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Abstract

We prove the existence of spectral gaps of Ornstein-Uhlenbeck operators on loop spaces
over a class of Riemannian manifolds which include hyperbolic spaces. This is an alternative
proof and an extension of a result in Chen-Li-Wu in J. Funct. Anal. 259 (2010), 1421-1442.
Further, we study the asymptotic behavior of the spectral gap.
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1 Introduction

Let E be a smooth non-negative function on a Riemannian manifold X. Let A be a positive
number and consider a weighted probability measure dv*(z) = Z;le_’\E(””)dm on X, where
Z) denotes the normalized constant and dx denotes the Riemannian volume. We consider a
Dirichlet form on L?(X,dv?) such that

A _ 33211)\56
5<F,F>—/X|VF< ) 2di (),

where V denotes the Levi-Civita covariant derivative. Under mild assumptions on £ and the
Riemannian metric, 1 € D(£*) and the corresponding lowest eigenvalue ei\ of the generator of
the Dirichlet form is 0. The spectral gap €3 of £* is defined by

e) :inf{g’\(F, F) ‘ 1F || 2oy = 1,/XF(:B)du)‘(:n) :o}. (1.1)

The study on the estimate and the asymptotic behavior of eé\ as A\ — oo is an interesting and
important subject. In this problem, one of the simplest cases is the following:

(i) E has a unique minimum point ¢y and there are no critical points other than ¢y,

(ii) the Hessian of E at ¢y is non-degenerate.
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A
In this case, under some additional technical assumptions, it holds that limy_, o, 672 = 01, where

o1 is the lowest eigenvalue of the Hessian of E at cg. When X = RY and F(z) = %, the
generator of the Dirichlet form is called the Ornstein-Uhlenbeck operator(=OU operator) and
the spectral set is completely known.

We are interested in the case where X is an “infinite dimensional Riemannian manifold” and
v is a probability measure on it. Let us explain our model. Let (M,g) be an n-dimensional
complete Riemannian manifold. Let xg,yp € M and consider a space of continuous paths
P, (M) = C([0,1] = M | v(0) = x¢) and its subset Py, (M) = {v € Py, (M) | v(1) =
Yo}. Our X is Py (M) or Py (M) and v* is the (pinned) Brownian motion measure. The
transition probability of the Brownian motion is given by p(t/\, z,y), where p(t,z,y) denotes
the heat kernel of the diffusion semigroup e/ and A is the Laplace-Bertlami operator. In
many problems, we use the following heuristically appealing path integral expression,

A () = Zﬂ exp (=AE(7)) d,

where E(7) is the energy of path v and dvy is the “infinite dimensional Riemannian measure”.
Needless to say, the energy function cannot be defined on the continuous path spaces on which
the (pinned) Brownian motion measures exist and there do not exist the “Riemannian measures”
on the infinite dimensional spaces. We refer the reader to [9, 45, 41] for some rigorous study of
the path integral. On the other hand, by using an H-derivative D on X (see the definition in
Section 3), we can define a Dirichlet form £* on L2(X,dv*). Our interest is in the study of the
spectral gap of £*. Since the triple (X,2*, &) is formally an infinite dimensional analogue of
the finite dimensional one, we may conjecture some results on the asymptotics of the spectral
gap.

In the case where X = P, (M), the critical point of E on the subset of H I paths is just a
constant path and this problem corresponds to the simplest case which we explained. Fang [27]
proved the existence of the spectral gap by establishing the COH(=Clark-Ocone-Haussmann)

formula for functions on X = P, (M). Also it is not difficult to prove that limy_, ? =1 by
using the COH formula. We prove this in Section 3. Here note that the Hessian of E at the
constant path is identity. On the other hand, if X is the pinned space Py, ,, (M), the set of critical
points of the functional E on the set of H' paths of Py, 4, is the set of geodesics. Therefore,
by an analogy of finite dimensional cases, one may expect that the asymptotic behavior of the
low-lying spectrum of the generator of &) is related to the set of the geodesics in this case.
However, it is not even easy to find examples of Riemannian manifolds on which loop spaces
the spectral gaps exist. In fact, Eberle [21] gave an example of a Riemannian manifold which is
diffeomorphic to a sphere over which there is no spectral gap on the loop space. At the moment,
there are no examples of loop spaces over simply connected compact Riemannian manifold for
which the spectral gap exists.

If M is a Riemannian manifold with a pole yg, the situation is simpler. In this case, the
function F defined on the H! subset of Py, ,, (M) satisfies the above mentioned assumptions (i)
and (ii). The author proved the existence of spectral gap in that case under additional strong
assumptions on the Riemannian metric in [5]. Unfortunately, the assumption is not valid for
hyperbolic spaces. The existence of the spectral gap on loop spaces over hyperbolic spaces was
proved by Chen-Li-Wu [13] for the first time (see [14] also). They used results in [3, 12]. We give

A

an alternative proof of their result and prove that limy_ . %2 = o1, where o7 is the spectrum
bottom of the Hessian of E at the unique geodesic for a certain class of Riemannian manifolds.



Now let us recall a rough idea how to prove the asymptotic behavior of e under the
assumptions (i), (ii) when X is a finite dimensional space. By the unitary transformation
M,y : F(e L*(dv)) — F (Z/\_le_)‘E)l/2 (€ L?(dz)), the problem is changed to determine the
limit of the gap of spectrum of a Schrédinger operator. In this context, A — oo corresponds
to the semi-classical limit of a physical system. In a small neighborhood of ¢y, the Schrédinger
operator can be approximated by a harmonic oscillator and we obtain the main term of the
divergence of e5. As for outside the neighborhood, the potential function is very large and it has
nothing to do with low energy part of the operator. In the present infinite dimensional problems,
we cannot use the unitary transformation since there does not exist Riemannian volume measure
and the function E cannot be defined on the whole space X. Moreover, there are difficulties
in the proof of each parts, (a) Local estimate in a neighborhood U(cg) of the minimizer, (b)
Estimate outside U(cp). In the problem (a), one may think that the problem can be reduced to
a Gaussian measure case by a certain “local diffeomorphism”. A natural candidate of the local
diffeomorphism is an It6 map. Certainly, the mapping is measure preserving but the derivative of
the mapping does not behave well because of the irregularity of the Brownian paths [20, 17, 24].
In problem (b), it is not clear how to use “the potential function is big” outside U(cp). To solve
these problems, we use COH formula and a logarithmic Sobolev inequality on X. Clearly, it is
more interesting to consider the cases where there are two or more local minimum points of F.
We refer the reader to [35, 34] and references therein for finite dimensional cases. Also we note
that Eberle [22, 23] studied such a problem on certain approximate spaces of loop spaces.

The paper is organized as follows. We already explained a rough idea of a proof of the
asymptotic behavior of e3. In Section 2, we give a different proof based on a log-Sobolev
inequality. Owur proof for loop spaces is a modification of the proof. Also we explain the
difficulty of the proof in the case of loop spaces.

In Section 3, we prepare necessary definitions and lemmas and explain our main theorems
for Py, .y, (M). In this case, the minima cg is the minimal geodesic ¢z, ,, between xy and yo. As
we explained, we need local analysis in a neighborhood of ¢, 4, of the generators of Dirichlet
forms. Thus we consider an OU operator with Dirichlet boundary condition on a small neigh-
borhood D of the minimal geodesic in a loop space over a Riemannian manifold. We define
the generalized second lowest eigenvalue 6/\Dz’r,2,D of the Dirichlet Laplacian and determine the
asymptotic behavior of ei‘)ir&p in our first main theorem (Theorem 3.2).

In the second main theorem (Theorem 3.6), we consider a rotationally symmetric Riemannian
manifold M with a pole yo and a loop space Py, (M), where zq is an arbitrary point of M.
Under certain assumptions on the Riemannian metric, we prove the existence of the spectral
gap and determine the asymptotic behavior of €. The class of Riemannian manifolds includes
the hyperbolic spaces. Actually, the same result as in the second main theorem holds true
under the validity of a certain log-Sobolev inequality and a tail estimate of a certain random
variable describing the size of 4. The log-Sobolev inequality can be proved by a COH-formula
on Py, (M). The diffusion coefficient of the Dirichlet form in the log-Sobolev inequality is
unbounded and it is still an open problem whether a log-Sobolev inequality with a bounded
coefficient holds on a loop space over a hyperbolic space .

In this paper, the COH formula plays a crucial role. Let us recall what COH formula is. Let
F be an L? random variable on P, (M). By the Itd theorem, F — BV [F'] can be represented
as a stochastic integral with respect to the Brownian motion b which is obtained as an anti-
stochastic development of v to R™ (see [36]). The COH formula gives an explicit form of the



integrand as a conditional expectation of the H-derivative DF. As we noted, Fang proved the
COH formula on P, (M) when M is a compact Riemannian manifold. But it is not difficult to
prove the same formula for more general Riemannian manifold (see Lemma 3.8). In the case of
Ppy o (M), it is necessary to consider a Brownian motion w under the pinned measure which is
obtained by adding a singular drift to b. The singular drift is defined by a logarithmic derivative
of p(t,y0, z). For this, see Lemma 3.10 and [3, 7]. In both cases of P, (M) and P, ,, (M), the
integrand in the COH formula is the conditional expectation of the quantity A(y)x(DF’), where
A(7)y is a certain bounded linear operator depending on the path v and A. A(v)y for P, (M) is
defined by the Ricci curvature and the operator norm is uniformly bounded for large A. On the
other hand, in the case of Py, (M), the definition of A(vy), contains the Hessian of the heat
kernel, V2 log p(t/A, yo,2) (0 <t < 1) because the stochastic differential equation of v contains
the singular drift term of the logarithmic derivative of the heat kernel. To control this term, we
need results for a short time behavior of lim;_,o V2 log p(t, x, z) which were studied for the first
time by Malliavin and Stroock [49] (see (3.18) and Lemma 3.9). In view of this, it is easier to
study the spectral gap for P, (M) than that for Py, ,,(M). In the final part of this section, we

prove limy_, o % =1 for P, (M).

In order to show the precise asymptotics of 6>1\Dir 5 p and e%‘, we need to identify A(czg,yo)oo =
limy 00 A(Czg,40)2- This is necessary for local analysis near Cao,y0- 10 Section 4, first we formally
show that A(czgy,)oo is an operator which is defined by the Hessian of the square of the distance

function k(z) = M. After that we prove a key relation between the Hessian of the energy
function E at cgg,y, and A(czgye)oo- In that proof, Jacobi fields along the geodesic play an
important role.

In Section 5, we prove Theorem 3.2. The proof LHS < RHS in (3.11) relies on a represen-
tation (5.2) of ef‘)im’p by the unique eigenfunction (ground state) ¥, associated with the first
eigenvalue of the Dirichlet Laplacian. By using this representation and a trial function, we prove
the upper bound. The trial function is closely related with “eigenfunctions” associated with the
bottom of the spectrum of the Hessian of the energy function E at cg y,-

As already mentioned, we need to study A(cgg,yy)o0- In addition, we need to show that A(y)
can be approximated by A(cz .y, ) When v is close to ¢z 4, and A is large. This is correct but not
trivial because A(y), is defined by solutions of 1t6’s stochastic differential equations driven by b
and the solution mappings are not continuous in usual topology such as the uniform convergence
topology. Actually the solution mappings are continuous in the topology of rough paths. Thus,
we need to apply rough path analysis to our problem. Note that the law of b under the pinned
measure is singular with respect to the Brownian motion measure. However, the probability
distribution of b does not charge the slim sets in the sense of Malliavin. Hence, we need to
consider Brownian rough paths for all Brownian paths except a slim set as in ([8]). After
preparation of necessary estimates from rough paths (see Lemma 5.3), we prove Theorem 3.2.

In Section 6, we prove the existence of the spectral gap in a certain general setting as in [13].
This third main theorem (Theorem 6.2) implies the first half of the statement in Theorem 3.6.
In Section 7, we complete the proof of Theorem 3.6.

2 A proof in R" and some remarks

A
In this section, we show a proof of the asymptotics lim)y 672 = o1 on RY under the validity
of a log-Sobolev inequality. Our proof for Py (M) is a suitable modification of this proof. In



this section, D stands for the usual Fréchet derivative on RY.
Let E be a non-negative C* function on RY and suppose the following (1), (2), (3), (4).

(1) E(0) = 0and 0 is the unique minimum point and D*E(0) > 0. Further lim inf |, E(z) >
0.

