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Abstract

We consider a small domain of a pinned path space over a compact Riemannian manifold.
We establish a Clark-Ocone-Haussman formula for functions which belong to H1-Sobolev
space on the domain with the Dirichlet boundary condition and apply it to obtain spectral
gap estimate for the Dirichlet Laplacians.

1 Introduction

Let (M, g) be a compact Riemannian manifold. Let Px(M) = C([0, 1] → M | γ(0) = x) be the
set of continuous paths starting at x ∈ M . The generator of the Dirichlet form defined by the
H-derivative and the Brownian motion measure on Px(M) is a generalization of the Ornstein-
Uhlenbeck(=OU) operator on a Wiener space. It was proved in [14, 18, 6, 1] that the Poincaré
inequality(=PI) and the logarithmic Sobolev inequality(=LSI) hold for the Dirichlet form. The
Clark-Ocone-Haussman(=COH) formula is one of main ingredient of [14, 6]. Let y ∈ M and
consider a pinned path space Px,y(M) = {γ ∈ Px(M) | γ(1) = y). The same as Px(M), the OU
operator is defined on Px,y(M) with the pinned Brownian motion measure. It was proved in [3]
that if M is a manifold with a pole and the Riemannian metric is asymptotically flat then LSI
holds in pinned case too. However one cannot expect that the PI hold on pinned path spaces
over a simply connected compact Riemannian manifold generally. In fact, Eberle [11] gave such
kind of examples. On the other hand, the COH formula on a certain class of pinned path spaces,
including the case where M is a hyperbolic space Hn (n ≥ 2), were studied in [2] and it was
proved that LSI with variable coefficient Dirichlet forms on them were valid. Also another form
of COH formula can be found in [15]. Recently, Chen, Li and Wu [8] proved that LSI with a
variable coefficient imply weak log-Sobolev inequality(=WLSI) if the coefficient function satisfies
some conditions. An WLSI contains a non-increasing function β on (0,∞) and Cattiaux, Gentil
and Guillin [7] proved that if β(s) = O(| log s|) as s → 0, PI hold. Thus [8] proved that PI holds
on the pinned path space over the hyperbolic space Hn. However in the case of loop groups, the
other natural measures, heat kernel measures and ground state measures exist. We note that
LSI holds for the heat kernel measure and PI holds for the ground state measure on the loop
group respectively. See [17, 10].
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Now we introduce a positive parameter λ and consider the pinned Brownian motion measure
νλ

x,y on Px,y(M) which is formally written by

dνλ
x,y(γ) = Z−1

λ exp
(
−λ

2
‖γ‖2

H1

)
dγ,

where dγ is the Riemannian volume on Px,y(M) and ‖γ‖2
H1 =

∫ 1
0 |γ̇(t)|2dt. The “zero variance

limit” λ → ∞ is a kind of semi-classical limit and it was proved in [4] that the asymptotic
behavior of the lowest eigenvalue of Schrödinger operators on the non-pinned path space Px(M)
is determined by the Hessian of the “potential function”. In the pinned case, as to the OU
operator, we have a few examples for which there exist spectral gaps above 0. It is interesting
to study the semi-classical limit of the operator on Px,y(M). However there are difficulties
to study the global problem. Instead of doing so, in this paper, we will study the following
problem. Let D be an open subset of Px,y(M) and consider the OU operator −Lλ with Dirichlet
boundary condition. We are interested in the asymptotic behavior of the lowlying spectrum
of −Lλ when λ → ∞. Now suppose that x is outside the cut-locus of y and D contains the
minimal geodesic γx,y between x and y and there are no other geodesics than minimal one in
the closure of D. Then the probability measure concentrates on the neighborhood of γx,y and
it is easy to check that the bottom of spectrum of Lλ converges to 0. We may conjecture that
the asymptotic behavior of the lowlying spectrum of Lλ can be determined by the Hessian of
the energy function γ → ‖γ‖2

H1/2 at γx,y similarly to the finite dimensional cases. For example,
the gap of spectrum of Lλ between the bottom and the above goes to infinity of the order λ.
Actually, Eberle gave a lower bound estimate for it in [13] for a certain domain D. In [13], more
precise estimates were given in the case where D is a small domain of Px,y(M). The aim of
this paper is to establish a COH formula for functions of the H1-Sobolev spaces on D with the
Dirichlet boundary condition and prove a lower bound estimate of the gap of the spectrum in
the case of the small domain. It seems that we need more detailed analysis to obtain precise
asymptotics of the spectrum of the Dirichlet Laplacian. We will study this problem in the case
of pinned path group using LSI with a potential function in [5] in a forthcoming paper.

