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Abstract

Let (X, µX) and (B, µB) be Wiener spaces. Let Ω be a subset in a product
Wiener space W = X × B with the product measure µX × µB . Let Ωx = {z ∈
B | (x, z) ∈ Ω} for x ∈ X and U = {x ∈ X | Ωx 6= ∅}. We assume that U and
Ωx (x ∈ U) are convex sets. Let α be a closed 1-form on Ω. We give a representation
formula of f to the equation df = α in terms of α and an estimate for the L2-norm of
f using Green operators which are inverse operators of the Hodge-Kodaira operators
on Ωx, U and Hadamard’s variation of them.

§1. Introduction

Let Ω be a bounded domain with smooth boundary of a Euclidean space.
Suppose that there exists w0 ∈ Ω such that the segment between w0 and any
point w ∈ Ω belongs to Ω. Let α be a smooth closed 1-form on Ω. Setting
f(w) =

∫ 1

0

(
α(w0 + t(w − w0)), w − w0

)
dt, we obtain that df(w) = α(w).

However, this representation of f cannot be extended to infinite dimensional
cases. Let (W,H, µ) be an abstract Wiener space. Consider an H-open subset
Ω ⊂ W . We call a map from Ω to ∧pH∗ a p-form. If the domain Ω is convex
and satisfies some good properties, the Hodge-Kodaira type operator ¤ with
absolute boundary condition can be defined on L2(Ω → ∧pH∗, dµ). We have
−dd∗¤−1α = α and ‖d∗¤−1α‖L2(Ω,dµ) ≤ p−1/2‖α‖L2(Ω,dµ) for a closed p-form
α on Ω, where d∗ is the adjoint operator of the exterior differential operator d

in L2(µ). In this estimate, the key is that the spectral bottom of −¤ is strictly
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positive which follows from the convexity. We give a representation formula of
f in terms of the closed 1-form α on a certain non-convex subset Ω of a product
Wiener space which may give an estimate for the Poincaré constant. See (3.17)
and (3.18). In particular, we are interested in dimension independent estimate.
Note that even if the domain Ω is contractible open set, it is not trivial that
the closed form on Ω is exact in the Sobolev space category.

Now, we explain what kind of sets we are interested in. Let X and B be
Wiener spaces with Wiener measures µX , µB . Let W = X ×B be the product
space with the product measure µW = µX × µB . We denote the elements in
X and B by x and z respectively and w = (x, z) ∈ W = X × B. Consider a
subset Ω ⊂ W which satisfies the following.

Assumption 1.1. (1) Ω is an H-open set.
(2) For x ∈ X, set Ωx = {z ∈ B | (x, z) ∈ Ω} and U = {x ∈ X | Ωx 6= ∅}.
Then Ωx is a H-convex set for any x ∈ U . U is also a H-convex set with
µX(U) > 0 and it holds that εU = essinf {µB(Ωx) | x ∈ U} > 0.

When U ⊂ X and V ⊂ B are H-convex sets, the product space Ω = U ×V

satisfies Assumption 1.1 and Ω itself is an H-convex set. Suppose that Ω is
an open set and Ωx are usual open convex sets. For example, if W is finite
dimension, this holds. In this case, Ω is C∞-homotopy equivalent to U . So the
de Rham cohomologies for all dimensions are trivial. So it might be natural to
conjecture that for any closed form α, there exists β such that dβ = α on Ω
which satisfies Assumption 1.1.

Kusuoka [7, 8] gave sufficient conditions of Ω on which Poincaré’s type
vanishing lemma holds in local Sobolev space category. He gave a representation
formula of β in terms of α. See [9] also. Our strategy is different from [7].
For a closed 1-form α on Ω, we give an explicit expression of f to the equation
df = α in terms of α by using the Green operators on Ωx and their Hadamard’s
variation in Section 3. Note that our representation is limited to 1-form at the
moment. The Hodge-Kodaira operator on convex domain in Wiener space is
studied by Shigekawa [14, 13]. In Section 2, we recall necessary properties of
Hodge-Kodaira operator on a convex domain based on his papers. In Section 4,
we give Hadamard’s variational formula in Wiener spaces and explain a proof
of a key estimate (3.14).