(2) Let A > 0. Suppose that e™*F (#) is an integrable function and define a probability measure,
M dx) = Z;lef)‘E(‘r)da:, (2.1)
where Z) = [pn e M) gy,

(3) Let EMNF,F) = [pn |DF(z)?dv?(z), where F € Cg°(RY). Also let £ denote the Dirichlet
form which is the closure of the closable form. It holds that |z|,1 € D(£}) and £*(1,1) =0
for all A > 0. The notation |- | denotes the usual Euclidean norm.

(4) There exists a constant C' > 0 such that the following log-Sobolev inequality holds:

/ F(z)?log (F(m)2/||F||%2(VA)) A (z) < %8*(F, F), FeDE.  (2.2)
RN

Clearly the spectral bottom e{‘ of the Dirichlet form £ is 0. Under the above assumptions,
we prove that

Theorem 2.1. Let e%‘ be the spectral gap of E*. Then

A

lim %2 = oy, (2.3)

where o1 denotes the smallest eigenvalue of the matriz D*E(0).

The log-Sobolev inequality (2.2) implies the bound €3 > 2)\/C for all A\. Thus it holds that
Co1 > 2. Note that the assumption in the above is very strong and we cannot say the result is
“nice”.

S

Proof. We prove the lower bound estimate liminfy .o, & > o1. By the assumptions (1) and (2),

we have for any r > 0 there exists K, and M, such that

N (x| > r) < Kpe Mr forall A\ >1 (2.4)
and
3§\ V72 1
lim () Zy =det (D*E(0)) /", (2.5)
A—oo \ 27

The estimate (2.5) can be proved by Laplace’s method. From now on, we always assume A > 1.
The log-Sobolev inequality (2.2) implies that for any bounded measurable function V', it holds
that

A
ENF,F)+ | V(z)F(z)%d z) > —2 log SV ) [|F| 200, (2.6)
RN C RN



where the constant C' is the same number as in (2.2). We refer the reader to [33] for this estimate.
Let xo be a smooth function with yo(u) = 1 for |u| <1 and xo(u) = 0 for |u| > 2. Let x > 0 be

a small number and set xo (%) = xo(k~!|z|) and x1.(z) = /1 — X%},{(x). Let F' € D(&Y) and

assume || F|[ 2,0 = 1 and [ F(x)dv*(r) = 0. By an elementary calculation,
ENF,F) = EXNFxon: Fxon) + X Fx1n Fxve)
— /RN (|DX07,€|2 + |DX17,$\2) F(ZE)QdVA(SL'). (2.7)

This identity is called the IMS localization formula ([52]). We have |Dxo.x|? +|Dx1.x|> < C's 2.
By applying (2.6),

gA(FXLFv"FXLR) = g/\(FXLH7 FXLH) — /N 5)\2(FX17H)21‘I|ZHdV)‘
R
+ / SN (Fx1 ) gy
RN N

A SC A1 A 2 2 2
C log </RN € l212x dy ”FXl,n||L2(l,A) + A HFX1,N||L2(V>\)

Y

v

A SCA— M\
{—Clog (1—|—K,$e ) + 6)\? ”FXLHH%Q(V/\)
A _
> {—CKRG((SC M)A + 5)\2} HFXLH”%?(V)‘V (2.8)

where we have used (2.4). Thus, by choosing § so that 6C' < M,,, there exists 6’ > 0 such that
for large A,

ENFx1m FX1n) 2 O FX1l 72000 )- (2.9)
We estimate E*(Fxo.x, Fx0,:)- Note that the support of Fxq  is included in {z | |z| < 2x}. Let

V ={z | |z| < 3k}. For small k, by the Morse lemma, there exists an open neighborhood U of
0 and a C*°-diffeomorphism @ : y(€ U) s z(€ V) such that ®(0) = 0 and E (®(y)) = 3|y|* for

all y € U. We write m*(dy) = (%)N/2 e~ MvI*/2qy. By using this coordinate, we have
& Fxo Pro) = [ 1D(Fxan)(a) e 5023 s
A gl2 e
= [ 1D(Fx0.) (@) e 237 det (D)l
o A _
= | {(D2()*} " D{(Fxox) (D))} [Pe=2F 231 det(DB(y)) dy. (2.10)
U

We may assume that the mappings y — {(D®(y))*} " and y > |det(D®(y))| are Lipschitz
continuous. Let &1 be the smallest eigenvalue of (D®(0))~*{(D®(0))*}~!. Then there exists a



positive function (k) satisfying lim,_,0 (k) = 0 such that

A ~ 1 A e 27,2
ENFXom: Fxor) 2 (1= &(k))F1| det DO(0)[Z} <2> / ID{(Fxo.x) (@)} [“dm™(y)
T U

—N/2
> (1 - &(k))G1| det D®(0)[Z, (;ﬂ)

2
XA { /R (Fxo,0)* (@) dm* (y) — < /R N(FXO,K)(q)(y))dmA(y)> } ,
(2.11)

where we have used the spectral gap of the generator of the Dirichlet form [;n [DF (y)[2dm?(y)
is A. We have

A

—N/2
| det D®(0)| 25" <2W> AN(FXO,H)2(¢(y))dmA(y)

A

—N/2
~ 1020z (55) [ (Prax@@)ano)

A

—N/2 N/2
= |det D®(0)|Z;* <2W> /V (Fxo.x)?*(z)e M@ (;ﬂ) |det(D(®1)(2))| da

> (1 - e(w) 23" /V (Fxo.e)?(x)e P @dz

= (1—e(r)Zy* / (Fxo.x)*(x)e 2@ dy (2.12)
RN
and
| (o) @)am* )
= [ (Pro.@wyamv)
N/2
= [ Fr0@lden@ @l (5) 2@
3\ V72
= [ P00 (| dee(D@ @) - |aeep@ D) (5 ) 2 )
1% s
N/2
+laet(D@O)] [ (Pxan@) (5-) 20w
=11 + Is. (2.13)
Here

3§\ V2
nl<ee) (5) Bl (2.14)



and by the Schwarz inequality,

L2
- by N/2
< dee(@ OO | [ F@er@]+| [ Fo) toste) - nar@|} (55) 2
3\ V2
< [det(D@ DO el 29 (52 ) 2,
/
< |det(D(®1)(0))| \/Kce Mx/2 (;)N : Z. (2.15)

By the definition of ®, we have D2E(0) = {(D®(0))*}~1(D®(0))~!. Since the set of eigenvalues
of (D®(0))~{(D®(0))*}~! and {(D®(0))*}~1(D®(0))~! are the same, we obtain &; = o.
Thus, we get

EMF X005 FX0)
> M1 = e(8)oil Fxoxllfzn,

oV @T)N{ (x)

By (2.7), (2.9), (2.16) and x§ . (z) + xi .(x) = 1 for all z, we complete the proof of the lower

o + | det(D 0)| vVE e AMﬂ?} (2.16)

A
bound. The upper bound limsup,_, ., 672 < o1 can be proved in a standard way. Let v be a
unit eigenvector such that D?E(0)v = oyv. For this v, let FA(z) = /Ao1(z,v). Then we have
A A A
EUELE) = 61, limyseo [ FA(@)drN(z) = 0 and limy e [|F*[| 2,0 = 1 which imply the
upper bound. O

Remark 2.2. (1) In the estimate of £(Fxq ., F'X0,x), we reduce the problem to Gaussian case
with the help of the Morse lemma. The It6 map is a measure preserving map between Py, (M)
with the Brownian motion measure and the Wiener space. However, the derivative of the Ito
map is not a bounded linear operator between two tangent spaces ([20, 17, 24]). In the study
of the asymptotic behavior of the lowest eigenvalue of a Schrodinger operator on Py, (M) in [6],
the author reduced the local analysis to the analysis in Wiener spaces by using the [t6 map and
a ground state transformation. At the moment, it is not clear that similar consideration can be
applied to the local analysis in the present problem. In this paper, instead, we use the COH
formula in Lemma 3.10.

(2) Let us consider a Dirichlet form

EANFF) = / |A(z)DF (z)|2dv*(z), (2.17)
RN

where A(z) is an N x N regular matrix-valued continuous mapping on R satisfying that there
exists a positive number C' > 1 such that C71¢|? < (A(2)€,€) < C¢)? for all z, . Suppose £4A
satisfies the above assumption (3) and (4). Then, for the asymptotic behavior of the spectral
gap of £4, the same result as in Theorem 2.1 holds replacing o; by the lowest eigenvalue of the
Hessian of F with respect to the Riemannian metric defined by ga(x)(&,€) = |A(z)71¢[2. In that
proof, we use the continuity of the map x — A(z). In the case of Py, 4, (M), a local Poincaré



inequality (3.32) and a log-Sobolev inequality (3.34) holds. However the mapping v +— A(7), is
not a continuous mapping in the uniform convergence topology and just a continuous mapping
in the topology of rough paths. In this sense, we need the result in rough paths. Moreover, in
that case, the operator norm of A(7), is not uniformly bounded in . Hence the argument is not
so simple as in the above case. Note that A(v), depends on \. Hence we need to estimate A(7)y
for large A. In this calculation, we use the short time behavior of the Hessian of the logarithm
of the heat kernel.

3 Preliminary and Statement of results

Let (M, g) be an n-dimensional complete Riemannian manifold. Let d(x,y) denote the Rieman-
nian distance between x and y. Let p(¢, x,y) be the heat kernel of the diffusion semigroup elB/2
defined by the Laplace-Bertlami operator A. We refer the readers to [36, 38] for stochastic anal-
ysis on manifolds. The following assumption is natural for analysis on Riemannian manifolds.

Assumption A. (1) There exist positive constants C,C’ such that for any0 <t <1, z,y € M,
p(t,z,y) < Ct=2e=Cd@y)/t, (3.1)
(2) The Ricci curvature of M is bounded, i.e., |Ric||o < 00.

The condition (2) implies [,, p(t,z,y)dy = 1 holds for all t > 0 and # € M, where dy denotes
the Riemannian volume. In second main theorem (Theorem 3.6), we consider rotationally sym-
metric Riemannian metrics. We prove the above assumption holds true in such a case by using
the following observation in Lemma 3.5. Assumption A (1) holds true if the Ricci curvature is
bounded from below and the volume of small balls have uniform lower bound ([44]). That is,
there exist C' > 0 and ly > 0 such that vol(B;(x)) > CI™ for all 0 < I < lp and any x € M. Here
vol(Bj(x)) denotes the volume of the open metric ball B;(x) centered at = with radius .

In order to define (pinned) Brownian motion measure, we assume M satisfies Assumption A.
Let x9p € M. The probability measure Vé‘o on P, (M) satisfying the following is called the
Brownian motion measure starting at xg:

For any Borel measurable subsets Ay C M (1 <k<m)and 0=ty <t; < -+ <ty <1,

vp, ({7 | 7(t1) € A1, y(tm) € An})

= / . [P (= tre1) /X wpmr, ) La (wp)day - - d. (3.2)
k=1

The process ¥(t) under v, is a semimartingale. When M = R", ~(t) is the ordinary Brownian
motion whose covariance matrix is equal to tI /. Let m : O(M) — M be the orthonormal frame
bundle with the Levi-Civita connection. We fix a frame ug = {;}?.; € 7~ *(z¢). By the mapping
ug : R" — Ty, M, we identify R" with T, M. Let ()¢ : Ty M — T4,y M denote the stochastic
parallel translation along 7. For smooth cylindrical function F(y) = f(v(t1),...,v(tm)) €
FC°(Pyy(M)) (0 <ty <--- <ty <1), the H-derivative DF(vy) is defined by

DF(Y)e =Y ug'r(7); (Vi) (y(t1), - -, v (tm))E A i, (3.3)
=1



where V;f denotes the derivative of f with respect to the i-th variable. Note that DF(y) €
H:= H'([0,1] = R" | h(0) = 0). Under Assumption A, the symmetric form

ENF,F) 2/ IDE(y)[dva, (v),  F € FCF (Puy(M)) (3.4)
Prg (M)

is closable. We refer the reader to [18, 36, 37] for the closability. The Dirichlet form of the

smallest closed extension is denoted by the same notation and the the generator —L) is a

natural generalization of OU operators in Gaussian cases.