2 Results

Let (M, g) be an n-dimensional compact Riemannian manifold. We denote the Riemannian
distance between two points a, b ∈ M by d(a, b) and denote by Br(a) = {x ∈ M | d(a, x) < r}
the ball centered at a with the radius r. Let λ > 0 be a positive number and νλ

x be the
Brownian motion measure on Px(M) and νλ

x,y be the pinned Brownian motion measure on
Px,y(M). Explicitly,

νλ
x,y ({γ ∈ Px,y(M) | γ(ti) ∈ Ai, 1 ≤ i ≤ n})

=
∫
{xi∈Ai,1≤i≤n−1}

p(1/λ, x, y)−1
n∏

i=1

p ((ti − ti−1)/λ, xi−1, xi) dx1 · · · dxn−1,

where 0 = t0 < · · · < tn = 1, x0 = x, xn = y and p(t, x, y) denotes the heat kernel of et∆/2.
H1-Sobolev space H1,2(Px,y(M), νλ

x,y) is defined by using the H-derivative D0 on Px,y(M). Note
that the H-derivative is defined by using the Levi-Civita connection. We also denote the H-
derivative on Px(M) by D. Below we consider open sets of Px,y(M) and the Dirichlet Laplacians
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on them. Let r0 be a positive number such that there are no cut-locus of y in the closure of
Br0(y) and the infimum of the eigenvalues of the Hessian of E(z) = 1

2d(z, y)2 satisfies that
infz∈Br0 (y) ∇2E(z) > 1/2. Note that ∇2

zE(z)|z=y = ITyM . Let 0 < r < r0. Now we assume that
x ∈ Br(y). We consider paths restricted to Br(y) such that

Px,y (Br(y)) = {γ ∈ Px,y(M) | γ(t) ∈ Br(y) for all 0 ≤ t ≤ 1} . (2.1)

Following [13], let us define

H1,2
0 (Px,y(Br(y)), νλ

x,y)

=
{

F |Px,y(Br(y))

∣∣∣ F ∈ H1,2(Px,y(M), νλ
x,y) and F = 0 on Px,y(Br(y))c

}
. (2.2)

The non-positive generator Lλ corresponding to the dense closed subspace H1,2
0 (Px,y(Br(y)), νλ

x,y)
of L2(Px,y(Br(y)), νλ

x,y) is the Dirichlet Laplacian on Px,y(Br(y)). We denote the normalized
probability dνλ

x,y/νλ
x,y (Px,y(Br(y))) on Px,y(Br(y)) by dν̄λ,r

x,y . Eberle ([11, 12, 13]) defined the
value

eλ
Px,y(Br(y)) = inf

F∈H1,2
0 (Px,y(Br(y)))

∫
Px,y(Br(y)) |D0F |2dν̄λ,r

x,y

Var(F, ν̄λ,r
x,y)

(2.3)

where Var(F, ν̄λ,r
x,y) denotes the variance of F with respect to ν̄λ,r

x,y and proved that

lim inf
λ→∞

eλ
Px,y(Br(y))

λ
> 0. (2.4)

Let

eλ
Dir,1,Px,y(Br(y)) = inf

F (6=0)∈H1,2
0 (Px,y(Br(y)))

∫
Px,y(Br(y)) |D0F |2dν̄λ,r

x,y

‖F‖2
L2(ν̄λ,r

x,y )

. (2.5)

This is equal to inf σ(−Lλ), where σ(−Lλ) denotes the spectral set of −Lλ. Let us define the
value eλ

