is
isometrically embedded into the Euclidean space Rd. As is well-known, νx(Wα,2m∩Lx(M)) =
1. Here

Wα,2m =

{
γ ∈ L2m([0, 1] → Rd)

∣∣∣∣∣ ‖γ‖
2m
α,2m = ‖γ‖2m

L2m

+
∫ 1

0

∫ 1

0

|γ(t)− γ(s)|2m

|t− s|1+2mα
dtds < ∞

}
,

where we assume that 0 < α < 1/2 m ∈ N and 2αm > 1. We consider Lx(M) as the
topological subspace of Wα,2m.

The following is our main theorem.
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Theorem 1.1. Let F ∈ D and O be an open connected set in Lx(M). If

DF (γ) = 0 νx − a.s. γ ∈ O,

then
F (γ) = constant νx − a.s.γ ∈ O.

Remark 1.2. The theorem holds for the topology of the uniform convergence topology.

In the previous paper [A2], we proved the theorem for the derivative coming from Levi-
Civita connection. In the case of Levi-Civita, the proof is based on a property of a certain
SDE which is called a gradient Brownian system. In general cases, we use special SDEs which
are corresponding to gradient Brownian system and found by [ELL]. In the next section, we
recall the Le Jan-Watanabe connection and we explain how to get SDEs using the idea of the
existence of the Narasimhan and Ramanan’s universal connection which are due to [ELL].

2. Le Jan-Watanabe connection, Universal Connection and ELL’s SDE

At first, we recall the Le Jan-Watanabe connection according to [ELL]. Let (M, g) be a
compact Riemannian manifold of dimension d. We consider a bundle homomorphism from
the trivial product bundle π : M × RN → M to the tangent bundle π : TM → M ,

σ : M × RN → TM (2.1)

We assume that
(i) the map σ(x) : RN → TxM is surjective.
(ii) the map σ(x) : kerσ(x)⊥ → TxM is isometry.

Cleary it holds that
σ(x)σ∗(x) = idTxM

For given σ, we shall consider an SDE such that

dX(t, x, w) = σ(X(t, x, w)) ◦ dw(t) (2.2)

X(0, x, w) = x ∈ M (2.3)

Then by [ELL],

Theorem 2.1. Let us set for Z ∈ X(M)

∇Z(x) = σ(x)d (σ(x)∗Z(x)) (2.4)

Then the followings hold.
(1) ∇ defines a Riemannian connection satisfying that

∇ξσ(x)(v) = 0 (2.5)

for any ξ ∈ ker⊥ σ(x) and v ∈ Rm.
(2) If the connection ∇ is TSS, then the diffusion measure which is defined by X(t) is the

same as the Brownian motion measure coming from the Levi-Civita Laplacian.
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The connection associated with the SDE (2.2) in the above theorem is called a Le Jan-
Watanabe connection. Next we recall the universal connection due to Narasimhan and Ra-
manan [N-R]. Let VN,n be the Stiefel manifold which consists of orthonormal n−frames in
the Euclidean space RN . Note that using unit vector in RN ,

ei =




0
...

i 1
...
0




(2.6)

for [v] = (v1, . . . , vn) ∈ VN,n there exits an unique A ∈ M(N, n;R) (=the sets of all real
(N, n)-matrices) such that

(v1, . . . , vn) = (e1, . . . , eN )A (2.7)

So we have the inclusion map ρ : VN,n → M(N, n;R). Also we denote by GN,n the
Grassmann manifold, the space of n−dimensional subspaces of RN . Let us consider the
principal bundle with structure group O(n), π : VN,n → GN,n. Then we have a connection
1−form w = ρ∗dρ on VN,n.

The following is due to Narasimhan and Ramanan:

Theorem 2.2. Let us put N = (n + 1)(2n + 1)n3. Let α be a connection form on the total
space O(M) of the orthonormal frame bundle π : O(M) → M . Then there exists a bundle
homomorphism Φ : O(M) → VN,n such that

Φ∗w = α (2.8)

For any covariant derivative ∇ whose connection is a Riemannian connection on (M, g), we
can find an SDE whose Le Jan-Watanabe connection is∇. This is also due to Elworthy, Le Jan
and X-M. Li. Let us explain how to construct σ using Φ. Let us put N = (n+1)(2n+1)n3 as
in the above theorem. Let U be an open set in M and take a smooth section s : U → O(M).
We denote s(x) = (e1(x), . . . , en(x)). We consider the following (N, n)−matrix for x ∈ U :

A(x) = ρ ◦ Φ ◦ s(x) (2.9)

Using A(x), we define σ(x) : RN → TxM ,

σ(x)




ξ1
...