We now consider the pinned case. It is elementary fact that regular conditional proba-
bility (pinned Brownian motion measure) Vé‘o’y(-) = vp (- | 7(1) = y) exists on Py, (M) for
p(1, 2o, y)dy-almost all y. However, it is necessary for us to define l/:i‘ojy for all y € M . Actu-
ally, under Assumption A (1) and (2), one can prove that the regular conditional probability
Z/é\o’y on Py, (M) exists for all y € M. This can be checked by using the volume compari-
son theorem and the Kolmogorov criterion (see [3, 36, 19]). Moreover, the pinned Brownian
motion measure is equivalent to the Brownian motion measure up to any time ¢t < 1 with re-
spect to the natural o-field generated by the paths. This implies that the pinned Brownian
motion is a semimartingale for ¢ < 1. Hence the stochatsic parallel translation is well defined
and one can define the H-derivative of a smooth F(y) = f(v(t1),...,7(tm)) € FC°(Prg,yo(M))
(tm < 1) by DoF(v): = Po (DF(v)),, where P is the projection operator on H onto the subspace
Ho := {h € H | h(1) = 0}. Using Dy on FCp°(Py, yo(ar)), We can define a symmetric bilinear
form £* similarly to non-pinned case. However, we need additional assumption on the Rieman-
nian manifold M to prove the closability since M may be non-compact. Hence we consider the

following assumption.

Assumption B. (£}, FC°(Py, 4, (M))) is closable.

We explain the reason why we need additional assumption. Let b(t) = fot uytT(y)5t o
dv(s) (0 <t < 1), where od means Stratonovich integral. The process b(t) is anti-stochastic
development of y(t). Under the law v , b(t) is the ordinary Brownian motion with variance 1/\.
We will discuss b(t) later again in the explanation of the COH formula. Note that the law of
{b(t) }o<t<1 is singular with respect to the Brownian motion measure under Vfi\o,yo‘ This is related
to the singularity of the pinned Brownian motion itself. The closability of £* can be proved
by using the integration by parts(=IBP) formula for D, Dy. The formula contains stochastic
integrals with respect to b(t) and the integrability of the stochastic integrals when ¢ converges
to 1 is the main issue to establish the formula for the pinned measure. See [19, 3, 25, 26, 36, 31]
for this problem. If either (i) M is compact, or (ii) M is diffeomorphic to R™ and the metric
is flat outside a certain bounded set, holds, by applying the Malliavin’s quasi-sure analysis, we
can prove the integrability of the stochastic integrals and we obtain the IBP formula and the

closability. Also, under the condition,

There exists a positive constant C' such that for any 0 <t <1 and z € M,

d(y07 Z) c
V., log p(t, yo, 2)| < C 2020 = 3.5
V= log p(t, o, 2)| < N (3.5)
the IBP formula and the closability hold. This inequality holds for any compact Riemannian
manifolds ([36]). For rotationally symmetric Riemannian manifolds, we will give a sufficient
condition for this. See Assumption C and Lemma 3.9 (2).

We now define a Dirichlet Laplacian on a certain domain D in Py, (M).

10



Definition 3.1. Let | be a positive number with | > d(xo,yo). Let Bi(yo) denote the open ball
centered at yo with radius . Define

Dy = {7y € Pryyo(M) | v(t) € Bi(yo) for all0 <t <1} (3.6)
For | = +00, we set Dog = Pry 4o (M).

We may omit the subscript I for simplicity. In order to define the H'-Sobolev spaces, we

assume Assumption B for the moment. Let H'2(Py, 4, (M), v}, ,,) denote the H'-Sobolev space

1/2
which is the closure of FCp°( Py, 4, (M )) with respect to the norm || F|| g1 = (HFH%Q(VA )+ EMNF, F)) .
0,y
Let o
1,2 Ay 1,2 A —0 .2 '
HYAD,) )= {F € HY2(Pyy o (M), )| F =01}  _as. outside D} (3.7)

770,90 770,90 0,40

which is a closed linear subspace of HY2(Py, ., (M), V;‘O’yo).

The non-positive generator Ly corresponding to the densely defined closed form

ENF,F), FeHy*(D,v) )

? 7 To,Y0

in the Hilbert space L?(D, v, . ) is the Dirichlet Laplacian on D. Let

? 7 %0,Y0

DoF|?dv)
Dir1p = inf Jp| 02 | z0,:y0 (3.8)
" F(#0)eH)?(D) HFHLQ(VZAO vo)

This is equal to inf o(—L,), where o(—L)) denotes the spectral set of —Ly. We next introduce

A
€Dir2,D

DoF|2dv?
= sup in {fD| 0 ’ 20,90
G(F0)eL2 (13 4,)

1E 1z ) Fet” @), (& G)L2(0200) = 0}‘ >
L Y2090

This is the generalized second lowest eigenvalue of —Ly. When [ = +oo, e)bir,l,D =0and e’\DiT’Q’D
is equal to the spectral gap of —Ly on the whole space Py, ,,(M). We use the notations e} and
e% instead of e’\Dim,D and ei‘)”&p respectively in this case. To state our first main theorem, let
us define the energy of H! path v belonging to Py, 4, (M),

1 1
B0) =5 [ WOt (3.10)

We use the same notation Dy for the derivative of the smooth function on the Hilbert manifold
of the H' subset of Py, 4, (M). Note that D3E(cy,,) is a symmetric bounded linear operator
on Hg. See Lemma 4.1 for the explicit form. The following is our first main theorem.

Theorem 3.2. Assume M satisfies Assumption A and Assumption B. Let 0 <l < co. Assume
that | satisfies the following.

(1) 1 is smaller than the injectivity radius at yo. In particular, there are no intersection of the
closure of Bi(yo) and Cut(yo), where Cut(yo) denotes the cut-locus of yo.

(2) The Hessian of k(z) = 3d(z,y0)? satisfies that inf e g, (yo) V2E(2) > 1/2.

11



Then we have

A
€Dir2D

= A1
A—00 A b (3 )

where o1 = inf o((D3E)(Cagy0))-

Since V2k(2)]zmy, = It, M, the above conditions (1), (2) hold true for small I. Also, if
M is negatively curved manifold, the condition (2) holds for all [. We need condition (2) to
prove a COH formula by applying Lemma 3.1 in [3] although this may be just a technical
condition. Under the above condition, clearly the minimal geodesic ¢z 4y = Cag,y0(t) (0 <t <
1) (€2,y0(0) = 0, Co,y0(1) = yo) belongs to D. Further, limy_,o Vi‘myo (D) = 1 holds true by a
large deviation result (see Section 5).

For a certain class of Riemannian manifolds M, the same result holds for Py, ,,(M). It is the
second main theorem. Let M be a Riemannain manifold with a pole yy. That is, the exponential
map exp,, : Ty,M — M is a diffeomorphism. We pick an orthonormal frame uy of Ty, M. Let
S™~1 be the unit sphere centered at the origin in R”. We identify R™\ {0} with (0, +o00) x S~}
by (r,0)(€ (0,+00) x S*71) = 70 € (R™\ {0}). Let us define ¥ : (0,+00) x S"~* — M by
= ¥(r,0) = exp,, (lo(rO)). Then r = d(yo, z) holds. The Riemannian metric g is said to be
rotationally symmetric at yq if the pull back of g by ¥ can be expressed as

U*g = dr? + f(r)%de?, (3.12)

where dO©? denotes the standard Riemannian metric on the sphere. Note that if g is a smooth
Riemannian metric on M, f(r) is a C* function on [0, 00) satisfying f(0) = 0 and f’(0) = 1.
We consider the following assumption on f.

Assumption C. Let o(r) = log @ The function @ satisfies the following.

(1) ¢ is a C* function on [0,00). The k-th derwvative p*) (1) is bounded function on [0,00) for
alll <k < 4.

(2) There exists a C™ function ¢ on [0,00) such that ¢(r) = ¢(r?).

(3) inf,~ory'(r) > —%.

By Lemma A.2 in [16], it is easy to deduce that for any smooth function f on [0, co) satisfying
f(0) =0, f/(0) = 1 and Assumption C (2), the Riemannian metric dr? + f(r)2d©? on R™ \ {0}
can be extended to a smooth Riemannian metric on R"™. The above condition on ¢ appeared
in [5]. In [5], we assume all derivatives ¢(®) are bounded. However we see that it is enough to
assume the boundedness for 1 < k < 4 by checking the calculations there. We give examples of
o which satisfies the above assumption.

Example 3.3. For the hyperbolic space with the sectional curvature K = —a, @.(r) =
log % This satisfies Assumption C. Actually ¢/ (r) > 0 for all r. Clearly, small per-

turbations of ¢, (r) satisfy the assumption. Also if ¢; (1 <1 < n) satisfy the assumption, then
so do the function > | p;p; for any positive numbers {p;} with Y ;" , p; = 1.

The function f satisfies the Jacobi equation f”(r) + K(r)f(r) = 0, where K is the radial
curvature function. It is natural to put the assumptions on K instead of f. In fact, it is proved
in [51] that necessary all estimates for the validity of our second main theorem (Theorem 3.6)
hold true under some assumptions on K. Further related work is in progress.

The quantity r¢'(r) is related to the second derivative of the squared distance function as
in the following lemma ([32, 5]).
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Lemma 3.4. For r = d(yo, z), we have

2
V2 <g> = Ip.p + 19 (r) P, (3.13)

where v, € T, M is the element such that exp,(v.) = yo and P, denotes the orthogonal projection
onto the orthogonal complement of the 1 dimensional subspace spanned by v, € T,M.

By this lemma, we see that Assumption C (3) implies the condition (2) in Theorem 3.2 with
l =+00.

Lemma 3.5. Suppose f satisfies Assumption C (1),(2) and inf,~q f(r) > 0. Then Assump-
tion A and Assumption B hold.

Proof. By Lemma 1.21 in [16] (see also Proposition 9.106 in [10]), it is easy to see the bounded-
ness of the Ricci curvature under the Assumption C (1), (2). To prove the Gaussian upper bound
in Assumption A (1), it suffices to prove that there exists C' > 0 such that inf,cps vol(B;(x)) >
Cl™ for small [ > 0 because the Ricci curvature is bounded. Also under the assumption
¢ |loo < 00, we obtain there exist positive constants C(e, R) and c¢(e, R) for any ¢ > 0 and
R > 0 such that

~

(v

c(e, R) <
f(r)
and lim._,g c(e, R) = lim.,0 C(e, R) = 1. By using this and inf,>; f(r) > 0, it is not difficult
to show the uniform lower boundedness of the volume by this estimate. Assumption B follows
from the estimate of V, log p(t, yo, z) in (3.19). O

< C(e,R) for any r, 7’ with r,7' > R, |r —r'| < e (3.14)

We note that inf,~qr¢’(r) > —1 implies inf,~1 f(r) > 0.
The following is our second main theorem. We prove the positivity of e%‘ in more general
setting in Theorem 6.2.

Theorem 3.6. Let M be a rotationally symmetric Riemannian manifold with a pole yy. Suppose
f in (3.12) satisfies Assumption C. Then ey > 0 holds for all A > 0 and
lim 2 (3.15)
im —= = )
A—oo A oL

where o1 s the same number as in Theorem 3.2.
We make remarks on Theorem 3.2 and Theorem 3.6.

Remark 3.7. (1) It is not clear whether the same result as in Theorem 3.6 holds or not for
Py (M) (y # yo) under Assumption C. It is more interesting to study non-rotationally general
cases.

(2) By checking the proof, the same results as in Theorem 3.6 hold if the following are satisfied,

(i) d(xo,yo0) is smaller than [ which satisfies Theorem 3.2 (1) and (2),
(ii) the log-Sobolev inequality (3.34) holds,

(iii) the tail estimate (7.1) holds.
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(3) If the sectional curvature along the geodesic ¢y, 4, is positive, then inf o(DZE(czgy,)) < 1
and the bottom of the spectrum is an eigenvalue of DgE(cxmyo) and is not an essential spec-
trum. While the curvature is strictly negative, inf o(D3E(cz4,)) = 1 and 1 is not an eigenvalue
and belongs to essential spectrum. This suggests that the second lowest eigenvalue, or more
generally, some low-lying spectrum of the OU operator (with Dirichlet boundary condition)
on D or Py, (M) over a positively curved manifold belongs to the discrete spectrum, while
the second lowest eigenvalue is embedded in the essential spectrum in the case of negatively
curved manifolds. In fact, in the proof of upper bound in the main theorems, we use “approx-
imate second eigenfunctions” which are defined by the eigenfunction which achieves the value
inf 0(D3E(cyy,y,)) approximately. If some isometry group acts on M with the fixed points zg
and yg, we may expect the discrete spectrum have some multiplicities. We show these kind of
results in the case where M is a compact Lie group in a forthcoming paper.