Dir,2,Px,y(Br(y)) as follows: if eλ
Dir,1,Px,y(Br(y)) is an eigenvalue with multiplicity 1, then

eλ
Dir,2,Px,y(Br(y)) = inf

(
σ(−Lλ) \ {eλ

Dir,1,Px,y(Br(y))}
)

. (2.6)

Otherwise, eλ
Dir,2,Px,y(Br(y)) = eλ

Dir,1,Px,y(Br(y)). If −Lλ has discrete spectrum only, this value is
equal to the second smallest eigenvalue of −Lλ counting multiplicity although we cannot expect
the discreteness of the spectrum in the present case. Also, by the standard argument, we have

eλ
Dir,2,Px,y(Br(y))

= sup
G(6=0)∈L2(ν̄λ,r

x,y )

inf


∫
Px,y(Br(y)) |D0F |2dν̄λ,r

x,y

‖F‖2
L2(ν̄λ,r

x,y )

∣∣∣∣∣ F ∈ H1,2
0 (Px,y(Br(y))) , (F, G)

L2(ν̄λ,r
x,y )

= 0

 .

(2.7)

Hence eλ
Dir,2,Px,y(Br(y)) ≥ eλ

Px,y(Br(y)) and (2.4) gives a lower bound estimate of the limit of
eλ
Dir,2,Px,y(Br(y)). We will give an estimate for eλ

Px,y(Br(y)) using a COH formula. To this end,
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we recall basic results for pinned Brownian motion measures. Let Ft = σ({γ(s) | 0 ≤ s ≤ t}).
Let τ(γ)t : TxM → Tγ(t)M be the stochastic parallel translation along the semi-martingale γ(t)
under νλ

x which is defined by the Levi-Civita connection. Then b(t) =
∫ t
0 τ(γ)−1

s ◦ dγ(s) is an
Ft-Brownian motion with the covariance Eνλ

x [(b(t), u)(b(s), v)] = (u, v) t∧s
λ (u, v ∈ TxM) on

TxM under νλ
x . Also for 0 ≤ t < 1, we define V λ

y (t, z) = gradz log p
(

1−t
λ , y, z

)
and

V λ
y (t, γ)

t
= τ(γ)−1

t V λ
y (t, γ(t)) ∈ TxM.

νλ
x and νλ

x,y are equivalent on Ft for any 0 < t < 1 and the density function ρ(t, γ) = dνλ
x,y

dνλ
x
|Ft is

given by an Ft-martingale:

ρ(t, γ) =
p
(

1−t
λ , y, γ(t)

)
p
(

1
λ , x, y

)
= exp

(∫ t

0

(
V λ

y (s, γ)
s
, db(s)

)
− 1

2λ

∫ t

0
|V λ

y (s, γ)
s
|2ds

)
. (2.8)

Thus γ(t) (t < 1) is a semi-martingale under both probabilities νλ
x and νλ

x,y. We denote
∇V λ

y (t, γ)
t
= τ(γ)−1

t ∇zV
λ
y (t, z)|z=γ(t). More explicitly,

∇V λ
y (t, γ)

t
= τ(γ)−1

t ∇zgradz log p

(
1 − t

λ
, y, z

) ∣∣∣∣∣
z=γ(t)

.

Let w(t) = b(t) − 1
λ

∫ t
0 V λ

y (s, γ)
s
ds. This process is defined for t < 1 and it is not difficult to

check that this can be extended continuously up to t = 1. Let N x,y,t be the set of all null
sets of νx,y|Ft and set Gt = Ft ∨ N x,y,1. Then w is an Gt-adapted Brownian motion for 0 ≤
t ≤ 1 such that Eνλ

x,y [(w(t), u)TxM (w(s), v)TxM ] = t∧s
λ (u, v) for any u, v ∈ TxM . Consequently,

γ, b, V λ
y (t, γ)

t
,∇V λ

y (t, γ)
t

are Gt-semi-martingales with respect to νλ
x,y for 0 ≤ t ≤ 1. The

following integration by parts formula can be proved in a similar way to [2].