Here, we show an example of Ω.

Example 1.1. Let w = (w1, w2) be the two dimensional Brownian mo-
tion. Let x = w1, z = w2. Let 0 < θ < θ′ < 1, m ∈ N, a > 0 and set

F (x, z) = ‖z̄‖2m
2m,θ/2 + ‖Cx,z‖m

m,θ − a, (1.1)
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where z̄(s, t) = z(t) − z(s) Cx,z(s, t) =
∫ t

s
(x(u) − x(s))dz(u) for 0 ≤ s ≤ t ≤ 1.

We define Ω = {w | F (x, z) < 0, ‖x̄‖2m
2m,θ′/2 < a}. In this case,

U =
{

x | ‖x̄‖2m
2m,θ′/2 < a

}
, (1.2)

Ωx = {z | F (x, z) < 0} . (1.3)

We explain the norm ‖ ‖m,θ. We denote
∆ =

{
(s, t) ∈ R2 | 0 ≤ s ≤ t ≤ 1

}
. Let E be a normed linear space. For a map

φ : ∆ → E, we define

‖φ‖m,θ =
[∫ 1

0

{∫ t

0

|φ(s, t)|m

(t − s)2+mθ
ds

}
dt

]1/m

. (1.4)

The iterated integral Cx,z is important in rough path analysis. See [2]
in which we prove weak Poincaré inequalities on a variant of the above Ω.
Actually, it is not difficult to prove the Poincaré inequality on the above Ω by
Remark 3.2 in [2]. However, the existence of the spectral gap does not imply
the solubility of df = α for a closed 1-form.

The subset Ω in Example 1.1 is a subset of 2-dimensional Wiener space.
To study the de Rham cohomology in Sobolev space’s category of loop spaces
over compact Riemannian manifolds, we need to consider higher dimensional
version of the above example.

In this note, we give just ideas and sketches of the proofs and some neces-
sary conditions are not clearly stated and some statements are not proved yet
at the moment. We will publish complete statements and proofs and further
studies in the near future.

§2. Hodge-Kodaira operator on a convex domain

In this section, we consider a Hodge-Kodaira operator on a convex domain
in a Wiener space B. Let D denote the H-derivative and let d be the exterior
differential operator based on H-derivative. Let F ∈ D∞

∞−(B, R) be an H-C∞-
function on B and assume that D2F (z) is non-negative definite for almost all
z and |DF (z)|−1 ∈ Lp(B, dµB) for sufficiently large p. We consider a positive
measure domain Ω = {z ∈ B | F (z) < 0} which is thought as a convex domain.
We refer to [14, 12, 5] for basic results of Hodge-Kodaira operator and the
Poincaré inequality on this set. Let d∗ be the adjoint of d in L2(Ω, µB) and we
define L = −d∗d(= −D∗D) which acts on functions and ¤Ω = −(dd∗ + d∗d),
where we impose the Neumann boundary condition and the absolute boundary
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condition. That is, their cores are given by

DL =
{
f ∈ D∞

∞−(B, R) | (Df(z), n(z)) = 0 ν-a.s. z
}

D¤Ω = {α ∈ D∞
∞−(B,∧pH∗) | ι(n)α|S(z) = 0, ι(n)dα|S(z) = 0 ν-a.s. z},

where n(z) is the unit outer normal vector field on the boundary of Ω, S =
{z ∈ B | F (z) = 0} and ι(n) denotes the interior product.
dν(z) = |DF (z)|δ(F (z))dµB(z) is the induced Gaussian surface measure and
δ denotes the δ-function which has the mass 1 at 0. See [3, 4, 10, 14]. n(z) is
explicitly written as

n(z) =
DF (z)
|DF (z)|

, (2.1)

where we use the natural identification by the Riesz theorem. If B is finite
dimension and Ω is a bounded domain with smooth boundary, the essential self-
adjointness of the above operator is known. However, it seems that essential
self-adjointness of them in infinite dimensional cases are not well studied. We
assume that L and ¤Ω are essentially self-adjoint on the above cores. The
result (2) is proved in [14]. We refer to [14, 10] for (3).