ξN


 = (e1(x), . . . , en(x)) tA(x)




ξ1
...

ξN


 . (2.10)

Since Φ is a bundle homomorphism, it is easy to check that this definition is well-defined and
this is a desired one.
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Remark 2.3. Let us consider the Levi-Civita case. We have the isometric embedding ι :
M ↪→ Rd. This ι naturally induces a bundle homomorphism Φ : O(M) → Vd,n. σ which is
defined through the relation (2.10) is just the projection operator P (x) : Rd → TxM . This is
nothing but the gradient Brownian system.

Below we denote the adjoint connection of ∇ by ∇̂ whose definition is given by

∇̂XY = ∇XY − T (X, Y ).

Also we denote the parallel translation of ∇̂ by τ̂(γ)t : TxM → Tγ(t)M . The following lemma
is almost trivial.

Lemma 2.4.
(1) ∇ is TSS ⇐⇒ ∇̂ is a metric connection.
(2) If ∇ is Levi-Civita, then ∇ = ∇̂.

To state a theorem due to [ELL], we introduce more notations. Also we fix a metric
connection ∇̃ on the bundle qx∈M kerσ(x) → M and denote the parallel translation by τ̃(γ)t :
kerσ(x) → kerσ(γ(t)). So we have two vector bundles π : TM → M , π : qx∈M kerσ(x) → M

and three metric connections over them, ∇, ∇̂, ∇̃. Let us denote the curvature tensors by
R, R̂, R̃ respectively. We denote the Ricci curvatures in the similar way. For a section s of
our vector bundles, we denote the trivialization by

s(γ)t = τ(γ)−1
t s(γ(t)) ∈ TxM

ˆ
s(γ)t = τ̂(γ)−1

t s(γ(t)) ∈ TxM

˜
s(γ)t = τ̃(γ)−1

t s(γ(t)) ∈ kerσ(x)

Theorem 2.5 (Elworthy, Le Jan, X-M. Li). Let us assume that ∇ is TSS.
(1) Then v̂(t) = τ̂(X)−1

t ∂xX(t, x, w) : TxM → TxM satisfies the following SDE.

dv̂(t) = ˆ∇σ(X)t(v̂(t), dβ(t))− 1
2

ˆRic(X)tv̂(t)dt

v̂(0) = id

where

β(t) =
∫ t

0

τ̃(X)−1
s {idRN − σ∗(X(s))σ(X(s))} dw(s)

(2) β(t) is a standard Brownian motion on kerσ(x) and X(t), β(t) are independent.

The proof of Theorem 1.1 is carried out in almost similar way as in [A2] using Theorem 2.4.
In the case of Levi-Civita, since the adjoint connection is the same connection, the calculation
is more easy. We give the sketch of the proof of Theorem 1.1 in the next section.
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3. Proof of main theorem

The solution X(t, x, w) has the regularity property as in Theorem 2.12 in [A2]. Let us
denote

Sx =
{
w ∈ WN

0 | X(1, x, w) = x
}

.

We denote the H−derivative along Sx by DS and the normalized probability measure of
δx(X(1, x, w))dµ(w) by dµx. Let us denote by D(Sx) the domain of the Dirichlet form which
is the closure of the pre Dirichlet form

ES(F, F ) =
∫

Sx

|DSF (w)|2dµx

with the pre domain FC∞b (WN
0 ). (Precisely the quotient space by the identification that

F ∼ G ⇔ F (w) = G(w) µx − a.s.w.) Actually it is proved in [A1] that the selfadjoint
extension is unique. Using Theorem 2.4, we get as in [AE]

Lemma 3.1. For any F ∈ D, F ◦ X(·, x, w) ∈ D(Sx) holds and there exists a constant C
which depends only on σ such that

∫

X−1(O)

|DS {F ◦X(·, x, w)} |2dµx ≤ C

∫

O

|DF (γ)|2dνx,

where
X−1(O) = {w ∈ Sx | X(·, x, w) ∈ O}.

X−1(O) is well-defined because of the quasi continuity of X. We can prove the above lemma
the same as [AE] after that ∇̂ is also a metric connection.