Lemma 2.1. Let 0 < T < 1. Let F be an FT -measurable smooth cylindrical function. Let
ϕ(t, γ) be an Ft-progressively measurable process such that

Eνλ
x,y

[∫ 1

0
|ϕ(t, γ)|2dt

]
< ∞.

Then it holds that

Eνλ
x,y

[∫ T

0
(DF (γ)·t, ϕ(t, γ))dt

]
= λEνλ

x,y

[
F (γ)

∫ T

0
(S(γ)λ,T (ϕ)(t, γ), dw(t))

]
, (2.9)

where S(γ)λ,T is a pathwise bounded linear operator on L2([0, T ] → TxM) such that

S(γ)λ,T (ϕ)(t) = ϕ(t) − K(γ)λ,t

∫ t

0
ϕ(s)ds, (2.10)

and K(γ)λ,t = − 1
2λRic(γ)t + 1

λ∇V λ
y (t, γ)

t
.
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We introduce operators M(γ)λ,t on TxM by

M(γ)·λ,t = K(γ)λ,tM(γ)λ,t 0 ≤ t ≤ 1, (2.11)
M(γ)λ,0 = I. (2.12)

The inverse operator of S(γ)λ,T and its adjoint in L2([0, T ], dt) is given by(
S(γ)−1

λ,T ϕ
)

(t) = ϕ(t) + K(γ)λ,tM(γ)λ,t

∫ t

0
M(γ)−1

λ,uϕ(t)dt[
(S(γ)−1

λ,T )∗ϕ
]
(t) = ϕ(t) + (M(γ)∗λ,t)

−1

∫ T

t
M(γ)∗λ,sK(γ)λ,sϕ(s)ds.

Since ‖K(γ)λ,t‖op is uniformly bounded for γ, 0 ≤ t ≤ T for fixed T and λ, we have

Eνλ
x,y

[∫ T

0

([(
S(γ)−1

λ,T

)∗]
DF (γ)·, ϕ(t, γ)

)
dt

]
= λEνλ

x,y

[
F (γ)

∫ T

0
(ϕ(t, γ), dw(t))

]
. (2.13)

‖ ‖op denotes the operator norm. Let ϕ ∈ L2([0, 1] → TxM, dt) and assume that the support of
ϕ is in [0, 1). Then J(γ)λϕ which is given by

J(γ)λϕ(t) = (M(γ)∗λ,t)
−1

∫ 1

t
M(γ)∗λ,sK(γ)λ,sϕ(s)ds (2.14)

is well-defined. Let L(γ)λ = I + J(γ)λ. We can prove that J(γ)λ can be extended to a bounded
linear operator on L2 for νλ

x,y-almost all γ using Malliavin and Stroock’s result and Lemma 3.2
in [2]. In the following, Cut(y) denotes the cut-locus of y.

Theorem 2.2 (Malliavin-Stroock [20]). Let z ∈ Cut(y)c. Then

lim
t→0

t∇2
z log p(t, y, z) = −∇2

zE(z) (2.15)

uniformly on any compact subset of Cut(y)c.

However the upper bound of ‖J(γ)‖op which is obtained by using Lemma 3.2 in [2] does not
satisfy a good integrability condition with respect to νλ

x,y. For the small paths restricted on the
neighborhood of y, we can get better estimates. Below, we improve Lemma 3.2 in [2] slightly.

Lemma 2.3. Let 0 ≤ t < 1, α > 1/2. Let Mt be the solution to the n× n-matrices valued ODE
such that

Ṁt = KtMt

M0 = I,

Kt =
1

1 − t
(−α + C1(t)) + C2(t),

where Ci(t) are symmetric matrices valued continuous functions on [0, 1] such that Ci(t) is a
non-positive matrix for all t and supt ‖Ci(t)‖op ≤ δi (i = 1, 2).
(1) Let N(t) be the solution to the following ODE.