Theorem 2.1. (1) 0 is an eigenvalue of −L with multiplicity 1 and
there exists a spectral gap at 0.
(2) inf σ(−¤Ω) ≥ p when ¤Ω acts on p-form.
(3) Let θ and η be a smooth (p− 1)-form and a p-form on Ω respectively. Then
the following integration by parts formula holds:

∫
Ω

(dθ(z), η(z)) dµB(z)

=
∫

Ω

(θ(z), d∗η(z)) dµB(z) +
∫

S

(θ(z), ι(n)η(z)) dν(z). (2.2)

Let β be a smooth p-form on Ω. Note that d¤−1
Ω β = ¤−1

Ω dβ. This is
proved as follows. By the essential self-adjointness of ¤Ω, {¤Ωγ | γ ∈ D¤Ω} is
dense in L2. Moreover, D(¤Ω) ⊂ D(dd∗) ∩ D(d∗d) ∩ D(d̄) ∩ D(d∗). Let γ be a
smooth (p + 1)- form which belongs to D¤Ω . Using (2.2) and Theorem 3.1 in
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[14], (
d¤−1

Ω β,¤Ωγ
)
=

(
dd¤−1

Ω β, dγ
)

+
(
d∗d¤−1

Ω β, d∗γ
)

=
(
d∗d¤−1

Ω β, d∗γ
)

=
(
d¤−1

Ω β, dd∗γ
)

+
(
d∗¤−1

Ω β, d∗d∗γ
)

= (β, d∗γ)

= (dβ, γ)

= (¤−1
Ω dβ, ¤Ωγ). (2.3)

This shows d¤−1
Ω β = ¤−1

Ω dβ. Now suppose that β is a closed 1-form. Then
using d¤−1

Ω β = ¤−1
Ω dβ = 0 and −(dd∗ + d∗d)¤−1

Ω β = β, we have

−dd∗¤−1
Ω β = β. (2.4)

By the integration by parts formula (2.2),∫
Ω

d∗¤−1
Ω βdµB(z) =

∫
S

(
¤−1

Ω β(z), n(z)
)
dν(z) = 0. (2.5)

Next, let h be a smooth function. By applying the formula (2.4) to β = dh, we
have

d
(
d∗¤−1

Ω dh + h
)

= 0. (2.6)

Since Ω is H-convex, d∗¤−1
Ω dh − h is a constant. By (2.5), we get

−d∗¤−1
Ω dh = h − 1

µB(Ω)

∫
Ω

h(z)dµB(z). (2.7)

Also we note that∫
Ω

|d∗¤−1
Ω β(z)|2dµB(z) +

∫
Ω

|d¤−1
Ω β(z)|2dµB(z) =−

∫
Ω

(¤−1
Ω β(z), β(z))dµB(z)

≤ ‖
√
−¤Ω

−1
‖2

op‖β‖2
L2(Ω,µB)

≤ ‖β‖2
L2(Ω,µB). (2.8)

This estimate and (2.7) give an estimate for the Poincaré constant. That is,∥∥∥∥h − 1
µB(Ω)

∫
Ω

hdµB

∥∥∥∥2

L2(Ω,dµB)

≤ ‖dh‖2
L2(Ω,dµB). (2.9)

§3. A solution of df = α
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We denote the H-derivative, exterior derivative on B by Dz, dz and them
on X by Dx, dx. We also denote the Hodge-Kodaira operator on Ωx by ¤Ωx .
In this section and the next section, we consider a domain Ω of W = X × B

which satisfies Assumption 1.1 and the following.

Assumption 3.1. (1) U is a convex domain with positive measure in
the sense of Section 2.
(2) There exists an H-C∞ function F (w) = F (x, z) ∈ D∞

∞−(W, R) such that
Ω = {w = (x, z) | F (w) < 0, x ∈ U}.
(3) For sufficiently large p > 1,∫

W

|DzF (x, z)|−pdµW (w) < +∞. (3.1)

(4) For all x ∈ U , D2
zF (x, z) is non-negative for almost all z.