As mentioned in the Introduction, the spectral gap e} for P, (M) is defined similarly and
ey > 0 for all \. This is due to Fang. He established a COH formula and proved the existence
of the spectral gap in the case where M is compact and A = 1. However, it is obvious that
the same result holds true on a complete Riemannian manifold with bounded Ricci curvature
for all A > 0 . See also [11, 30, 4, 2]. The variant of the COH formula in the loop space case
is important in our case also. To explain the COH formula, we need some preparations Let
St = a( (5),0 < s <t)VN, where N is the set of all null sets with respect to v . Then b(t) =
fo ug tr(y)5t o dy(s) is an F- Brownlan motion with the covariance E*% [(b(t),u)(b(s),v)] =
(u,v) tf\s (u,v € R™) on R™ under v . We simply say b(t) is a Brownian motion with variance
1/X in this paper. We recall the notlon of the trivialization. Let T' € T'(TM ® T*M)) be a
(1,1)-tensor on M, that is, T is a linear transformation on each tangent space. We write

T(7), = up 'T(0); T () 7(V)euo € L(R™, R"). (3.16)

The definition for general T' € ' ((PTM) ® (®1T*M)) is similar.
We now state COH formula on P,,(M). Below, we use the notation L? := L2([0, 1] — R™, dt).

Lemma 3.8. Assume ||Ric||oc < 00. Let F € HY(Py, (M), v} ). Then

R oo

Py - Er) = [ (E[{(+ R ) 0RO} 18] am). e

where (Ro x(7)p) (t) = 1 sy Ric(y fo s)ds, * indicates the adjoint operator on L? and DF ()} =
%DF(v)t. Also T denotes the identity operator on L2.

The second derivative of logp(t, x,y) is related to the COH formula on Py, (M). Under
Assumption C, we have a good estimate on the first and second derivatives of log p(t, yo, 2)
with respect to z. Similar estimates of the heat kernel hold in a compact set outside cut-locus
when M is a compact Riemannian manifold. This is studied by Stroock [54], Malliavin and
Stroock [49] and Gong-Ma [30]. Their results clearly can be extended to non-compact R with a
nice Riemannian metric which coincides with the Euclidean metric outside a bounded set. The
estimates are as follows.

Assumption D. For any compact subset F' C Cut(yo)® and 0 <t <1 there exists Cr > 0 such
that

1
sup |tV2log p(t, yo, 2) + V> < d(yo, ) )’ < Cpt'/2. (3.18)
zeF
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The following (1) and (2) can be found in [5] and [30] respectively.

Lemma 3.9. (1) Let M be a compact Riemannian manifold or R™ with a Riemannian metric
which coincides with the Euclidean metric outside a bounded set. Then Assumption D is satisfied.
(2) Suppose Assumption C (1) and (2). Then Assumption D is satisfied. Actually the following
stronger inequalities are valid:

Let T' > 0. There exist positive constants Cp,Cy which may depend on T such that for all
0<t<T,

sup [tV log p(t, yo, 2) — v:| < Cit, (3.19)
zeM

sup tV2log p(t, Yo, 2) + I + d(yo, 2)¢' (d(yo, 2)) P;-| < Cat, (3.20)
ze

where v, and P} are defined in Lemma 3.4.

The important point in the estimate (3.20) is that the norm of the second derivative of
tlog p(t,yo, z) is bounded from above by a linear function of d(yg, z). Probably, the estimates
(3.19) and (3.20) hold under weaker assumptions on ¢. It is natural and interesting to study
non-rotationally symmetric general cases.

Our Dirichlet Laplacian is defined on the set of paths which are restricted in the small ball.
Therefore, even if we vary the Riemannian metric outside the ball, the spectral property of the
operator would not change. We explain this reasoning more precisely. Let (M, g) and (M’, ¢") be
Riemannian manifolds satisfying Assumption B. Let yo € M, y{, € M’ and B;(yo) C M, B;(y,) C
M’ be open metric balls. Let xg € Bj(yo). Let [, > [. Assume that [, is smaller than the
injectivity radius at yp. We assume that there exists a Riemannian isometry ® : Bj (yo) —
By, (yy). Then ®(Bj(yo)) = Bi(y;). Let zf; = ®(x). Let V]’}meyo and V&,%% denote the
pinned measures on each manifold. We write

D = {7y € Pryyo (M) | ¥(t) € Bi(yo) for all 0 < ¢ < 1},

={y € Py, (M ") | v(t) € Bi(yp) for all 0 < ¢ < 1}
Let A C D be a Borel measurable subset. Define ® : D — D’ by ®(v)(t) = ®(v(t)). Let
pM(t,z,y) and p™'(t,2’,y') denote the heat kernels on M and M’. Note that pM (¢, z,y) #

M (. ®(z), ®(y)) z,y € By, (yo) generally. However, by the uniqueness of the solution of stochas-
tic differential equations, we have

VA (A) V])\\W AT ((I)(A))

M:xO:yO . ” (3 21)
A - A ' :
VM 0,90 (D) VM (D)

By this, for any bounded Borel measurable function F' on D',

l/)\, i
/ F Maroyyo(’)/) — //F(V)W' (322)

VM ,20,Y0 (D) VM’,z&,y(’) (D,)

Let F € HY2(Py ,(M")). If F € Hy*(D' V3 ), then

() == F (3(7) x ( sup d’(@(v)(tma)) e YDA ).

0<t<1
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where y = x(¢) is a non-negative smooth function such that x(¢t) =1 for t < % and x(t) =0

for t > % Moreover || DoF|[ 2, A
M/,CE/O, / M’,za,y/o

these results, we need supg< ;<1 d(v(£), @~ (y)) € H'?(Prq y,(M)) which can be found in Lemma
2.2 and Remark 2.4 in [3].
The above argument implies that

) = I1DoF 20y, (o)) To prove

A
yo/VMvwo,yo

A A
€Dir2,D = €Dir 2D’

Hence, in the proof of Theorem 3.2, we may assume that M is diffeomorphic to R™ and the
Riemannian metric is flat outside a certain bounded subset and Assumption D is satisfied. The
key ingredient of the proof of Theorem 3.2 is a version of the COH formula in [7] which can be
extended to the above non-compact R™ case with a nice Riemannian metric. Since the COH
formula is strongly related to the heat kernel p(t,z,y) on M itself, the above observation is
important. We need some preparation to explain COH formula on P, ,,(M). Let Vy)(‘) (t,z) =
grad, 10gp( ,y0,2) (0<t<1). We write

0,90

Vs (6,7), = ug '7(7); Vo (t.4(1)) € R™

Also VVyi‘) (t, ) , denotes an n x n matrix. More explicitly,

T(y)eup- (3.23)

P Y _ _ 1-t¢
vvl/)(\) (t7 7)15 = uO 1T<7)t 1v2gradz lng <)\7 Yo, Z)
z=(t)

Let w(t) = b(t) — 5 fo ), ds. This process is defined for ¢ < 1 and it is not difficult to
check that thls can be extended continuously up to t = 1. Let N/%0:%- be the set of all null sets

of yxo wol3. and set &; = §; v N@o-¥0:l - Then w is an ®;-adapted Brownian motion for 0 < ¢ < 1

such that E"%owo [(w(t),u) (w(s),v)] = t/)\\s (u,v) for any u,v € R™. Let

Rlc( ) + VVA( 7),- (3.24)

K(W)/\,t \

2\
Let M(v)x be the linear mapping on R™ satisfying the differential equation:

MOy =K@)nM@)ae 0<t <1, (3.25)
M(y)ro0=1. (3.26)

Using M and K, we define for a bounded measurable function ¢ with supp ¢ C [0,1),

TExe(0) = M) [ MORK (o) (3.27)
Also let
A =1+ J()x (3.28)
The operator ((I + Rov)\(w))_l)* in the COH formula in Lemma 3.8 coincides with A(y)x
which is obtained by setting K(v)) = Rlc( )¢ in the above.

We are ready to state our COH formula for functions on P, ., (M) and its immediate con-
sequences.
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Lemma 3.10. (1) Assume M is diffeomorphic to R™ and the Riemannian metric is flat outside
a bounded subset. Let 0 < < oo. Suppose D(= D;) satisfies conditions (1), (2) in Theorem 3.2.
Let F € Hy*(D).

(i) It holds that DoF () = 0 for v} , -almost all v € DC.

z0,Y0

(ii) There exists A« > 0 such that A(y)x can be extended to a bounded linear operator on L2
for each ~y for all X > \,. Let a(\) = esssup {||A(7),l|2, | v € D}. Here |- ||op denotes the

operator norm. sup a(\) < oo holds and for X\ > A, the following COH formula holds:
A> s

t
B0 [F|6,] = E*ow[F] + / (H(s,7).dw(s)), 0<t<1, (3.29)
0

where
H(s,7) = E"ow [A(7)A(DoF(7))(s)|&s] . (3.30)

and DoF(v); = %(DOF)(*y)t. Moreover the following inequalities hold for A > \,.

2a(\)?
B [Flog (F/1FIsgy )] < 25052 %0m ID0FE]. ()

2
AEY=0.%0 [(F — EY=ow0 [F}) } < E¥00 [|A('y)/\D0F]2} . (3.32)

(2) Assume M is a rotationally symmetric Riemannian manifold with a pole yo. Suppose As-
sumption C.

(i) The operator A(+)x can be extended to a bounded linear operator on L? for each ~y for all
A > 0. Moreover for each Ao > 0, there exists a positive constant Cy which depends only
on @ and X\g such that for all X > Ao,

lAM)Allop < Copye(y)  for any 7, (3.33)

where py, () =1 + maxo<i<1 d(yo, (t))-
(ii) For F € HY2(Pyy 4o (M), v ), the COH formula (3.29), (3.30) hold.

77 T0,Y0

(iii) For each Ao > 0, there exists a positive constant Cy which depends only on ¢ and Ny such
that for any X > Ao and F € FC;°( Py yo(M)),

F*(y)log (F()*/IIF|; vy (Y
/PIM(M) (108 (FOPR/IFZagn ) did (1)

C
<[ SanIDE) R, (). (3:34)
Px() »Y0 (M)

Proof. The proof of (1) is similar to that in [7]. (2) follows from Lemma 3.2 and Theorem 3.3
in [3] and Lemma 2.3 in [7]. In the present case, we have

K(ae = 1 (~a+ Ci(0) + Calt), (3.35)
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where
o = min (1 l—i—mfrgo )) >1/2,

— d(yo, 7(0)¢' (Ao, 1) } PEG)

Ci(t) a
+ (a— 1)ﬂ~,(t)7
o) < S

and C is a positive constant. The case A = 1 is considered in [3] and the estimate in the
hyperbolic space case with general A can be found in Remark 2.4 in [7]. The proof of general
cases are similar to them. O

Under the assumption in the lemma above, A(v)y is a bounded linear operator on L? for

Vé‘o’yo almost all v. However, we cannot expect the usual continuity property of the mapping

v +— A(7)x because they are defined by using It6’s stochastic integrals. The inequality (3.32)

implies that liminf, ., @ > 0. On the other hand, we cannot conclude e3 > 0 for Py, 4, (M)
by the log-Sobolev inequahty (3.34) because the operator norm A(y), is not uniformly bounded.
As mentioned in the Introduction, the same result as in Theorem 3.6 holds for P, (M).
We prove it as a warm up before proving our main theorems. For simplicity, we assume M is
compact. After the proof, we explain different points of the proof in the loop space case.