Ṅt =
(

C1(t)
1 − t

+ C2(t)
)

Nt, (2.16)

N0 = I.
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Then
Mt = (1 − t)αNt (2.17)

and
sup

0≤t≤s<1
‖NsN

−1
t ‖op ≤ eδ2 . (2.18)

(2) Let

(Jϕ)(t) = (M∗
t )−1

∫ 1

t
M∗

s Ksϕ(s)ds. (2.19)

Then

‖I + J‖op

≤
(

1 +
4α(1 − α)
(2α − 1)2

e2δ2 +
8αδ2e

2δ2

(2α − 1)2

)1/2

+
2eδ2

2α − 1
(δ1 + δ2). (2.20)

Proof. (1) follows from Lemma 3.2 in [2]. We prove (2). Let ϕ be bounded measurable function
such that supp ϕ is in [0, 1). Let us introduce the operator J̃ by

(J̃ϕ)(t) = −α(1 − t)−α

∫ 1

t
(1 − s)α−1(NsN

−1
t )∗ϕ(s)ds.

Then

(I + J)ϕ(t) = (I + J̃)ϕ(t)

+
1

(1 − t)α

∫ 1

t
(1 − s)α−1

(
NsN

−1
t

)∗ {C1(s) + (1 − s)C2(s)}ϕ(s)ds.

(2.21)

By Lemma 3.1 in [2], we see that the L2-norm of the second term of the right-hand side of (2.21)
can be estimated by 2eδ2

2α−1(δ1+δ2)‖ϕ‖. Hence we need only to estimate ‖(I + J̃)ϕ‖L2((0,1)). Using

ϕ(t) = −(1 − t)1−α(N∗
t )−1 d

dt

∫ 1

t
(1 − s)α−1N∗

s ϕ(s)ds,

we have

‖(I + J̃)ϕ‖2
L2

= ‖ϕ‖2
L2 + α2

∫ 1

0
(1 − t)−2α

∣∣∣∣(N∗
t )−1

∫ 1

t
(1 − s)α−1N∗

s ϕ(s)
∣∣∣∣2 ds

+ 2α

∫ 1

0

(
(1 − t)1−2αN−1

t (N∗
t )−1 d

dt

∫ 1

t
(1 − s)α−1N∗

s ϕ(s)ds,

∫ 1

t
(1 − s)α−1N∗

s ϕ(s)ds

)
dt.

(2.22)

It is easy to see that

d

dt

(
(1 − t)M−1

t (M∗
t )−1

)
= (2α− 1)M−1

t (M∗
t )−1 − 2M−1

t (C1(t) + (1 − t)C2(t)) (M∗
t )−1. (2.23)
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Thus, the third term I3 on the right-hand side of (2.22) reads

I3 = α

∫ 1

0

d

dt

(
(1 − t)1−2αN−1

t (N∗
t )−1

∫ 1

t
(1 − s)α−1N∗

s ϕ(s)ds,

∫ 1

t
(1 − s)α−1N∗

s ϕ(s)ds

)
dt

−α

∫ 1

0

(
d

dt

(
(1 − t)M−1

t (M∗
t )−1

) ∫ 1

t
(1 − s)α−1N∗

s ϕ(s)ds,

∫ 1

t
(1 − s)α−1N∗

s ϕ(s)ds

)
dt

= −α

∣∣∣∣∫ 1

0
(1 − t)α−1N∗

t ϕ(t)dt

∣∣∣∣2
−α(2α − 1)

∫ 1

0

∣∣∣∣(M∗
t )−1

∫ 1

t
(1 − s)α−1N∗

s ϕ(s)ds

∣∣∣∣2 dt

+2α

∫ 1

0

(
(C1(t) + (1 − t)C2(t))(1 − t)−α

∫ 1

t
(1 − s)α−1(NsN

−1
t )∗ϕ(s)ds,

(1 − t)−α

∫ 1

t
(1 − s)α−1(NsN

−1
t )∗ϕ(s)ds

)
dt

≤ −α(2α − 1)
∫ 1

0

∣∣∣∣(M∗
t )−1

∫ 1

t
(1 − s)α−1N∗

s ϕ(s)ds

∣∣∣∣2 dt

+8αδ2
e2δ2

(2α − 1)2
‖ϕ‖2

L2 . (2.24)

Consequently,

‖(I + J̃)ϕ‖2
L2 ≤

(
1 +

4α(1 − α)
(2α − 1)2

e2δ2 +
8αδ2e

2δ2

(2α − 1)2

)
‖ϕ‖2

L2 (2.25)

which completes the proof.