Let α be a closed 1-form on Ω. Suppose that there exists f ∈ D1
2(Ω, R)

such that df = α on Ω. We aim to get an explicit expression and estimate of f

in terms of α. We have

α =
∞∑

i=1

α1,i(x, z)dzi +
∞∑

j=1

α2,j(x, z)dxj

=: αx + αz (x ∈ U, z ∈ V ), (3.2)

where dzi ∈ B∗, dxj ∈ X∗. It is easy to check that for each x ∈ U , αx is a
closed 1-form on Ωx. Also it holds that on Ω for v which is an element of the
Cameron-Martin subspace of X,

(Dx)vαx = dz(αz, v). (3.3)

Let
g(x, z) = −d∗

z¤−1
Ωx

αx. (3.4)

Then it holds that∫
Ω

g(w)2dµ(w) ≤
∫

U

(∫
Ωx

|αx(z)|2dµB(z)
)

dµX(x) ≤
∫

Ω

|α(w)|2dµW (w).

(3.5)
It is plausible that if the map x → Ωx is smooth and α is also smooth, then
g(x, z) is a smooth function on Ω in the sense of Malliavin. Of course, this is the
subject of Hadamard’s variation. By the result in Section 2, dzg(x, z) = αx(z).
Hence dzf(x, z)− dzg(x, z) = αx(z)− αx(z) = 0. Since Ωx is a convex set, the
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difference f(x, z) − g(x, z) is a constant µB − a.s. z. That is, there exists a
smooth function h such that

f(x, z) − g(x, z) = h(x) for almost all (x, z) ∈ Ω. (3.6)

Actually h(x) = µB(Ωx)−1
∫
Ωx

f(x, z)dµB(z) holds. Since we have already
shown that ‖g‖L2(Ω,dµW ) is bounded by ‖α‖L2(Ω,dµW ), we need to estimate
‖h‖L2(Ω,dµW ) for the estimate of ‖f‖L2(Ω,dµW ). By the Fubini theorem,∫

Ω

|h(x)|2dµW (w) =
∫

U

|h(x)|2µB(Ωx)dµX(x). (3.7)

So we estimate ‖h‖L2(U,dµX). If h is in the domain of d and dh ∈ L2(U, dµW ),
then we can define

hU (x) :=−d∗x¤−1
U dxh(x), x ∈ U (3.8)

and
‖hU‖L2(U,dµX) ≤ ‖dh‖L2(U,dµX). (3.9)

Moreover, we have dhU (x) = dh(x) x ∈ U . Because U is H-convex, hU (x)−h(x)
is almost surely constant on U . Hence h ∈ L2(U, dµX) and

hU (x) = h(x) − 1
µX(U)

∫
U

h(x)dµX(x) = −d∗x¤−1
U dxh(x) x ∈ U. (3.10)

We need to show that dh ∈ L2(U, dµX) to use the representation (3.10). Since∫
Ω

|dh(x)|2dµ(w) =
∫

U

|dh(x)|2µB(Ωx)dµX(x)

≥ εU

∫
U

|dh(x)|2dµX(x), (3.11)

we need only to estimate ‖dh‖L2(Ω,dµW ). By (3.6),

(Dx)vh(x) = (Dx)v (f(x, z) − g(x, z))

= (αz(x), v) + (Dx)vd∗z¤−1
Ωx

αx

= (αz, v) + d∗z
(
Dx(¤−1

Ωx
), v

)
αx + d∗

z¤−1
Ωx

(Dx)vαx

= (αz, v) + d∗z
(
Dx(¤−1

Ωx
), v

)
αx + d∗

z¤−1
Ωx

dz(αz, v), (x, z) ∈ Ω,

(3.12)

where we have used (3.3). By (2.7),

(Dx)vh(x) = d∗z
{(

Dx(¤−1
Ωx

), v
)
αx

}
+

1
µB(Ωx)

∫
Ωx

(αz(x), v)dµB(z).

(3.13)



8 Shigeki Aida

If Ω = U × V , then the term d∗
z

{(
Dx(¤−1

Ωx
), v

)
αx

}
vanishes. If it is not the

case,
(
Dx(¤−1

Ωx
), v

)
can be calculated by the Hadamard’s variational formula.

