
Topics in Mathematical Science (S.Aida)

1. Review of lecture on 12/3
Consider the following heat equation:
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u(0, x) = f(x)

Theorem 1 Assume
(A1) a(x), b(x) ∈ C∞(R)
(A2) There exist 0 < C1 < C2 < ∞ such that C1 ≤ a(x) ≤ C2 and |b(x)| ≤ C2 for all
x ∈ R.

Then
(1) For any bounded function f , there exists the unique solution u(t, x) to (∗).
(2) There exists a positive function p(t, x, y) (t > 0, x, y ∈ R) such that p(t, x, y) is a C∞

function of (t, x, y) and

u(t, x) =

∫

R
p(t, x, y)f(y)dy.

Remark p(t, x, y) is called the fundamental solution of (∗).

Theorem 2 Let Bt(w) (t ≥ 0, w ∈ Ω) be one dimensional Brownian motion. Let a
and b be the function in Theorem 1. Let σ(x) =

√
a(x) and consider the following SDE:

Ẋ(t) = σ(X(t))Ḃt(w) + b(X(t)) (∗′)
X(0) = x ∈ R.

We denote the solution to (∗′) by X(t, x, w). Then

u(t, x) = E[f(X(t, x, w))]

This theorem and Theorem 1 imply that the law of X(t, x, w) has the density function
and it is equal to p(t, x, y). But Theorem 2 itself does not say anything about the existence
of the density function of X(t, x, w) and the existence of p(t, x, y). So we need to consider
the following problem:

Problem Let (Ω, B, P ) be a probability space. Let X : Ω → R be a random variable.
Find a sufficient condition under which the law of X has the probability density function.
In that case, can you represent the density function by using X?



Theorem 3 (Paul Malliavin, Shinzo Watanabe....) Let us consider the situation
in Theorem 1 and Theorem 2. Moreover we assume that a′(x) and b′(x) are bounded
functions, that is there exists a positive number C3 such that |a′(x)| ≤ C3 and |b′(x)| ≤ C3

for all x. Then the law of X(t, x, w) has the density function. Moreover we can define the
expectation E[δy(X(t, x, w))] rigorously by using integration by parts formula and it
holds that

p(t, x, y) = E[δy(X(t, x, w))]

Now we consider a finite dimensional Gaussian space.
Let Ω = RN (N -dimensional euclidean space), B = B(RN) (=Borel σ-field). Note

that B is a set of events of Ω. The probability measure on Ω which we consider is the
following Gaussian measure.
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Theorem 4 Let X(w) be a random variable on Ω which is a function from Ω to R.
Assume
(i)

∫
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‖∇X(w)‖−8P (dw) < ∞,
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∫
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P (dw) < ∞.

Then X has a density ρ such that
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2. Menu of Today’s lecture
1. To show that the right-hand side of (1) is equal to E[δy(X(w))] by using integration

by parts formula.
2. To show that Theorem 3 is obtained by Theorem 4 in the case where N = ∞.
To this end, we introduce
(i) Fourier series expansion of Brownian path
(ii) Definition of derivatives in∞-dimensional spaces (Stochastic calculus of variation!)
3. If we have time, I will comment multi-dimensional cases.

NOTE:
The law of a random variable has the probability density function ρ(x)

def⇐⇒ For any A ⊂ R,

P ({w ∈ Ω | X(w) ∈ A}) =

∫

A

ρ(x)dx

This is equivalent to that for any bounded continuous function ϕ,

E[ϕ(X)] =

∫

R
ϕ(x)ρ(x)dx

hold.