By this lemma, we get

Lemma 2.4. There exists a positive constant C and λ0 > 0 such that for any λ > λ0 and
0 < r < r0,

esssupγ∈Px,y(Br(y))‖L(γ)λ‖2
op ≤ (1 + Cr2)(1 + ε(λ)) =: ξλ(r). (2.26)

Here limλ→∞ ε(λ) = 0.

Proof. Let κ1(r) and κ2(r) be the infimum and supremum of the eigenvalues of the Hessian
of E on Br(y). By Theorem 2.2, we see that there exists λ0 such that for any λ > λ0 and
γ ∈ Px,y(Br(y)), K(γ)λ,t can be written as a sum of the operators

K(γ)λ,t =
1

1 − t

(
−(κ1(r) − ε1(λ)) + C1,λ(γ)t

)
− 1

2λ
Ric(γ)t for all 0 ≤ t ≤ 1, (2.27)

where ε1(λ) is a small positive number less than κ1 satisfying that limλ→∞ ε1(λ) = 0 and C1,λ

is a path dependent symmetric operator on TxM such that

(i) all eigenvalues of C1,λ(γ)t are non-positive,

(ii) the absolute values of all eigenvalues of C1,λ(γ)t are less than κ2(r)−κ1(r)+ ε2(λ), where
limλ→∞ ε2(λ) = 0.
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Therefore by Lemma 2.3, for γ ∈ Px,y(Br(y)) and sufficiently large λ, J(γ)λ can be extended to
a bounded linear operator on L2([0, 1] → TxM). By the Hessian comparison theorem [19], we
have max(|1− κ1(r)|, |1− κ2(r)|) = O(r2) for small r. Hence applying Lemma 2.3, we complete
the proof.

Now, we state our Clark-Ocone-Haussman formula for F ∈ H1,2
0 (Px,y(Br(y))).

Theorem 2.5. Let F ∈ H1,2
0 (Px,y(Br(y))). Let λ be a sufficiently large positive number.

(1) The following COH formula holds:

Eνλ
x,y [F |Gt] = Eνλ

x,y [F ] +
∫ t

0
(H(s, γ), dw(s)) , 0 ≤ t ≤ 1,

where
H(s, γ) = Eνλ

x,y [L(γ)λ(D0F (γ)·)(s)|Gs] . (2.28)

(2.28) denotes the predictable projection.
(2) The following inequalities hold.

Eνλ
x,y

[
F 2 log

(
F 2/‖F‖2

L2(νλ
x,y)

)]
≤ 2ξλ(r)

λ
Eνλ

x,y
[
|D0F |2

]
, (2.29)

λ

ξλ(r)
Eνλ

x,y

[(
F − Eνλ

x,y [F ]
)2
]

≤ Eνλ
x,y
[
|D0F |2

]
. (2.30)

(3) We have

lim inf
λ→∞

eλ
Px,y(Br(y))

λ
≥
(
1 + Cr2

)−1
. (2.31)

Remark 2.6. (1) Let λ be a sufficiently large number. Since the L2-semigroup associated with
the Dirichlet Laplacian −Lλ is positivity preserving, by the result in [16], LSI (2.29) implies that
inf σ(−Lλ) is an eigenvalue of −Lλ with finite multiplicity. Note that we need to replace νλ

x,y

by ν̄λ,r
x,y in this argument actually. In the present case, by (2.30), we see that the multiplicity is

one for large λ because limλ→∞ eλ
Dir,1,Px,y(Br(y)) = 0. Of course, if the diffusion semigroup etLλ

satisfies the positivity improving property, we can conclude that the multiplicity is one and the
eigenfunction is strictly positive.
(2) The lower bound like (2.31) is due to Eberle [13]. When r is small, this estimate is good

in the sense that limλ→∞
eλ
Px,y(Br(y))

λ = 1 for any r in the case where M is a euclidean space.
In our approach, Lemma 3.2 in [2] gives a crude bound and the estimate in Lemma 2.3 in the
present paper is necessary to obtain more precise estimate in (2.31). This is also a lower bound
on eλ

Dir,2,Px,y(Br(y)). In the case of pinned path groups, we can obtain more precise estimate for
eλ
Dir,2,D on more general domain D which includes only one geodesic using a different approach.

