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1 Introduction

Let x : [0, T ] → Rd be a C1 path with x0 = 0. Let f ∈ C∞
b (Rd, L(Rd → Rm)) ∗. Then the limit

I0,T (x) =
∫ T

0
f(xu)dxu = lim

|D|→0

N∑
i=1

f(xsi−1)
(
xti − xti−1

)
∈ Rm, ti−1 ≤ si−1 ≤ ti, (1.1)

exists. Here D = {0 = t0 < · · · < tN = T} and |D| = max1≤i≤N (ti − ti−1). Moreover the
functional x → I0,T (x) is continuous in the topology of C1. Let p ≥ 1 and define the p-variation
norm † of x by

‖x‖p :=

{
sup
D

N∑
i=1

|xti − xti−1 |p
}1/p

.

We denote by Bp,T (Rd) the Banach space which consists of continuous paths starting at 0 with
finite p-variation norm ‖ ‖p. The 1-variation norm of x is the same as the total variation of x.
The p-variation norm defines a weaker topology of the C1-path space with x0 = 0. Actually it is
proved that I0,T (x) is a continuous functional of x in the p-variation topology for any 1 ≤ p < 2.
However it is not a continuous function in general with respect to p-variation norm for p ≥ 2 if
d ≥ 2. Terry Lyons [15] proved the following continuity results:

Let 2 ≤ p < 3 and x and y be C1-path starting from 0. If the p-variation norm of x − y is
small and the p/2-variation norm of the difference X2 and Y 2 (see the next section with respect
to the definition of p/2-variation norm of them) is also small, then I0,T (x) − I0,T (y) is small.
Here X2

s,t =
(
X2,ij(s, t)

)
1≤i≤j≤d

and

X2,ij
s,t =

∫ t

s
(xi

u − xi
s)dxj

u, 0 ≤ s ≤ t ≤ T,

xt = (xi
t)1≤i≤d.

The iterated integral X2
s,t naturally appears when we approximate the integral I0,T (x) using

Taylor’s expansion. This observation leads to a notion of p-rough path (p ≥ 2) which is an
extended notion of smooth (or p-bounded variation (1 ≤ p < 2)) path. The aim of this talk
is to introduce the audiences to rough path analysis. I recommend [17] as well as [16] as good
references for rough path analysis.

∗Cm
b denotes the set of functions which are m-times continuously differentiable and themselves and all deriva-

tives are bounded. The norm is given by
Pm

i=0 ‖∇
if‖∞. ‖ ‖∞ denotes the supremum norm.

†If we do not fix the starting point, we need to add |x0| or the supremum norm ‖x‖∞ to make ‖ ‖p to be a
norm.
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2 A continuity theorem of line integrals as a functional of paths

Let f(x) = (f i
j(x))1≤i≤m,1≤j≤d (x ∈ Rd) be a (m, d)matrices valued C∞

b function. For a C1

path x : [0, T ] → Rd, define the Riemann-Stieltjes integral

Is,t(x) :=
∫ t

s
f(xu)dxu =

(∫ t

s
f i

j(xu)dxj
u

)
i

, (s, t ∈ [0, T ]) (2.1)

which gives a C1 path on Rm.
We consider two quantities which are approximations of Is,t(x). To this end we introduce

the following notation.

Definition 2.1 Let x : [0, T ] → Rd be a C1 path on Rd. Define continuous mappings from
∆T = {(s, t) | 0 ≤ s ≤ t ≤ T} to Rd and Rd ⊗ Rd by

X1
s,t =

d∑
i=1

X1,i
s,tei := xt − xs =

d∑
i=1

(xi
t − xi

s)ei ∈ Rd (2.2)

X2
s,t =

∑
1≤i,j≤d

X2,ij
s,t ei ⊗ ej

:=
∫ t

s
(xu − xs) ⊗ dxu

=
∑

1≤i,j≤d

(∫ t

s
(xi

u − xi
s)dxj

u

)
ei ⊗ ej ∈ Rd ⊗ Rd,

(2.3)

where ei = t(0, . . . ,
i
1, . . . , 0) denotes the orthonormal basis of Rd. Rd ⊗ Rd denotes the tensor

product and {ei ⊗ ej}1≤i,j≤d is an orthonormal basis of it.