Note that (3.13) shows d∗
z

{
Dx

(
¤−1

Ωx
)αx

)}
(w) is independent of z actually. It

is plausible that there exists a nonnegative function ΦF (w) ∈ ∩p>1L
p(Ω, dµW )

which is independent of α such that∫
Ω

|
(
d∗z

{
Dx(¤−1

Ωx
)αx

)}
(w)|2dµW (w)≤

∫
Ω

|α(w)|2ΦF (w)dµW (w). (3.14)

We show a rough proof of this inequality in Lemma 4.1. For the second term
on the right-hand side of (3.12), we have∫

Ω

1
µB(Ωx)2

(∫
Ωx

(αz(x), v)dµB(z)
)2

dµW (w) ≤ |v|2
∫

Ω

|α(w)|2dµW (w).

(3.15)
Consequently dh ∈ L2(U, dµX). Now we estimate hU . Again by the Fubini
theorem, ∫

Ω

|hU (x)|2dµW (w)≤
∫

U

|hU (x)|2dµX(x)

≤
∫

U

|dh(x)|2dµX(x)

≤ ε−1
U

∫
Ω

|dh(x)|2dµW (w). (3.16)

We have already given an estimate for the integral of the right-hand side on
(3.16). Let

f̃(x, z)

:= f(x, z) − 1
µX(U)

∫
U

1
µB(Ωx)

(∫
Ωx

f(x, z)dµB(z)
)

dµX(x)

= g(x, z) + h(x) − 1
µX(U)

∫
U

h(x)dµX(x),

= −d∗
z¤−1

Ωx
αx − d∗

x¤−1
U

{
d∗

z

{
Dx(¤−1

Ωx
)αx

}
+

1
µB(Ωx)

∫
Ωx

αz(x)dµB(z)
}

.

(3.17)

Then we have∫
Ω

(
f(w) − 1

µ(Ω)

∫
Ω

f(w)dµ(w)
)2

dµW (w)≤
∫

Ω

f̃(x, z)2dµW (w)

≤Cε−1
U

∫
Ω

|α(w)|2Φ̃F (w)dµW (w).

(3.18)
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In the above argument, we assume the existence of f such that df = α on
Ω. Of course, this holds if α is given by df itself. In this case, the inequality
(3.18) implies a (weak) Poincaré inequality when ΦF is a good function. See [1].
If the closed 1-form α is given first, the existence of f is not trivial. However,
applying the estimate (3.14) and the representation formula (3.17) to the finite
dimensional part of α which is also a closed 1-form on finite dimensional domain
with infinite dimensional remaining orthogonal parameters, we may obtain f

itself by a limiting argument. We will study this in a forthcoming paper. We
give some discussions for a justification of the estimate (3.14) in the next section
after showing Hadamard’s variational formula for ¤−1

Ωx
.

§4. Hadamard’s variational formula in Wiener spaces

We denote Sx = {z ∈ B | F (x, z) = 0} for x ∈ U . Sx is the boundary of
Ωx. We consider a variation of Ωx by {Ωx+εv | ε ∈ R}. Then Sx+εv = {z ∈
B | F (x+εv, z) = 0}. We introduce a real valued function ψε(x, z) (z ∈ Sx) such
that ψ0(x, z) = 0 and Sx+εv = {z + ψε(x, z)nx(z) | z ∈ Sx}. Here nx(z) stands
for the unit outer normal vector at z ∈ Sx. Using the equation, F (x + εv, z +
ψε(x, z)nx(z)) = 0, we get ∂

∂εψε(x, z)|ε=0 = − (DxF (x,z),v)
|DzF (x,z)| =: ρx,v(z). That is,

our variation can be approximated by the variation {z+ερx,v(z)nx(z) | z ∈ Sx}.
The function ρx,v(z) corresponds to the function ρ in [11].