Theorem 3.11. Let M be a compact Riemannian manifold. Let eé\ be the spectral gap of the
Dirichlet form * on Py, (M) with yé‘o. Then €3 > 0 for all A > 0 and

—==1. (3.36)
Proof. We use the COH formula (3.17). By using

C
I+ Rop(1) " Hlop <1+ 5 for any A > Ao >0, (3.37)

we get

1 2
EY% [(F — E¥% [F])Q} <5 (1 + (;) E[|IDF(v)]%]. (3.38)
Here C depends on \g. Since e = 0 and the corresponding eigenfunction is a constant function,

A
we have e% > N1+ %)_2 which proves that liminfy_, ., 672 > 1. We prove converse estimate. To
this end, we consider a candidate of approximate second (generalized) eigenfunction. Let ¢ € L2

and assume |||z = 1. Let F(y \Ffo db(t)). Then EY% [F] = 0 and EY% [F?] = 1.
We have F' € D(€) and

o [ et = [ (o) acs (o, [ (R0 ca) ) ),

where R(v), is the trivialization of the Riemannian curvature tensor and (:,-) denotes the inner
product in R". The readers are referred to [17, 1] for this formula. See [18, 42] also.
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Since

[ [ (B0, b)) es),od [ )ibs)
[/ /

=]

1 .
R, (odb(t), h(t)) (). / & (5)db(s)

~_—

~_—

1 .
R(v)t(ﬁj,/t ¢’ (s)db(s))(cdb(t)), h(t)

~_—

1 .
R, / o (s)dbi (5), 1) (odb(t))., h(t)
1 1 1 .
= [ w0 ([ e ) eawno)a,
we obtain

DF(Y, = Vag) + v | R, ( / so(s)dws),ei) (odb(u))

t

I 1 ) )
= Ve + VA [ RO, (e o) [ ()b ()

¢
1 u )
Vi [ w0 ([ oo e,
t 0
By a standard calculation, we have
1
/ E[|DF(y) 7] dt <X+ C.
0

This implies (3.36).

(3.39)

(3.40)

(3.41)

O]

As in the proof above, the COH formula and the estimate limy_ o ||I + Rox(V)]lop = 1
immediately implies the lower bound of the limit. In the loop space case, A(7), is not uniformly
bounded in v and the existence of the spectral gap is not obvious. This difficulty can be solved
by using the log-Sobolev inequality (3.34). In order to obtain precise asymptotics of the spectral
gap, we need continuity theorem in rough path analysis. For this purpose, we need to consider
the operator A(cggyo)oo = HMy_yo0 A(Cgy0)r- In the next section, we study some relations

between A(cz.y,)o0 and the Hessian of the energy function E at ¢z y,-
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4 Square root of Hessian of the energy function and Jacobi fields

In this section, we assume d(xg,yo) is smaller than the injectivity radius at yp. We begin by
determining limy_,o0 K (Cz0,y0)a,t- By using (3.18), we have

Jim K (caggo)ne = — im ot Bleqy )i+ im S VA caog)e
1 i t Ah_fl;o 1 ; Vy/(\) (t, Caoyo)t
B _%m' (4.1)
We write
k)= _ﬁm (4.2)

It is natural to conjecture that A(cs, y,)co is equal to the operator in L? given by

1
o(t) = o(t) + M(t)*/t M (s)*K(s)p(s)ds, (4.3)
where M (t) is the solution to

M(t) = K(t)M(t) 0<t<1, (4.4)

In fact, this is true and we prove it later in more general form in Lemma 5.2. We study
the relation between the operator of (4.3) and D%E(cy,,). First, recall that we fix an frame
up € O(M) at xo. Let us choose £ € R™ so that exp, (tuo(§)) = czgyo(t) (0 <t < 1), where
exp,, stands for the exponential mapping at zo. Clearly it holds that d(zo,yo0) = |£|. Let
Cyo,a0(t) = Cag,y0(1 —t) denote the reverse geodesic path from yg to zo. In order to obtain the
explicit expression of the Hessian of k(2) (2 € czy,y,), We recall the notion of Jacobi fields.

Let R be the curvature tensor and define R(t) = R(cz,y,), (-, €)(§) which is a linear mapping
on R™. Also we define R (t) = R(1—t). Let v € R™ and W (¢, v) be the solution to the following
ODE:

W"(t,v)+ RE()W(t,v) =0 0<t<1, W(0,v) =0, W (0,v) =wv. (4.6)

Since t — W(t,v) is linear, let W (t) denote the corresponding n x n matrix. Needless to say,
W(0) = 0,W'(0) = I. Since Cut(yo) N {cyyzo(t) | 0 <t < 1} =0, W(¢) is an invertible linear
mapping for all 0 < ¢ <1 and W (t,v) = W ()W (1)~ !v is the solution to

W (t,v) + RT ()W (t,v) =0, W(0,v)=0, W(l,v)=

and (V2k(cyq 20 (1)) (uov, ugv) = (W'(1,0), W(1,v)) = (W'(1)W(1)"'v,v). This result can be
found in many standard books in differential geometry, e.g. [40]. Let 0 < 7" < 1. We can
obtain an explicit form of the Jacobi field along ¢y, ., (t) (0 <t < T') with given terminal value
at T using W. Let Wy (t,v) = W(Tt)W (T) 'v. Then Wr(t,v) 0 < t < 1 satisfies the Jacobi
equation

Wit v) + RTUT)T?* Wy (t,v) =0, Wr(0,0) =0, Wr(l,v) = v. (4.7)
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Hence V2k(cyg,z0(£)) (T(Cag,y0 ) 11100, T(Cag o )1—tuov) =t (W ()W (t) 1o, v).

Next we prove that A(t) := tW/(t)W(t)~! is a symmetric matrix for 0 < ¢+ < 1. This can
be checked by the following argument. Note that W (t) = tI + fo Jo Jo W (u)du. This follows
from the equation of W. By this observation, if we extend A = A(t) by settmg A(0) = 1, then
A(t) is continuously differentiable on [0, 1] and A’(0) = 0. We have

A=W W)™ +tW" W) —tW (W)W ()W ()

— R (1) — (:) + it) (4.8)

Let B(t) = A(t)— A(t)*, where A(t)* denotes the transposed matrix. Since R () is a symmetric
matrix, (4.8) implies

B(t) = 1/0 (I = A(s)")B(s)ds + 1/0 B(s)(I— A(s))ds, 0<t<l, (4.9)

Noting

1/t .
t/o (I —A(s)*)B(s)ds

_ I‘tAW /Ot B(s)ds + 1/(: (A(s)") (/0 B(r)dr) ds (4.10)

and using Gronwall’s inequality, we obtain B(¢) = 0 for all ¢ which implies the desired result.
Let f(t) = W(1 —t). Then f satisfies

")+ R@)f(t) =0, 0<t<1, f(y=o0, f(1)=-I. (4.11)

Since f'(t)f(t)~! is a symmetric matrix, we have the following key relations:

oo, = —(1 = O (07 (0)"* (112)
K(t) = 1 VP h{Carn), = (050 (413

Let
K(t) = K(t)+ % (4.14)

Since K(t) = I_’fﬁlt_t) , we see that K(t) (0 <t < 1) is a matrix-valued continuous mapping.

Let N(t) be the solution to

N'(t) = K(t)N(t), N(0) = I.
Then sup, ([N (t)]lop + [N 71(t)|lop) < 00 and M (t) = (1 —t)N(t), where M (t) is the solution to
(4.4). Also we have M(t) = f(t)f(())_l.
We write L = {p € L? | fo o(t)dt = 0}. Then (Uyp) ( fo s)ds is a bijective linear
isometry from L3 to Hy. Also U™1h(t) = h( ). Let us mtroduce an operator

(Se) (t) = o(t) — f’(t)f(t)‘l/o ¢(s)ds, (4.15)
D(S) = L3. (4.16)
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By Hardy’s inequality,

/01 1125/):1 o(s)ds

2 1
dt < 4/ lo(s)|?ds for any ¢ € L2,
0

(4.17)

we see that S is a bounded linear operator from L2 to L2. The following lemma shows that S is
a square root of the Hessian of the energy function E. This relation is key to identify the limit

by
of €Dir.2,D"

Lemma 4.1. Let T be the bounded linear operator on Lg such that

(T)(t) = — /tl R(s) (/0 go(u)du) ds + /01 (/tl R(s) (/Oscp(u)du)ds> dt.

Then T is a symmetric operator and for any ¢ € L3,

1Sell> = (I +T)e, @),

where I denotes the identity operator on Lg. Moreover,
(D(%E)(Cxo,yo) =U(I+1T) U_la
where E is the energy function of the path (3.10).

Proof. The symmetry of T follows from direct calculation. Using

we have

1 t
1Sel® = lleoll® — 2/0 <f'(t)f(t)1/0 sO(S)ds,sO(t)> dt

+/
0

dt
e+ [ (o) [ etas. [ eois)a

1 t 2
n /0 SO /0 o(s)ds

dt
= el - | 1 (R(t) / " o(s)ds, / t«p(S)ds) it

=((I+T)p, ).

By the second variation formula of the energy function along geodesics ([40]), we have

(DFE)(Cao0) (U, Up) = (I +T)g, ).

Thus the proof is completed.

t
) /0 o (s)ds
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Let
(S20)(t) = (1) + /(1) /0 £(5) " pls)ds. (4.22)

Then again by Hardy’s inequality Sy is a bounded linear operator on L2. Moreover, it is easy to
see that Image(S2) C L3, SS2 = I12 and S2S = Ipz. Therefore, S; = S—! and Image(S) = L2
Moreover we have S*S = I + T on L3 by (4.19). Note that by identifying the dual space of a
Hilbert space with the Hilbert space itself using Riesz’s theorem, we view S* : (L?)* — (L3)* as
the operator from L? to L%. We have the following explicit expression of S~1, S* and (S~1)*.

Lemma 4.2. (1) S7': L2 — L2, S* : L? — L3 are bijective linear maps and we have for any
p€L?

(5710) () = o(t) + 7'0) | 1) (o) (1.23)
1 ‘ t
(500 = ¢ = [ ear+ [ 1)) e(s)as

— /01 (/Ot f’(s)f(s)lgo(s)ds) dt. (4.24)

(2) (S™H* is a bijective linear map from LE to L?. If we define (S™1)* is equal to 0 on the subset
of constant functions, then for any ¢ € L2,

1
((S7H*e) () 290(75)+(f(t)*)_1/t F(s) F'(s)f(s) " p(s)ds. (4.25)
Also (S71)*p can be written using M(t) and K (t) as
1
(™) (1) 290(75)+(M(t)*)1/t M(s)"K(s)p(s)ds. (4.26)

Proof. All the calculation are almost similar and so we show how to calculate (S~!)* only. Using
(F@&)f)~H* = f(t)f(t)~L, we have for ¢ € L? and ¢ € L2,

(571%1/’)1}
1 t 1 /
=0 - | < | 16 et ( / f<s>*f’<s>f<s>1w<s>ds) >dt
1 1
= (p.¥) + /0 CIONFO) / F()" /()£ ()" p(s)ds ). (4.27)
This shows (4.25) and (S~!)*const = 0. O

We summarize the relation between S and T in the proposition below.

Proposition 4.3. (1) We have
I+T=8%S, (SH(I+T)=8, (I+T7)"'=s1s1)"
(2) The following identities hold.

. . 1
op
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Proof. I +T = S*S follows from Lemma 4.1. (I +7T)~! = S71(S™H* follows from (S~1)* =
(S*)~L. (2) follows from (1). O

The identity [|S¢l|? = ((I +T)p,¢) (¢ € LE) is used to prove the upper bound estimate,
while the inequality info (I +17)) < W is used for the proof of the lower bound estimate
op

in Theorem 3.2. See (5.39) and (5.59).

5 Proof of Theorem 3.2

We prove Theorem 3.2. Hence we assume that D satisfies conditions (1), (2) in the theorem
throughout this Section. As explained already, furthermore, we may assume M is diffeomorphic
to R™ and the Riemannian metric is flat outside a compact set. Therefore, Assumptions A, B,
D are satisfied.

We consider the ground state function of Ly. Let x5(7) = xs (maxogtgl d(Y(t), Czo,y0 (t))),

where y; is a non-negative smooth function such that ys(u) =1 for |u| < ¢ and xs(u) = 0 for
|u| > 20. Here § is a sufficiently small positive number. Note that there exists Cs > 0 such that
V%O’yo (maxg<i<1 d(Y(t), Cz.y0(t)) = 8) < 7?5, This can be proved by a large deviation result
for solutions of SDE. Since the proof is similar to that of (5.32), we omit the proof.

Thus H)Z(;HLQ(V%O%) > 1—Ce . Also we have ||D05<5HL2(,,%0%) < Ce~9"*. Here we have
used that the function g(vy) = maxo<i<1 d(Y(t), Cz.40(t)) belongs to D(EA) and [Dog(7y)| < 1

I/;\O’yo—a.s. . This is proved in a similar way to Lemma 2.2 (2) in [3]. Hence

eDirip < Ce (5.1)

A
On the other hand, it is proved in [7] that liminf)_, em# > 0. In [7], we studied the case of
compact manifolds. However, the proof works as well as the present case by the assumption on
M. These estimates imply that ei\)irl p 1s a simple eigenvalue. Let W) denote the normalized

non-negative eigenfunction (ground state function). It is clear that ¥y € HO1 2 (D, I/;‘myo). From

(5.1), we obtain [[DoWxl[12(, ) S Ce=%*. Tt is plausible that Wy is strictly positive for
z0,Y0
Vé‘o’yo almost all v which follows from the positivity improving property of the corresponding

L*-semigroup. However, we do not need such a property in this paper and we do not consider
such a problem.
We use the following representation of e)]‘jim’p to prove LHS < RHS in (3.11) in Theorem 3.2.