This will be studied in a separate paper. (2.31) is used for the study in the case where D contains
more than 2 local minimum geodesics in [13]. This result is applied to obtain a concrete estimate
for weak Poincaré inequalities on loop spaces over positive Ricci curvature manifolds in [9].

Proof of Theorem 2.5. Let r1 be a positive number such that 0 < r < r1 < r0. Let η be a
smooth non-negative function on R such that η(t) = 1 for t < (r + r1)/2 and η(t) = 0 for
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t ≥ (r + 2r1)/3. For 0 < T ≤ 1, let χT (γ) = η
(
sup0≤t≤T d(γ(t), y)

)
. For simplicity, we denote

χ1(γ) by χ(γ). Then it holds that

F (γ)χ(γ) = F (γ) γ ∈ Px,y(M).

Let G(γ) = g(γ(t1), . . . , γ(tn)) be a smooth cylindrical function, where tn < 1 and set G̃(γ) =
G(γ)χ(γ) and G̃T (γ) = G(γ)χT (γ). Then we have

lim
T→1

‖G̃T − G̃‖H1,p(νλ
x,y) = 0 (2.32)

for any p > 2. First, we establish a Clark-Ocone-Haussman formula for G̃. For any 0 ≤ T ≤ 1,
by the Itô representation theorem, there exists a Gt-predictable L2-process HT (t, γ) (0 ≤ t ≤ 1)
such that

Eνλ
x,y [G̃T | Gt] = Eνλ

x,y [G̃T ] +
∫ t

0
(HT (s, γ), dw(s)), 0 ≤ t ≤ 1. (2.33)

This implies that

Eνλ
x,y

[
‖HT − H1‖2

L2([0,1],dt)

]
= λVarνλ

x,y

(
G̃T − G̃T ′

)
. (2.34)

Hence limT→1 Eνλ
x,y

[
‖HT − H1‖2

L2([0,1],dt)

]
= 0. We will identify HT (t, γ). Now we assume that

tn < T . By approximating G̃T by smooth cylindrical functions and applying Lemma 2.1,

Eνλ
x,y

[∫ T

0

(
(S(γ)−1

λ,T )∗(DG̃T (γ)·)(t), ϕ(t, γ)
)

dt

]
= λEνλ

x,y

[
G̃T (γ)

∫ T

0
(ϕ(t, γ), dw(t))

]
= Eνλ

x,y

[∫ T

0
(HT (t, γ), ϕ(t, γ)) dt

]
.

(2.35)

Noting that {(M(γ)λ,s)∗}· = M(γ)∗λ,sK(γ)λ,s and DG̃T (γ)·(t) = D0G̃T (γ)·(t) + DG̃T (γ)(1), we
have

(S(γ)−1
λ,T )∗(DG̃T (γ)·)(t)

= D0G̃T (γ)·(t) + DG̃T (γ)(1) + (M(γ)∗λ,t)
−1

∫ T

t

(
M(γ)∗λ,s

)· (
D0G̃T (γ)·(s) + DG̃T (γ)(1)

)
ds

=
(
S(γ)−1

λ,T

)∗
(D0G̃T (γ)·)(t) + (M(γ)∗λ,t)

−1M(γ)∗λ,T DG̃T (γ)1. (2.36)

Let γT (t) = γ(t ∧ T ). If D0G̃T (γ) 6= 0, then sup0≤t≤T d (γ(t), y) < r1. Therefore γT ∈
Px,y(Br1(y)). Thus, L(γT )λ

(
D0G̃T (γ)

)
∈ L2(νλ

x,y). By (2.36), we have, for 0 ≤ t ≤ T ,

L(γ)λ

(
D0G̃(γ)·

)
(t) −

[
S(γ)−1

λ,T

]∗ (
DG̃T (γ)·

)
(t)