Theorem 1.1 follows from Lemma 3.1, the following theorem and the fact that the image
measure of µx by X(·, x, ·) is νx immediately.

Theorem 3.2. Let O be an open connected set in Lx(M). If F ∈ D(Sx) satisfies DSF (w) =
0 µx − a.s.w ∈ X−1(O), then

F (w) = constant. µx − a.s.w ∈ X−1(O)

We apply Kusuoka’s theorem to prove Theorem 3.2. Below (B,H, µ) denotes an abstract
Wiener space and we denote the H− derivative by the same notation D on Lx(M). For
further notation, we refer to [K]. Here we just recall the H−connectivity of U ⊂ B. U ⊂ B
is called an H−connected set if H(w) = {h ∈ H |w + h ∈ U} is a connected set in H for any
w ∈ U .

Theorem 3.3. Let U be an H−connected set in B. Let us consider the symmetric form EU

with the domain D(EU ) such that

D(EU ) =
{

u ∈ W 1(U, µ)
∣∣∣

∫

U

(|Du(w)|2H + |u(w)|2) dµ < ∞
}

,

EU (u, u) =
∫

U

|Du(w)|2Hdµ.
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Then EU is a Dirichlet form and the following property (P) holds:
(P) If {un}∞n=1 ⊂ D(EU ) satisfies that





supn ‖un‖L2(m) < ∞∫
U

undµ = 0
E(un, un) → 0

then
un → 0 in probability.

The property (P) is stronger than the irreducibility of the Dirichlet form. For example,
the unpredictability property holds under (P). See [M1,M2]. Actually we can prove (P) for
loop case. We will study this problem in the forthcoming paper.

It suffices to prove the following lemma to reduce the proof of Theorem 3.2 to Theorem 3.3.

Lemma 3.4. (1) For any open set O ∈ Lx(M), there exists a measurable subset UO ⊂ WN
0

and the measurable map Φ : UO → X−1(O), and positive constants C1, C2 such that if
F ∈ D(Sx), then F̂ = F |X−1(O) ◦ Φ ∈ D(EUO

) holds and

∫

UO

F̂ (w)dµ =
∫

X−1(O)

F (w)g(w)dµx (3.1)

∫

UO

|DF̂ |2dµ ≤ C1

∫

X−1(O)

|DSF (w)|2dµx (3.2)

where g satisfies that 0 < g(w) ≤ C2 µxa.s.w.
(2) If O is connected, then UO is H−connected.

In the proof of the above lemma, we need to calculate the derivative of the trivialization of
s(γ)t. Let us explain it briefly. In general, assume we are given a vector bundle π : E → M
with a metric and a Riemannian connection ∇E on it. Also we fix a Riemannian connection
∇ on TM → M. Then for a smooth section s : M → E and a semimartingale γ(t) (0 ≤ t ≤ 1)
on M starting at x ∈ M , we have the trivialization s(γ)u ∈ Ex using the stochastic parallel
translation along γ. This defines a map from the space of smooth based loop with the base
point x to Ex. The derivative which is defined the same as (1.1) using the parallel translation
τ which is coming from ∇ of s(γ)u can be calculated using the curvature tensor RE as follows:

Lemma 3.5.

(Ds(γ)t, h)H1 = ((∇Es)(γ)t, h(t)) +
{∫ t

0

RE(γ)u(h(u), ◦db(u))
}

s(γ)t, (3.3)

where b(u) denotes the stochastic development of γ(u) to TxM .

Note that in the above formula, RE(γ)u is the trivialization of the curvature tensor using
∇E and ∇ and they are in E ⊗ E∗ ⊗ TxM∗ ⊗ TxM∗.
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Proof. At first we assume that γ(t) is a C∞−curve and we will prove (3.3) replacing ◦db(u)
by ḃ(u) du. Let {γ(s, t)}0≤s,t≤1 be a smooth variation of γ(t), where γ(0, t) = γ(t) and
γ(s, 0) = γ(0, 0) = x for any s. Let us denote

v(t) =
∂

∂s
γ(s, t)

∣∣∣
s=0

= τ(γ)th(t) ∈ Tγ(t)M.

Let us denote the parallel translation along γ(s, ·) and γ(·, t) respectively by

τ{(s, t) → (s, t′)} : Eγ(s,t) → Eγ(s,t′)

τ{(s, t) → (s′, t)} : Eγ(s,t) → Eγ(s′,t).