Do(F — (Uy, F)Wy)[2dv)
eﬁ)iTQ'D — inf fD| 0( ( A ) 2>\)’ Vl‘o,yo Fe Hé72(p)
w HF - (lp)wF)\IIAH[g(VA )
r0-Y0
and ||F — (\IJ,\,F)\IJA||L2(VQMO) #+ 0}. (5.2)

The following estimate is necessary for the proof of Theorem 3.2.

Lemma 5.1. We have
X = U2 (pyy ) ) < Ce ", (5.3)

£0-,Y0

where C,C" are positive constants.
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Proof. By the COH formula,

H\Il)\_(\ll)\, )L2 l,A HL2 IOHO) SC@iC)\.
This implies
2 _ —C'\
1-— (‘I[/\y 1)L2(Va>:\,y) = (\Il/\a \II)\ - (\I/)” 1)L2(V%7y))[/2(y%0 yo) é Ce
which shows || ¥ — HL2 Pu o (M)w < 2Ce=C', 0
z0,Y0

) 950 110)

We need the following lemma to prove that A(y), can be approximated by A(czyyy)oo(=
(S71)*) when 7 is close to ¢y, and A is large.

Lemma 5.2. Recall that we have defined

V2k(c,
K(t) = _M. (5.4)
1—¢
We consider a perturbation of K (t) such that
C.(t)

Ke(t) = K(t) + m7

where 0 < § < 1 is a constant and C.(t) (0 < e < 1) is a symmetric matriz-valued continuous
function satisfying sup, |Ce(t)|| < e. Let M.(t) be the solution to

M(t) = K.()M.(t) 0<t<1, (5.5)
M.(0) = I. (5.6)
Define
1
@@@zameJKAMWK$M@w. (5.7)

Then for sufficiently small €, there exists a positive constant C which is independent of € such
that

| Je = Jollop < Ce. (5.8)
By Lemma 4.2, we see that (S~1)* = I + Jy holds.

Proof. As already mentioned, K(t) = ﬁ + K (t) is a matrix-valued continuous mapping for
0 <t < 1. Taking this into account, we rewrite

Kult) =~ + Ko (1),

where K.(t) = K(t) + (t) . Let N(t) be the solution to

N.(t) = K.(t)N.(t) 0<t<1, N.(0)=1I. (5.9)
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Clearly, the solution to this equation exists. Moreover, lim; 1 Ne(t) exists and supg<; || V=(2)| <
oo. To see this, we prove the continuity of N, (¢) with respect to ¢. Note that for 0 < s <t < 1,

I3 - 3ol < [0 (1 s ) IVl

18 (] gy
< Inle (-0 + TSR0
+/ C<1+(1_1u)5) N (u) — N.(s)||du. (5.10)

Hence by the Gronwall inequality, we have

_81_5_ _\1-6
HNE@—Na(s)usuNa<s>||0(<t—s>+(1 S )

xexp{C ((t—s)+ (1_8)1_j:§1_t)1_6>} (5.11)

which implies the desired result. Note that Ko(t) = K (), No(t) = N(t) and M(t) = (1—t)N.(t).
Also we have N.(t) (0 <t < 1) is invertible and

N.(s)N-(t) ' =Nl(s—t) 0<t<s<l,
where N!(u) (0 <u < 1—t) is the solution to the equation
OuNH(u) = K (t+u)N(u) 0<u<1-—t, NL(0) = I.

By a similar calculation to N., we have sup, ; g<,<1_¢ |V (u)|| < co. By the definition of J., we
have

1 1

-, - s)NL(s — 1) K. (s)p(s)ds. (5.12)

(Jep) (1) =

Hence by Hardy’s inequality, in order to estimate J. — Jy, it suffices to estimate N! — N{. Note
that for 0 <u <1 —t,

Nt(u) = <I+/ Ni(r C_(( T))) Ni(r )dT>.

This and the estimate for C. and N!(u) imply
sup | N (u) — Ni(w)] < C,
t
which completes the proof of (5.8). O

Let us apply the lemma above in the case where K.(t) = K(v)x:. We have

)
K = K1) + —— [ Lt v210g ( 7> V() | — - Tie()
At = Fennrl p » Y0, 0, oy
| X t )i | ~ xRl
1 1—-1¢
=K(t)+—— | ——V?logp Yo, v |+ V()
1-—1¢ A "
e (VPR(enn o), — V2R(),) — 55 Rie(7), (5.13)
1—¢ Z0,Y0 t 22 t
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Therefore,

CE(t) = (1 _1t)1—6 (1 ; th Ing <1;t7y07’7> + v2k(7)t>
+ (1_175)15 <v2k(cxo,yo)t - VQk;('Y)t)
AT
- (12;) Ric(3),. (5.14)

We need to show that if v and ¢z 4, are close enough and X is large, then C.(t) is small. Then
by Lemma 5.2, we obtain that ||.J(7)x — (S71)*||op is small. Let us check each term of C.(t). If
v(t) € Bi(yo) for all 0 < ¢ < 1, the first term converges to 0 by Lemma 3.9 (1) as A — oo for
d > 1/2. Tt is trivial to see that the third term goes to 0. Hence, it suffices to prove that if
and cg y, is close enough, then the difference V2k(cy,y,), — V2k(7), is small. To this end, we
use the results in rough path analysis.

Here, we summarize necessary results from rough path analysis. The readers are referred to
[46, 48, 47, 29, 28] for rough path analysis. In Section 3, we define a Brownian motion b with
variance 1/\ on R™ by using the stochastic parallel translation along v and b is a functional
of . Conversely, v can be obtained by solving a stochastic differential equation driven by a
Brownian motion b(t). We may use notation b; instead of b(t). From now on, y* denotes the
Brownian motion measure with variance 1/X. We use the notation p when A = 1. Let {L;}? ,
be the canonical horizontal vector fields and consider an SDE on O(M):

r(t,u,b) ZL (t,u, b)) o db(t) (5.15)
r(0,u,b) = u € O(M). (5.16)

Let X (t,b) = m(r(t, uo,b)). Then the law of X(-,b) coincides with v . Also it holds that
V2k(X (b)), = r(t,uo,b) "1 (VZE) (X (t,))r(t, uo, b) pi-a.s. b. (5.17)

Note that if b is the anti-stochastic development of the Brownian motion «(¢) on M, then it holds
that 7(v): = 7(t, uo, b)ug* vp,-a.s. 7. Since we assume M is diffeomorphic to R™, we have a
global coordinate z = (2*) € R™ and the Riemannian metric g(z) = (g;;(z)) on the tangent space
T, M which can be identified with R™. Then the SDE of 7(t,uq, b) = (X(t,b), e (t,b)) (e(t,b) =
(eF(t,b)) € GL(n,R)) can be written down explicitly (see [38, 36]) as

dX"(t): ?()odbﬂ'() (5.18)
i) = Zr L(t) o dX*(t). (5.19)

Moreover, the coefficients of the SDE are Cp° because the Riemannian metric is flat outside
a certain compact subset. Therefore we can apply rough path analysis and Malliavin calculus
to the solution of the SDE. Now let us recall the definition of the Brownian rough path. Let
b(N) be the dyadic polygonal approximation of b such that b(N)pe-~ = bye-n~ and b(N); is
linear for k27 < ¢ < (k+1)27" with 0 < k < 2¥ — 1. Define b(N)}, = b(N); — b(N)s,
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b(N)Z, = fst (b(N)y —b(N)s) ® db(N ) for 0 < s <t <1. Let Q be all elements b belonging to
the Wiener space W™ such that b(N)!, and b(N)2, converge in the Besov type norm || - [|4,0/2
and | - ||l2m,¢0 respectively ([8]). Here 2 / 3<f<landmisa sufficiently large positive number.
It is proved in [8] that Q€ is a slim set in the sense of Malliavin with respect to the Brownian
motion measure y. However, it is easy to check that the same result holds for the Brownian
motion measure pu* with variance 1/\ for any A > 0. Moreover, if b € €, then b+ h € Q for
any element h € H. For b € Q, we define b}, = limy_,o b(N)}; and b3, = limy_o0 b(N)Z,.
The triple (1, b;t,bit) is a p-rough path (2 < p = % < 3) and its control function is given by
w(s,t) = C(b)|[t — s|. C(b) depends on the Besov norm of b* and b%. For h € H, we have,
(b+h)sy = by, + hyy and

t t

Note that solutions of rough differential equations driven by geometric rough paths are smooth.
See Definition 7.1.1 and Corollary 7.1.1 in [48]. Therefore, considering the composition of the
two maps, b(e ) — (1,b};,b2,) and the solution map between geometric rough paths, we obtain
a smooth version r (¢, ug, b) of the solution to (5.18) and (5.19). Here smooth means

1. the mapping b(€ Q) — r(t,up,b) is differentiable in the H-direction and smooth in the
sense of Malliavin,

2. the mapping b(€ Q) — r(t,up,b) is co-quasi-continuous (See Theorem 3.2 in [8]).

In the terminology of Malliavin calculus, r(¢, ug, b) is a version of redifinition of the solution to
(5.15).

By the uniform ellipticity of (5.18), we have the following estimate for the Malliavin covari-
ance matrix. For p > 1, there exists p’ > 0 such that for large A,

E[{det (DX (1,b)DX (1,b)")} 7] < CA'. (5.20)

A
Thus the probability measure d,uéoﬂyo = ‘(Syo (X(1,6))dp

Top( om0y 18 well-defined, where c(yo) = \/det(gi; (o))
and dy, denotes Dirac’s delta function on R"” and d,,(X(1,0)) is a generalized Wiener functional
([55]). Note that p3,,, does not charge the slim sets. Thus the image measure X

well-defined for smooth X (b). Moreover, we have

)\ .
*Hzg,yo 15

The joint law of (b,~) under v

Z0,Y0

= The joint law of (b, X (b)) under 1, . (5.21)

This observation implies that one can use estimates on integration with respect to (Brownian)
rough paths to study the estimate on the stochastic integrals for the pinned Brownian motion.
In the proof in Section 2, we use cut-off functions X1, x2,.. In our problem, the existence of
such cut-off functions is not trivial. The existence of such an appropriate cut-off functions are
proved in [6]. We use the following result in rough paths. Below, r(t,ug,b) may be denoted by
r(t,b) for simplicity.

Lemma 5.3. (1) In this statement, we consider the smooth version r( b) forb € Q). By adopting
this version, a version of V2k(X (b)), can be defined as r(t,ug,b) 1 (V2k)(X (t,b))r(t, uo, b) which
is smooth in the above sense. Let l¢(t) = t&, where & is chosen as exp,, (uo€) = yo. Let us define

E0) = 16 imee + 10%15me  bEQ (5.22)
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Then for any € > 0, there exists €’ > 0 such that if 2(b—l¢) <&’ and X(1,b) = yo,

| X (£,b) — Caguo(t)] <et?? 0<t<1, (5.23)
’V%(X(b))t - V%(X(lg))t‘ <e(1-1)02 0<t<1, (5.24)
Sup 12 (b)e1 — T2 (le)ea| < ([@lloo + 1€ loo)e (5.25)
where
T 1 )
20).0 = [ RE, ([ pnasr).z) o dvts) (5.26)

and ¢ € C1([0,1],R™). The integral is defined in the sense of rough paths.

(2) In this statement, let b be the Brownian motion which is obtained by the anti-stochastic
development of the pinned Brownian motion . Let n be a CI} function with compact support on
R. Let () =n(2(b—1l¢)). Then there exists a constant C' > 0 such that for all X > 1

| Doii (7)1, < C for Vg\o,yo—almost all ~. (5.27)

Proof. (1) (5.23) and (5.25) follow from the fact that c;,,,(t) = X(,l¢) and the continuity
theorem for p-rough paths (2 < p = 2 < 3). We prove (5.24). We have

V2k(X (b)), — V2k(X (l¢)),
= {V2R(X ), — VRX W), | — {V2R(X(e), — V2R(X (), |
+ V2R(X (1), — V2R(X (o)),
= {VZR(X W), - VZRX®), | — {TR(X @), - V2R(X (), } (5.28)

where we have used (V2k)(yo) = I, v and X (1,b) = cg,4(1) = yo. Hence it suffices to apply
the continuity theorem for p-rough paths (2 < p = % < 3).