For f ∈ D∞
∞−(B, R), we denote

Ex(f, f) =
∫

Ωx

|Df(z)|2dµB(z). (4.1)

We denote dνx(z) = |DzF (x, z)|δ(F (x, z))dµB(z). Let T x
t , Lx be the semi-

group and the non-positive generator of Ex with the Neumann boundary con-
dition. We denote Sx,v

t = (Dx)vT x
t . The following theorem in the case where

B is finite dimension and the measure is the Lebesgue measure was proved in
[11]. In Theorem 4.1, Theorem 4.2, we do not need to assume that Ωx is con-
vex. Also the convexity assumption on Ωx is not necessary for the proof of the
variation formula of the semi-group et¤Ωx . However we assume the convexity
in Theorem 4.3 and Lemma 4.1. Note that ¤−1

Ωx
is meaningless if ¤Ωx is not

invertible.
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Theorem 4.1. For f, g ∈ D∞
∞−(B, R), it holds that

∫
Ωx

Sx,v
t f(z)g(z)dµB(z) =−

∫ t

0

∫
Sx

(
DzT

x
s f(z), DzT

x
t−sg(z)

)
ρx,v(z)dνx(z)ds

− ∂

∂t

∫ t

0

(∫
Sx

T x
s f(z)T x

t−sg(z)ρx,v(z)dνx(z)
)

ds

=−
∫ t

0

∫
Sx

(
DzT

x
s f(z), DzT

x
t−sg(z)

)
ρx,v(z)dνx(z)ds

−
∫ t

0

(∫
Sx

T x
s f(z)LxT x

t−sg(z)ρx,v(z)dνx(z)
)

ds

−
∫

Sx

T x
t f(z)g(z)ρx,v(z)dνx(z)

+
∫

Sx

f(z)T x
t g(z)ρx,v(z)dνx(z). (4.2)

For λ > 0, we denote Rλ =
∫ ∞
0

e−λtT x
t dt = (λ − Lx)−1. Suppose that

(Dx)vRλ =
∫ ∞
0

e−λtSx,v
t dt. Then multiplying by e−λt (λ > 0) the both sides

of the equality in Theorem 4.1 and integrating with respect to t from 0 to +∞,
we get

Theorem 4.2.

∫
Ωx

{((Dx)vRλ) f} (z)g(z)dµB(z)

= −
∫

Sx

(DzRλf(z), DzRλg(z)) ρx,v(z)dνx(z)

−
∫

Sx

Rλf(z)LxRλg(z)ρx,v(z)dνx(z)

−
∫

Sx

Rλf(z)g(z)ρx,v(z)dνx(z) +
∫

Sx

f(z)Rλg(z)ρx,v(z)dνx(z). (4.3)

For the variation of the Green operator ¤−1
Ωx

, we have a similar expression.
We use the notation Qz = dz + d∗z below.
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Theorem 4.3. We denote GΩx = ¤−1
Ωx

and Hv
Ωx

= (Dx)vGΩx . Then∫
Ωx

(Hv
Ωx

α(z), β(z))dµB(z)

=
∫

Sx

(QzGΩxα(z), QzGΩxβ(z)) ρx,v(z)dνx(z)

+
∫

Sx

(α(z), GΩxβ(z)) ρx,v(z)dνx(z)

+
∫

Sx

d∗zGΩxα(z) {(DnxGΩxβ(z), nx(z)) ρx,v(z) − ι(Dρx,v(z))GΩxβ(z)} dνx(z)

+
∫

Sx

d∗zGΩxβ(z) {(DnxGΩxα(z), nx(z)) ρx,v(z) − ι(Dρx,v(z))GΩxα(z)} dνx(z).

For the estimate of d∗zH
v
Ωx

, we have the following by using Theorem 4.3.

Lemma 4.1. Let α be a 1-form on Ωx with dzα = 0 on Ωx. Then, there
exists an absolute constant C such that∫

Ωx

|d∗zHv
Ωx

α(z)|2dµB(z)

≤ C

µB(Ωx)

{∫
Ωx

|α(z)|2Mv,x(z)dµB(z) + N2
v,x‖α‖2

L2(Ωx,dµB)

}
(4.4)

where

Mv,x(z) = |n̄ε
x,v(z)|2 + |Dzn̄

ε
x,v(z)|2 + |D∗

z n̄ε
x,v(z)|2,

Nv,x = ‖n̄ε
x,v‖L2(Ωx,dµB) + ‖Dzn̄

ε
x,v‖L2(Ωx,dµB) + ‖D∗

z n̄ε
x,v‖L2(Ωx,dµB)

+‖Dzρx,v‖L2(Ωx,dµB) + ‖D2
zρx,v‖L2(Ωx,dµB),

ñε
x =

DzF (x, z)
|DzF (x, z)|

φ
(
ε−1F (x, z)

)
,

n̄ε
x,v =

DzF (x, z)
|DzF (x, z)|

ρx,v(z)φ
(
ε−1F (x, z)

)
.