= L(γ)λ

(
D0G̃(γ)·

)
(t) − L(γT )λ

(
D0G̃T (γ)·

)
(t)

+L(γT )λ

(
D0G̃T (γ)·

)
(t) −

[
S(γ)−1

λ,T

]∗ (
D0G̃T (γ)·

)
(t) −

(
M(γ)∗λ,t

)−1
M(γ)∗λ,T DG̃T (γ)(1)

= L(γ)λ

(
D0G̃(γ)·

)
(t) − L(γT )λ

(
D0G̃T (γ)·

)
(t) + J(γT )λ

(
DG̃T (γ)·1[T,1]

)
(t)

−
(
M(γ)∗λ,t

)−1
M(γ)∗λ,T DG̃T (γ)(1) (2.37)
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where 1[T,1] is the indicator function of [T, 1]. Therefore

Eνλ
x,y

[∣∣∣∣∫ T

0

(
(S(γ)−1

λ,T )∗(DG̃T (γ)·)(t), ϕ(t, γ)
)

dt −
∫ 1

0

(
L(γ)λ(D0G̃(γ)·)(t), ϕ(t, γ)

)
dt

∣∣∣∣]
≤ Eνλ

x,y

[∥∥∥L(γ)λ

(
D0G̃(γ)·

)
− L(γT )λ

(
D0G̃T (γ)·

)
+ J(γT )λ

(
DG̃T (γ)·1[T,1]

)∥∥∥2

L2([0,T ])

]1/2

×Eνλ
x,y

[
‖ϕ(·, γ)‖2

L2([0,T ])

]1/2

+Eνλ
x,y

[∥∥∥L(γ)λ(D0G̃(γ)·)
∥∥∥2

L2([T,1])

]1/2

Eνλ
x,y

[
‖ϕ(·, γ)‖2

L2([T,1])

]1/2

+Eνλ
x,y

[∥∥∥(M(γ)∗λ,·)
−1M(γ)∗λ,T DG̃T (γ)1

∥∥∥2

L2([0,T ])

]1/2

Eνλ
x,y

[
‖ϕ(·, γ)‖2

L2([0,T ])

]1/2
.

By Lemma 3.2 in [5], we have for 0 ≤ t ≤ T < 1

‖M(γ)λ,T M(γ)−1
λ,t‖ ≤ e‖Ric‖∞/2λ

(
1 − T

1 − t

)(κ1(r1)−ε1(λ))

,

where κ1(r1) = infz∈Br1 (y) ∇2
zE(z). Consequently, letting T → 1 in (2.13),

Eνλ
x,y

[∫ 1

0

(
L(γ)λ(D0G̃(γ)·)(t), ϕ(t, γ)

)
dt

]
= Eνλ

x,y

[∫ 1

0
(H1(t, γ), ϕ(t, γ)) dt

]
.

This implies that

H1(t, γ) = Eνλ
x,y [L(γ)λ(D0G̃(γ)·)(t)|Gt] dt ⊗ dνλ

x,y-a.s. (t, γ)

holds. Since, F is a limit of G̃, this completes the proof of (1). Since Eνλ
x,y [|H(s, γ)|2] ≤

‖‖L‖op‖2
L∞(νλ

x,y)
Eνλ

x,y
[
|D0F |2

]
and Lemma 2.4 using (1) and Ito’s formula, it is easy to check

(2). See [14, 6, 2]. We prove (3). First we note that D0F = 0 on Px,y(Br(y))c. Hence
Eνλ

x,y [|D0F |2] = Eνλ
x,y [|D0F |2; Px,y(Br(y))]. Therefore by (2.30), noting

νλ
x,y (Px,y(Br(y)))−1 Eνλ

x,y

[(
F − Eνλ

x,y [F ]
)2
]

≥ E ν̄λ,r
x,y

[(
F − Eνλ

x,y [F ]
)2
]

≥ Var(F, ν̄λ,r
x,y) (2.38)

and limλ→∞ ξλ(r) = 1 + Cr2, (3) can be proved.
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