(2) In the case of the derivative D, this immediately follows from Lemma 7.11 in [6]. The proof
for Dg is the same. Here we give a sketch of the proof. Recall that

(Do)nb(t) Zh(t)+/0 /OSR(V)U(’”L(ULOdb(U))(Odb(S))- (5.29)

We already used this formula in the proof of Theorem 3.11 for the derivative D. From this
formula, we see that Do (Z(b —l¢)) are given by iterated stochastic integrals of b and v. By
(5.21), we can apply estimates for integration with respect to the Brownian rough path for
b € Q). Thus, the iterated integrals of solutions of rough differential equations can be estimated
by the control function of the Brownian rough path. Since the support of 1 is compact, this
implies the desired estimate. ]

Now, we are ready to prove our first main theorem.

Proof of Theorem 3.2. First we prove the upper bound estimate. This will be done by using (5.2)
and choosing appropriate functions F' below. For that purpose, we prepare a large deviation
estimate. Below, several constants depending on parameters k,c appear. We use the notation
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M (z) to denote positive functions of z which may diverge as © — 0. On the other hand, we use
the notation C(z) to denote positive functions of = which converge to 0 as = — 0. M (x) and
C(x) may change line by line. Let 1 be a non-negative smooth function such that n(u) = 1 for
u<1andn(u)=0foru>2. Let 0 <k <1 and set

1= 1/2
M) =1 (520~ 1)), mx(y) = {1-ma(n)?*}". (5.30)
By (5.29) and Lemma 5.3 (2), there exists a positive constant M (k) such that
| Dot (] + [Domze ()] < M(K) vy, — @57 (5.31)

From (5.23), for any € > 0, supg<;<1 | X (t,b) — Czo,0(t)| < € holds if & is sufficiently small and

N,.(7y) # 0. Hence 1, € H&’Q(D). Let 7 be a smooth non-negative function on R satisfying
P(u) = 0 for u < 6 and (u) = 1 for u > d9, where 0 < 61 < do. Then there exist C,C" > 0
which depend on 1 such that for large A

B0 [ (2(b — 1))] < Ce O, (5.32)

We prove this estimate. Let B be a standard Brownian motion on R™. Since the Wiener
functional B — X (1, %) is non-degenerate, by using the integration by parts formula (see
[50, 53]),

E¥5om0 [ (2(b — le))]
= (c(yo)p(1/X, 20, 90)) "' E [¢ (E <\j/BX - l5>> g (X <17 \/BX>)]

= (clyo)p(1/ 720, 90) " E [z/? (: (fx - zg)> G(e, A, B)o. (X (1, \%) - yo>]  (5:33)

where 1, . are bounded continuous functions on R and R™ respectively such that ¢ C [01,00)
and supp ¢. C B.(0). Also the random variable G(\, e, B) satisfies that for any p > 1

E[|G(\ e, B)PIMP < Cp(N), (5.34)

where C; () is a polynomial function of A. Let ¢ = p/(p — 1). By the Holder inequality,

B0 [ (Z(b— le))] < p(1/, 20, 50) " Cep(A)pu( A) /1, (5.35)
where
=(LB _ B
AEZ{B “<ﬁ zg> > 4, X<1,ﬁ> Yo gs}. (5.36)

By the large deviation estimate for Brownian rough path (29, 39, 43]), we have

: 1 L. -
hmsupxlog,u(Aa) < ~5 inf {||Al|f | E(h —le) > 61, |X(L,h) —yo| < e} =: J.. (5.37)

A—00

For sufficiently small ¢, it holds that J. < —%d(mo,yo)2 which can be proved by a contradic-
tion. Suppose there exists he € H such that lim._,q [|he|la < d(x0,y0), Z(he —l¢) > 61 and
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|X (1, he) —yo| < e. Let hg be a weak limit point of h.. Then ||hollg < d(xo,y0). By Lemma
7.12 in [6], E(ho - lg) = limg_)OE(hE - ls) > 51 and X(l,ho) = limg_m X(].,hg) = Yo- By
the uniqueness of the minimal geodesic between xo and yg, we have hg = l¢. This contradicts
Z (ho — l¢g) > 01. Hence there exist € > 0 and ¢ > 0 such that

A - _ d(zg,y0)? + 6
E%0w0 [1h (E(b — I¢))] < Cep(N)p(1/\, 0, 90) " exp {—)\ ((Ogoq)> } . (5.38)
n/2 oy — T 2
Since limy_, A przg 7 /\)\ i(() ;(’)‘1;0) /2) exists, by taking p sufficiently large, this proved the desired
inequality.

We now apply (5.2) to prove the upper bound. Let us fix a positive number £ > 0 and choose
ve € L2NCL([0,1],R™) with ||| = 1 such that

o1 < ||S¢ell” < [I(1+ T)gel| < o1 +e. (5.39)

This is possible thanks to Lemma 4.1. Note that ||¢.||c may diverge when ¢ — 0. Define

£0) = VA ([ et - [ o.0at) (5.40)

Let F. = Fomy € Hé’Q(D). We estimate the numerator of the ratio in (5.2) for F.. Since the
Besov norm is stronger than the supremum norm, we have

|E.(7)| < CVAM(e)C (k). (5.41)

+/01 </tl 7l ( sl%(u)dbi(u)’gi) odb(t),h/(t)> dt (5.42)
and so we have

DoF.(7)} = Ve (t) + VA /t 1Ws ( / 1 @ (r)db (1), gi> o db(s)

Vi 1 / R, ( / )b (r), s) (odb(s))dt
= VAp:(t) \f/ (/S @E(u)du> ds
+ \f/ / </0 < (u )du) dsdt + I(\);

= VI +T)(ge)(t) + I(N)s, (5.43)
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where R(s) = R(Czoy0)4(+€)(€) and I(N); = (DoF)(X(-,0)); — (DoF)(X(:,1¢));- Note that we
have used ¢. € L3 in the above. By (5.25), we have

sup [T(\)| < VAC(k)M(e) if 11 x(v) # 0. (5.44)

0<t<1

Thus we have

IDFL(7) = M(I+ T)pe*ni . + T(N)*03 . + 2VA((L + T)pe, I(N)ni.,
+ F2[Don |* + 2(Do Fr, Dom )i - (5.45)

By (5.32) and (5.44), we get
ID0E- Iy ) < NI+ T)ele + ACHRIM(E) + ACMEM(R)e OO (5.46)
Combining || Do¥,| < Ce=¢"*, we obtain

ID0F: = (e 02) DoWalagn ) < M+ T)gel2 + AC(R)M(2) + AM () M (e,
(5.47)

We next turn to the estimate of the denominator in (5.2) for F.. To do so, we use COH formula.
For large A > 0, by taking x sufficiently small and combining Lemma 5.2 and Lemma 5.3 (1),

we have
[(T(N)x = Jo)(DoFe) (V) | 12(0.1) < €lDoF=(v) | 12(0.1)- (5.48)

Therefore, using A(y)y = I+ J(Y)x, (S7H* =T+ Jg and (S~H)*(I +T) = S, we have

A(Y)A(DoFe(v) )

= (571" (DoEL(3)'), + (J(Vr = o) (DoF=(7) e

=V (5_1)* (I +T)oe(O)m e + (S™H* TN e + Fe(7)(S™H* (Don i),

+ (J()x = Jo) (Do F= (7))

= \F)\S@e@) + I2(N), (5.49)

and

1Oz, ) < VAM(2)e™CCN 4 VAC(K) M (2) + VAM (£) M (s)e O
+ eV (C+ CRM(e) + M(e)M(r)e 1) (5.50)

Since S¢.(t) is a non-random function, from (5.49) and (5.50) and the COH formula (3.29), we
obtain

~ l/)‘ ~ — K
| F. — EY%o-wo0 [FE]H%Z(V%MO) > ||See||? = C(r)M(e) — M(e)M(k)e™ ¢ A

—c (c (k)M (e) + M(E)M(H)e—cw) . (5.51)
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Using Lemma 5.1,

1F = (Beota) alEay, ) = I1Fe = (B D)7 = 2 (B = (£ W), (B 02) (02— 1))
(P 1= W)+ (B2, )21 = 05
> 1B = (2, D)2 = M(9)M(x)e (5.52)

Now we set ¢ sufficiently small and next x sufficiently small. By using the estimates (5.47),
(5.51), (5.52) and (5.39), we obtain for large \,

2 2 2
| DoFe — (F, \I/)\)DO\IJ)\HLQ(V%O,M)) _ AT+ T)pel|2a + Ae + AM (€)M (x e—C(k)A

o (R0, ) [5%el3 — Ce = M{EM(r)eC0R
0,90

Ao +2)% + e + AM () M (1)~ C (A

<
- o1 — Ce — M(e)M(k)e=C(r)A

(5.53)

This completes the proof of the upper bound.
We next prove lower bound estimate. Take F' € Hé’z(D) such that HFHLQ(V%O ) = 1 and

(F,m ) = 0. By the IMS localization formula,
A
E(F,F) =Y E(Fnix Fiix) — > E"0w || Doni x> F?). (5.54)
i=1,2 i=1,2

For any € > 0, by taking  sufficiently small and large A, by Lemma 3.10 (1), Lemma 5.2,
Lemma 5.3,

A
HFT/LR — E%z0.w0 [FT/L/{] H%Z(Vé\o,yo)

(151" [lop + C)

<
- A

FY20.v0 [|D0(F771’,€)‘2] . (5.55)

Thus we have

S ||op + Ce)?
HFm,RH%Q(,,éO’yO) < (hes™ ”Ap ) E%ow [|Do(Fny,)?] - (5.56)

Now we estimate the Dirichlet norm of Fny,. The log-Sobolev inequality (3.31) implies
that there exists a positive constant C' such that for any F' € Hg (D) and bounded measurable
function V' on Py 4, (M),

A
g(F’ F) +EI/£\Ov1’!0 [)\QVFQ] Z _610gEV£\0vy0 |:€_CAV:| ”FH%Z(V/\ ) (557)
£0-Y0

See Theorem 7 in [33]. Also see Lemma 6.1 in the present paper. Let § be a sufficiently small
positive number and define V() = d1,, . +0(7), where 14 denotes the indicator function of a set
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A. By (5.57), there exists ' > 0 such that

E(FTIQ,HvFT’2,H>
— E(Fnap, Fiow) — N2 B0 [V(Fip )?] + A2EY%0w0 [V (Fiy.k)?]

A ) AV 2 2 2
> —Zlog B0 | || FnelBagn )+ A0 Fmliagy )
A Y 2 2 2
> -5 log (1 +e ) HF??27HHL2(VC%O7yO) +A 6HF772,H”L2(1/%0’Z/0)
2 (AZ(S o C)\ef)\(s )||F772,:‘€H%2(1/%\07y0)’ (558)

where in the third inequality we have used the estimate (5.32).

By the estimates (5.31), (5.56), (5.58) and the fact that ||1*"771,,€|]2L2(V£0 o) + ||F172,,€H%2(V£0 )=

1, we get
ENF, F) > Amin ((||(5—1)*||0p +Ce) 2N — C’e_)‘(y) — M(x). (5.59)
By the definition of 61)\3#,2@7 this completes the proof. O

Remark 5.4. Eberle [23] defined a local spectral gap on D by

DoF|[2dv?
e)é = inf12 ID‘ o =t 2 : (5.60)
HY(D 1
FEOSHD) [ (F ~ @ o T Ady) A

When D satisfies conditions (1), (2) in Theorem 3.2, the above proof shows also that
. €E
lim & =o;. (5.61)

Actually, e% is more related to e5 than e)bir,l’D‘ We cannot expect the existence of the spectral
gap in general as we already mentioned. However, the weak Poincaré inequality does hold on
the loop space over a simply connected compact Riemannian manifold. We refer the reader to
[15] and references therein for the weak Poincaré inequality.