Here ε > 0 and φ is a smooth function on R with φ(t) = 1 for −1 ≤ t ≤ 1 and
φ(t) = 0 for |t| ≥ 2.

In the above lemma, we do not use the property that d∗
z

{
Hv

Ωx
αx

}
is inde-

pendent of z. If we use this and we assume the further property of the function
F (x, z), we may prove that∫

Ωx

|d∗
zH

v
Ωx

αx(z)|2dµB(z) ≤ C

∫
Ωx

|αx(z)|2dµB(z), (4.5)



12 Shigeki Aida

where C is independent of x. That is, we may prove the Poincaré inequality
on Ω

Proof. Note that

{∫
Ωx

|d∗
zH

v
Ωx

α(z)|2dµB(z)
}1/2

= sup

{∫
Ωx

d∗zH
v
Ωx

α(z)g(z)dµB(z)
∣∣∣ g is a D∞ function with g|∂Ωx = 0

and ‖g‖L2(Ωx,µB)=1

}
. (4.6)

Let g be a function which satisfies the assumptions on the right-hand side of
(4.6). By the integration by parts formula and Theorem 4.3, we have∫

Ωx

d∗zH
v
Ωx

α(z)g(z)dµB(z)

=
∫

Ωx

(
Hv

Ωx
α(z), dzg(z)

)
dµB(z)

=
∫

Sx

(QzGΩxα(z), QzGΩxdzg(z)) ρx,v(z)dνx(z)

+
∫

Sx

(α(z), GΩxdzg(z)) ρx,v(z)dνx(z)

+
∫

Sx

d∗
zGΩxα(z) {(DnxGΩxdg(z), nx(z)) ρx,v(z) − ι(Dρx,v(z))GΩxdg(z)} dνx(z)

+
∫

Sx

d∗
zGΩxdg(z) {(DnxGΩxα(z), nx(z)) ρx,v(z) − ι(Dρx,v(z))GΩxα(z)} dνx(z)

:= I1 + I2 + I3 + I4.

We estimate Ii. For the first term, noting that dzGΩxdzg = GΩxd2
zg = 0 and

(2.7),

QzGΩxdg(z) = (d∗
z + dz)GΩxdg(z)

= d∗zGΩxdg(z)

= g(z) − ḡ. (4.7)

Here ḡ = µB(Ωx)−1
∫
Ωx

g(z)dµB(z). Thus using the integration by parts for-
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mula and g|Sx = 0,

I1 = ḡ

∫
Ωx

D∗
z

{
d∗zGΩxα(z)n̄ε

x,v(z)
}

dµB(z)

= ḡ

(
−

∫
Ωx

(α(z), n̄ε
x,v(z))dµB(z) +

∫
Ωx

d∗
zGΩxα(z)D∗

z n̄ε
x,v(z)dµB(z)

)
.

(4.8)

Here we have used that dzd
∗
zGΩx

α = −α which holds because dzα = 0 on Ωx.
Consequently,

|I1| ≤ ‖g‖L2(Ωx,dµB)‖α‖L2(Ωx,dµB)µB(Ωx)−1/2(
‖n̄ε

x,v‖L2(Ωx,dµB) + ‖D∗
z n̄ε

x,v‖L2(Ωx,dµB)

)
. (4.9)

We estimate I2. By the integration by parts formula,

I2 = −
∫

Ωx

D∗
z

{
(α(z), GΩxdzg(z)) n̄ε

x,v(z)
}

dµB(z)

=
∫

Ωx

〈
Dzα(z)

[
n̄ε

x,v(z)
]
, GΩxdzg(z)

〉
dµB(z)

+
∫

Ωx

〈
α(z), Dz (GΩxdzg) (z)

[
n̄ε

x,v(z)
]〉

dµB(z)

−
∫

Ωx

(α(z), GΩxdzg(z))D∗
z n̄ε

x,v(z)dµB(z)

:= I2,1 + I2,2 + I2,3. (4.10)