Then we see that

T (s, t)ε := τ{(s, t + ε) → (s, t)} ◦ τ{(s + ε, t + ε) → (s, t + ε)}
◦ τ{(s + ε, t) → (s + ε, t + ε)} ◦ τ{(s, t) → (s + ε, t)}

= id|Eγ(s,t) − ε2RE(γ(s, t))(v(t),
∂

∂t
γ(0, t)) + M(s, t, ε3) : Eγ(s,t) → Eγ(s,t)

(3.4)

where there exists a constant C which is independent of (s, t) such that ‖M(s, t, ε3)‖ ≤ Cε3.
Next note that

s(γ(ε, ·))t − s(γ(0, ·))t = τ{(ε, t) → (ε, 0)}
(
s(γ(ε, t))− τ{(0, t) → (ε, t)}s(γ(0, t))

)

+
{

τ{(ε, t) → (ε, 0)} ◦ τ{(0, t) → (ε, t)} − τ{(0, t) → (0, 0)}
}

s(γ(0, t))

= I1(ε) + I2(ε).

The first term of (3.3) comes from

lim
ε→0

I1(ε)
ε

= τ(γ)−1
t ∇E

v(t)s(γ(t)).

We can rewrite I2

(
t
n

)
as follows

I2

(
t

n

)
=

n∑

k=1

τ(γ)−1
k
n t

(
id|E

γ(0, k
n

t)
− T

(
0,

k

n
t
)

1
n t

)
T̃ 1

n t

(k

n
t
)
s(γ(0, t)) (3.5)

where

T̃ 1
n t

(k

n
t
)

= τ
{( 1

n
t,

k

n
t
)
→

(
0,

k

n
t
)}

◦ τ
{( 1

n
t,

k

n
t
)
→

( 1
n

t,
k

n
t
)}

◦ τ
{

(0, t) →
( 1

n
t, t

)}
.

The equation (3.5) can be proved by the induction with respect to the number of the points
of the partition of [0, 1]. Making use of (3.4) and (3.5), we have

n

t
I2

(
1
n

t

)
=

n∑

k=1

τ(γ)−1
k
n t

t

n
RE

{
γ
(k

n
t
)}(

v
(k

n
t
)
, γ̇

(k

n
t
))

τ

{
(0, t) →

(
0,

k

n
t
)}

s(γ(0, t))

+ M̃

(
1
n

)
,
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where ‖M̃ (
1
n )

) ‖ ≤ C
n . Letting n →∞, n

t I2

(
t
n

)
tends to

∫ t

0

τ(γ)−1
s RE(γ(s))(v(s), γ̇(s))τ{(0, t) → (0, s)}s(γ(t)) ds.

This completes the proof in smooth case. We can get the formula (3.3) using the approxima-
tion of the Brownian curve by the smooth curve. Then (3.3) is valid replacing ḃ(v)dv by the
Stratonovich integral ◦db(v) which is the stochastic development of γ(t).

Proof of Lemma 3.4. We will use the notation in [A2]. We defined vector fields on WN
0 ,

Aξ(w) = Ṽξ(w)ϕ
(
ρ(ξ)θm(w)2/ε

)

in §3 in [A2] using the gradient Brownian system. Here we take ε to be sufficiently small.
We define Aξ(w) in general cases in the same way. Explicitly

Ṽξ(w)t =
∫ t

0

ˆ
σ(X)

∗
s(v̂

−1
s )∗v̂∗1

{∫ 1

0

v̂1v̂
−1
u (v̂−1

u )∗v̂∗1du

}−1

ds Vξ(X)1.

We denote the flow generated by Aξ(w) by Uξ(t, w) and set U(1, w) = UX(1,x,w)(1, w). U(1, w)
has the property that if w ∈ Sξ = {w ∈ WN

0 | X(1, x, w) = ξ} and for all t ∈ [0, 1],
φ

(
ρ(ξ)θm(Uξ(t, w))2/ε

)
= 0 holds, then Uξ(1, w) ∈ Sx. The existence of the flow can be

proved by the Cruzeiro’s theorem using the formula (3.6) below.
Using Lemma 3.5, we can calculate the H−derivative of v̂(t) as the functional of w(t) as

follows:

(Dv̂(t), h) = v̂t

∫ t

0

v̂−1
s

ˆ∇∇̂σ(X)s(ĥ(s))(v̂s, dβ(s))

+ v̂t

∫ t

0

v̂−1
s

∫ s

0

ˆ
R̂(X)u(ĥ(u), ◦dB̂(u))( ˆ∇σ(X)s(v̂s, dβs))

+ v̂t

∫ t

0

v̂−1
s

ˆ∇σ(X)s(v̂s,
˜

N(X)sḣ(s))ds

+ v̂t

∫ t

0

v̂−1
s ∇σ(X)s

(
v̂s,

{
˜∇̃N(X)s(h̄(s))

}
dβ(s)

)

+ v̂t

∫ t

0

v̂−1
s

ˆ∇σ(X)s

(
v̂s,

∫ s

0

˜
R̃(X)u(h̄(u), ◦dB(u))dβ(s)

)

− 1
2
v̂t

∫ t

0

v̂−1
s

ˆ∇̂Ric(X)s(ĥ(s))v̂sds

− 1
2
v̂t

∫ t

0

v̂−1
s

∫ s

0

ˆR(X)u(ĥ(u), ◦dB̂(u)) ˆRic(X)sv̂sds, (3.6)
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where

N(x) = idRN − σ∗(x)σ(x) : RN → kerσ(x)

h̄(t) = vt

∫ t

0

v−1
s σ(X)sḣ(s)ds

vt = τ(X)−1
t ∂xX(t, x, w)

ĥ(t) = v̂t

∫ t

0

v̂−1
s

ˆ
σ(X)sḣ(s)ds

B(t) =
∫ t

0

τ(X)−1
s σ(X(s, x, w)) ◦ dw(s)

B̂(t) =
∫ t

0

τ̂(X)−1
s σ(X(s, x, w)) ◦ dw(s).

One crucial point is that since ∇̂ is again a Riemannian connection, B̂(t) is again a standard
Brownian motion on TxM like B(t). This observation is important to check the assumption
of Cruzeiro’s theorem.

As in [A1], we can see that there exists a D∞−function C(w) and 0 < α < 1,

|D∗Aξ(w)| ≤ ρ(ξ)αC(w). (3.7)

Also note that (see Lemma 3.5 in [A2]) for w ∈ WN
0 with ρ(X(1, x, w))1/2 < 1

3 , we have

|P (U(1, w))DU(1, w)|H ≤ D(w)ρ(X(1, x, w))β + E. (3.8)

where D is a positive D∞−function and E is a constant. Define

C̃(ξ, w) = 1 + |(C + D) (Uξ(1, w))|2 +
∫ 1

0

∣∣∣∣
d

dt
(C + D)(Uξ(t, w))

∣∣∣∣
2

dt.

Using C̃(ξ, w), let us define for sufficiently large m > 0,

UO =

{
w ∈ WN

0

∣∣∣
{

Θ(w, X(1, x, w)) + C̃ (X(1, x, w), w)
}m

ρ (X(1, x, w)) <
ε

200

X(·, x, U(1, w)) ∈ O

}
.

Note that ε appears in the definition of Aξ. This is a variant of UO in §3 in [A2]. We refer
the definition of Θ to it. Let Φ(w) = U(1, w). We will prove (3.1).

∫

UO

F ◦ Φ(w)dµ =
∫

X−1(O)

F (w)f(w)dµx(w),
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where

f(w) ≤
∫

M

exp
(∫ 1

0

D∗Aξ(Uξ(−s, w))ds

)
χN(w)(ξ)dξ

and
N(w) =

{
ξ ∈ M

∣∣∣
(
Θ(Uξ(−1, w), ξ) + C̃(ξ, Uξ(−1, w))

)m

ρ(ξ) <
ε

200
,
}

.

This equation can be checked by the calculation as in the page 94 in [A1]. By the property
of N(w), we have 0 < ess.sup f(w) ≤ exp

(
( ε
200 )α

)
vol(M). This proves (3.1). (3.2) follows

from (3.1) and the estimate (3.8). H−connectivity of UO is proved by the way similar to
Corollary 4.7 in [A2]. In the course of the proof of (2), Lemma 2.13 in [A2] is important.
In the present case, taking σ∗(x) : TxM → RN instead of ι∗ : TxM → Rd, we see that the
conclusion of Lemma 2.13 holds. We refer to §4 in [A2] for the detail of the proof of (2).
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