6 A proof of existence of spectral gap

We consider the following setting. Let (€2, §,v) be a probability space and consider a Dirichlet
form (&, F) defined on L?(£2,v). We assume the existence of square field operator I' such that

E(F,F):/F(F,F)dy, FeF.
Q

Also we assume 1 € F and the diffusion property. That is, for any ¢ € C; (R) and F € F, it
holds that ¢(F) € F and

D(p(F), o(F)) =L (F, F)¢'(F). (6.1)

We write I'(F) = I'(F, F'). We already used the following well known estimate ([33]).
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Lemma 6.1. Suppose that for any F € F,

/Q F(w)? 1og(F(w)/||F|[220,))dv < aE(F, ). (6.2)
Then for any bounded measurable function V', we have
1
S(F, F) +/ V(w)F(w)2dy(w) > _alog (/ e—CMV(“)dy(UJ)) HF”%Q(V) for any F € F.
Q Q
(6.3)
Note that in the above lemma, (£, F) is not necessarily a closed form and the lemma holds

for any bilinear form (€, F) satisfying the logarithmic Sobolev inequality (6.2). The spectral
gap es is defined by

egzinf{E(F,F) ’ HF”L2(V) :1,/ F(w)du(w) :O,FE.F}
Q

Theorem 6.2. Let Fy be a dense linear subset of F with respect to E1-norm. Suppose that there
exist positive numbers o, 3,19 and p € F such that I'(p)(w) < 1 v-a.s. w and

/ F(w)? log(F(w)Q/HFH%Q(V))dV < a/ p(w)?T(F, F)(w)dv(w), for all F € Fy, (6.4)
Q Q
vip>r) < e_BTQ, for all r > rg. (6.5)

Then

1 1
€2 > — min , 5 , (6.6)
4 8aR(a, B,19)%" 36c

R(a, B,79) = max <\/g, 1\9/2;, 48\/3, 7“0) . (6.7)

Proof. Let R > ry. We consider the partition of unity {xx}x>0 on [0, 00) such that

() x
(i) xo(u) =1 for 0 <u < R and xo(u) =0 for u > 2R,
)
)

where

Xk is a C! function,

(iii) supp xx C [Rk, R(k + 2)] (k>1),

(iv) S50 xk(w)? =1 for all u > 0.

(v) supg, [x; ()] < Z,

Define Xx(w) = xx(p(w)). Let F € Fy and assume ||F||;2(,) = 1 and [, F(w)dv(w) = 0. By

the IMS localization formula, we have

= 8
ZE Fxi, Fxk) Z/ (Xk F2d1/>25 Fxi, Fxi) — 2 /p>RF2dl/. (6.8)
k=0 2
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We estimate each term E(Fxy, F'Xk). First, we estimate £(Fxo, F'xo). We have

/ F(w)fm(w)du(w)( _

The log-Sobolev inequality implies the Poincaré inequality and we have

/QF<w><>zo<w> - 1>du<w>1 <v(p= RV <e P2 (6.9)

~ ~ 1 ~ 2 7BR2
E(FX0, F0) = 5= (IIF%ollEz) — ). (6.10)

Next we estimate &(FXy, F'Xx) for k > 1. Let ¢x(w) = 1igg r(e+2)(p(w)) and § > 0. Then by
(6.4) and Lemma 6.1,

E(F Xk, FXr) =5(F>Zk,F>Zk)—/Qécﬁk(w)(Fik)Q(W)dV(w)+/Q5¢k(w)(F>Zk)2(W)dV(w)

1 adR2(k+2)2 ¢y, (w) vz l12
> oo o dvw) ) IF Rl 2y

+ O FXkN 72 (6.11)
By the tail estimate of p, we have
/ (PIRE(H200() gy (1) < 1 4 (POF 42 =BRR?, (6.12)
Q
Hence
E(F X FXi) > (6 - RQ}) 152000 (613)

For simplicity, we write

2 2 2
G(5,0, 8, R) = 6 — sup exp { (ad(k +2)? — Bk?) R?}

14
k>1 aR?(k +2)? (6.14)

Summing the both sides in the inequalities (6.10), (6.13) and by using the property (iv), we
obtain the following inequality

E(F,F) > min | —— . G(5,a, 3, R) —6_5}%2—8/ F2d (6.15)
) zmin| g e G0 el 2wr? R i '

which is denoted by I(4,«, 8, R). If i > 8, this inequality with large R and small § implies the
existence of spectral gap. In general, we need more considerations. Since Y po; \|F)2k\|%2 ) >

J s F(w)?dy(w), by (6.8) and (6.13), -
E(F.F) > G5, B, R) / | Pw)dv() - 5. (6.16)

Let 0 < e < 1. Multiplying both sides on the inequality (4, a, 3,2R) by 1 — ¢ and the both
sides on (6.16) by € and taking summation, we obtain

1
8ozR2’G(
(1—g)e 4R 8

S8aR? R?

E(F,F) > (1 — &) min ( 5, B, 2R)>

+ (EG((S,a,ﬁ,R) — 2(1R_2 €)> /p>2R F?(w)dv(w).  (6.17)
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Now let § = -2-. Then by an elementary calculation,

18«
3 e—BR?/2
Hence, if
B e PR/2 91 —¢)
18« - 9o R? + R2e 7 (6.19)
then
1 g e~ 2R (1—¢e)e 4R g
F.F)>(1- i — — - — 2
EFF) 2 (1= ¢)min <8aR2’ 18a  36aR? SaR? R (6:20)

By choosing ¢, R appropriately, we give a lower bound for £(F, F'). First, let us choose £ such
that

1 1
=min| =, — | . 6.21
e <2’ 512a) (6:21)
We next choose R such that
—BR?/2 ) 3
e
< . 6.22
max( 9aR? R?g) = 36a (6.22)
This condition is equivalent to
Rz o Lgpe pa o T20 6.23
€ — 45 ? p ﬁ€ M ( * )
Under this condition, the inequality (6.19) holds and by using (6.20), we have
1 1 I} e~4BR* g
E(F,F) > —mi — - —. 6.24
(F,F) 2 5 min <8aR2’ 36a> SaR? R? (6:24)

Furthermore, we restrict R so that

e 4BR* g 1 1 15}
) <imin(—, ). 6.25
e < SaR? RZ) =g <8aR2’ 36a) (6.25)

This condition is equivalent to

2 2
2t o Lo g (PR 1 g 480 (6.26)

=8’ = 36’ 512a B

Thus, (6.22) and (6.25) hold if

2 a T2c
R > max (\/;, 48\/;, ”,86) . (6.27)

Combining the inequalities (6.24) and (6.25), we obtain the desired estimate. O
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7 Proof of Theorem 3.6

We prove Theorem 3.6 by using the argument in the proof of Theorem 3.2 and Theorem 6.2.
To this end, we need a tail estimate of py, (7).

Lemma 7.1. Let M be an n-dimensional rotationally symmetric Riemannian manifold with
a pole yo. Suppose ||¢'||cc < 00 and Assumption A is satisfied. Let Ao > 0. Let py,(y) =
1 + maxo<i<1d(yo,v(t)). Then there exists a positive constant ro which depends on ¢, Ao,
d(xo,yo) and the dimension n and a positive constant Cy which depends only on n such that

I/i‘mw (pyo(7) = 1) < e~ C2Ar? for all v > rg and XA > Xg. (7.1)

Proof. Let zy be a point either xg or yg. Let X; be the Brownian motion starting at zp on
M whose generator is A/(2)). First, we give a tail estimate for py, with respect to v2 . Let

Yy = d(X4,y0). Note that Agzd(z,y0) = (n—1) (m + so/(d(x,yo))> and |Vyd(z,y0)] = 1. By
the Itd formula, we have

t

fBﬁ 0 ”2;1(; (. >> ds. (7.2)

Here B; is 1-dimensional standard Brownian motion. We can rewrite this equation as

Y = d(z0,y0) +

t
—1
VY, = VXd(z0, y0) + By + o /" ds
¢ = VAd(20,%0) t \fHSOH 0 2V,

fn—-1,, /
+ [ A () - 1) s (7.3

Let Z, be the strong solution to the SDE:

t

—1
— VXd(20,v0) + Bi + N /”~ds, 7.4
N(ea,0) + Bt Bl et + [ 5 (7.4

where B; is the same Brownian motion as in (7.3). Then by the comparison theorem of 1
dimensional SDE (see Chapter VI in [38]), we see

VA, < Z, t>0. (7.5)

Let us define Z; = Z, — %Hcp’”mt. Then Z; satisfies the SDE

. tp—1 1
Zr =V \d(z0, +/ ds + B;. 7.6
¢ (20, %0) 2 Z+ H<PHS ‘ (7.6)

Now consider the n — 1 dimensional Bessel process Z; as the strong solution of the SDE:

t
_1
zt:ﬁd(zo,yOH/ n-tl,ip (7.7)
0

Again by the comparison theorem, we have

Zt<Zy  t>0. (7.8)
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The law of {Z;}+>0 is the same as the law of {\Bt(") +v/Ad(z0,90)e|}, where B(™ is the standard
Brownian motion starting at 0 and e is the unit vector in R™. Thus, for any r > 0, we have

P (g i = ) < 2 (g 1B+ VAdCeo el + fugouoozm)

0<t<1
). a9

<P<max ]B( |>\F<T— d(z0,y0) —

0<t<

Let C,, = E[maxo<¢<1 |Bt(n)|] Then there exists C' > 0 such that for any r» > C,,

"> < ELYSEPORY
P <0I2?<X1 |B | r) C'exp < 2(r Ch) > . (7.10)
Hence, if r > d(z0, y0) + "53¢/ llc + G2, then
A n—1 Ch 2
P (g i 2 r) < Com | =5 (= dlea) - "5 1o~ ) (r.11)

This shows that there exists 79 > 0 which depends only on d(zg,40), Ao and a positive constant
C' such that

1/;\0 (Pyo(7) > 1) < e for all r > ry. (7.12)

The tail estimate for VIO %

to l/mo up to time ¢ < 1. The density is given by

can be proved by using the absolute continuity of Vﬁ)f\o,yo with respect

dv))
0,90 ( )

dvy,

_ (555 m0,0()
St p(%vyme)

= Pzo,y0 (t7'7)' (7'13)
Recall that Gaussian upper bound holds for all 0 < ¢t <1 and z,y € M,
p(t,x,y) < Clt/2e=C"d(@y)?/t, (7.14)

By Varadhan’s heat kernel estimate, for any € > 0, we have for sufficiently large A,

w2
_/\d(yo,«;o) +e

p(1/A, 90, m0) > € (7.15)
By using these estimates, we obtain
Pa0.y0 (;7> < /A 2e3 (w0 o) +e) (7.16)

This estimate and (7.12) implies that

v (1 + max d(yo,y(t)) > r) < O'A/2e3 (Amo0)*+2) =20 g0 ] > (7.17)

Io,yo

0<t<1/2
Since
)\ A
Voo (1 + l/rgggld(yoﬁ( ) = 7’) = Voo (1 o d(yo,(t)) = ?") , (7.18)
using (7.12) with zg = yo, similarly, we obtain the desired tail estimate for p,, under on v U
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Proof of Theorem 3.6. Let A\g > 0 and consider a positive number A > A\y. By Lemma 7.1,
the assumptions in Theorem 6.2 are valid for p = p,,, o = Ci/\,8 = Co) and r9. Hence
Theorem 6.2 implies e5 > 0 for all A > 0. We need to prove the asymptotic behavior (3.15).
We argue similarly to the proof of Theorem 6.2. That is, we use the same functions there and

choose R, d,e which were defined there. Let F' € FCp°( Py, (M)) and assume ||F||L2(y,§0 ) = 1
and E"%0w0 [F] = 0. Then by the IMS localization formula (6.8), we get
S e SN 8
ENF,F) > EX(FXo, FXo) + (CA* = C'N) Y | FXxll7z — 25 (7.19)

k=1

Next we estimate E(F'Xo, FXo). Since this is a local estimate, we may vary the Riemannian
metric so that the metric is flat outside certain compact subset. Take the same function 1y ,, 72 «
as in the proof of the lower bound estimate in Theorem 3.2. Then by the estimate (5.32),
\E”%wo [FXom x| < Ce €. In a similar way to the proof of the lower bound in Theorem 3.2,
we obtain

. - ) 1k -2 VY - _
ENF o, FXo) zAmln(((H(S Y¥lop + C2) 2, M5 = Ce M)) IFS0ll3 2 ) = Ce™ = M(x).

Combining the above, we complete the proof of the lower bound. The upper bound estimate
immediately follows from the estimate (5.46) and (5.51). O
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