For I2,1,

|I2,1| ≤
(∫

Ωx

∣∣∣(−GΩx)1/2
{

Dzα(z)
[
n̄ε

x,v(z)
]}∣∣∣2 dµB(z)

)1/2

(∫
Ωx

|(−GΩx)1/2dzg(z)|2dµB(z)
)1/2

. (4.11)

By the integration by parts formula,∫
Ωx

|(−GΩx)1/2dzg(z)|2dµB(z)

=
∫

Ωx

(−GΩxdzg(z), dzg(z)) dµB(z)

= −
∫

Ωx

d∗zGΩxdzg(z)g(z)dµB(z)

=
∫

Ωx

g(z)2dµB(z) − 1
µB(Ωx)

(∫
Ωx

g(x)dµB(z)
)2

.
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This implies the boundedness of (−Gx)1/2dz in L2 also. We consider the first
term on the right-hand side of (4.11). Since dzα = 0 on Ωx,

Dzα(z)
[
n̄ε

x,v(z)
]
= Dz

(
α(z), n̄ε

x,v(z)
)
−

(
Dzn̄

ε
x,v(z), α(z)

)
.

Therefore ∫
Ωx

∣∣∣(−GΩx)1/2
{
Dzα(z)

[
n̄ε

x,v(z)
]}∣∣∣2 dµB(z)

≤ 2
∫

Ωx

∣∣∣(−GΩx)1/2
{

Dz

(
α(z), n̄ε

x,v(z)
)}∣∣∣2dµB(z)

+2
∫

Ωx

∣∣∣(−GΩx)1/2
{(

α(z), Dzn̄
ε
x,v(z)

)}∣∣∣2dµB(z)

≤ 2
∫

Ωx

|α(z)|2
(
|n̄ε

x,v(z)|2 + Dzn̄
ε
x,v(z)|2

)
dµB(z). (4.12)

Here we have used the boundedness of (−GΩx)1/2Dz. For I2,2 and I2,3, using
the boundedness

max
(
‖GΩxdzg‖L2(Ωx,dµB), ‖DzGΩxdzg‖L2(Ωx,dµB)

)
≤ ‖g‖L2(Ωx,dµB), (4.13)

we have

|I2,2 + I2,3|

≤
{∫

Ωx

|α(z)|2
(
|n̄ε

x,v(z)|2 + |D∗
z n̄ε

x,v(z)|2
)
dµB(z)

}1/2

‖g‖L2(Ωx,dµB)

which proves the lemma. It remains to show that ‖DzGΩxdzg‖L2(Ωx,dµB) ≤
‖g‖L2(Ωx,dµB). To this end, we use the convexity of Ωx. By the convexity of
Ωx, by Theorem 3.3 in [14],

∫
Ωx

|DzGΩxdzg(z)|2dµB(z)≤
∫

Ωx

|(dz + d∗
z)GΩxdzg(z)|2dµB(z)

=
∫

Ωx

|d∗zGΩxdzg(z)|2dµB(z)

=
∫

Ωx

(g(z) − ḡ)2 dµB(z) ≤ ‖g‖2
L2(Ωx,dµB).
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We can estimate I3 and I4 in the same way and obtain

|I3| ≤

{(∫
Ωx

|α(z)|2
(
|Dzn̄

ε
x,v(z)| + |n̄ε

x,v(z)| + |D∗
z n̄ε

x,v(z)|
)2

dµB(z)
)1/2

+‖α‖L2(Ωx,dµB)

(
‖n̄ε

x,v‖L2(Ωx,dµB) + ‖Dn̄ε
x,v‖L2(Ωx,dµB)

+‖D∗
z n̄ε

x,v‖L2(Ωx,dµB)

)}
‖g‖L2(Ωx,dµB)µB(Ωx)−1/2,

|I4| ≤ ‖α‖L2(Ωx,dµx)‖g‖L2(Ωx,dµx)µB(Ωx)−1/2

×
(
‖n̄ε

x,v‖L2(Ωx,dµB) + ‖Dzn̄
ε
x,v‖L2(Ωx,dµB) + ‖Dzρx,v‖L2(Ωx,dµB)

+‖D2
zρx,v‖L2(Ωx,dµB)

)
which completes the proof.
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