Using these notation, we define

Ĩs,t(x) := f(xs)X1
s,t, (2.4)

Js,t(x) := f(xs)X1
s,t + (∇f)(xs)

(
X2

s,t

)
. (2.5)

We use the convention:

[(∇f)(x)(a ⊗ b)]i =
∑

1≤j,k≤d

∂f i
j

∂xk
(x)akbj , (2.6)

[
(∇f)(xs)(X2

s,t)
]i =

∑
1≤j,k≤d

∂f i
j

∂xk
(xs)

∫ t

s
(xk

u − xk
s)dxj

u (2.7)

[
(∇2f)(x)(a ⊗ b ⊗ c)

]i =
∑

1≤k,l≤d

∂2f i
j

∂xl∂xk
(x)albkcj , (2.8)

where a =
∑d

i=1 aiei, b =
∑d

i=1 biei, c =
∑d

i=1 ciei and [·]i denotes the i-th element.
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One may say that Ĩs,t(x)is the first approximation of Is,t(x) and Js,t(x) is the second ap-
proximation because

Is,t(x) =
∫ t

s

[
f(xs) +

{∫ 1

0
(∇f)(xs + θ(xu − xs))dθ

}
(xu − xs)

]
dxu

=
∫ t

s
[f(xs) + (∇f)(xs)(xu − xs)] dxu

+
∫ t

s

{∫ 1

0
(∇f)(xs + θ(xu − xs))dθ − (∇f)(xs)

}
(xu − xs) dxu

= Js,t(x) +
∫ t

s

{∫ 1

0

(∫ θ

0
(∇2f)(xs + r(xu − xs))dr

)
dθ

}
[(xu − xs) ⊗ (xu − xs) ⊗ dxu]

=: Js,t(x) + Rs,t(x) (2.9)

and

|Rs,t(x)| ≤ C

∫ t

s
|xu − xs|2|ẋu|du. (2.10)

Let D := {s = t0 < t1 < · · · < tN = t} be a partition of [s, t]. Let

Ĩs,t(x,D) :=
N∑

i=1

Ĩti−1,ti(x) (2.11)

Js,t(x,D) :=
N∑

i=1

Jti−1,ti(x) (2.12)

It is trivial that

Is,t(x) =
N∑

i=1

Iti−1,ti(x) (2.13)

Is,t(x) = lim
|D|→0

Ĩs,t(x,D) (2.14)

Is,t(x) = lim
|D|→0

Js,t(x,D), (2.15)

where |D| = max1≤i≤N (ti − ti−1). The limit of (2.14) is nothing but the definition of Stieltjes
integral. Actually this limit exists for any continuous path x with finite p-variation with 1 ≤
p < 2. This is proved by L.C. Young [24]. The approximation of (2.15) is crucial to prove the
continuity theorem which is mentioned in the Introduction. We define q-variation norms for
continuous mappings from ∆T to V .

Definition 2.2 Let (V, ‖ ‖) be a normed linear space. For a continuous mapping ψ : ∆T → V
and q ≥ 1, we define

‖ψ‖q = sup
D

{
N∑

i=1

|ψti−1,ti |q
}1/q

, (2.16)
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where D := {0 = t0 < t1 < · · · < tN = T} is a partition. Typical examples are ψ = X1, X2

which are defined by a C1 path. ‖X1‖p coincides with the p-variation norm of xt − x0 which

is defined in the Introduction. Also we denote ‖ψ‖q,[s,t] = sup
{
{
∑N

i=1 |ψti−1,ti |q}1/q
∣∣∣ D = {s =

t0 < . . . < tN = t}
}
.

For a C1-path y, we define Y 1, Y 2 by y in the same way as in Definition 2.1. We can prove
the following.

Theorem 2.3 Let 1 ≤ p < 2. Let x and y be C1 paths on Rd with x0 = y0. Assume that

max
{
‖X1‖p, ‖Y 1‖p

}
≤ R < ∞ (2.17)

max
{
‖X1 − Y 1‖p

}
≤ ε. (2.18)

Then for all 0 ≤ s ≤ t ≤ T ,
|Is,t(x) − Is,t(y)| ≤ εC, (2.19)

where C is a constant which depends on p,R, ‖∇if‖∞ (i = 0, 1, 2).

Theorem 2.4 Let 2 ≤ p < 3 and x, y be C1 paths on Rd with x0 = y0. Assume that

max
{
‖X1‖p, ‖Y 1‖p, ‖X2‖p/2, ‖Y 2‖p/2

}
≤ R < ∞ (2.20)

max
{
‖X1 − Y 1‖p, ‖X2 − Y 2‖p/2

}
≤ ε. (2.21)

Then for all 0 ≤ s ≤ t ≤ T ,

|Is,t(x) − Is,t(y)| ≤ ε · C, (2.22)

where C is a constant which depends on p,R, ‖∇if‖∞ (i = 0, 1, 2, 3).

In the theorem above, the starting point of x and y is the same. For the case where x0 6= y0,
we have the following.

Theorem 2.5 Let yt = xt + ξ (0 ≤ t ≤ T ). Then the following estimates hold, where C,C ′ are
polynomial functions of ‖X1‖p and ‖∇if‖ (i = 0, 1, 2), ‖X1‖p, ‖X2‖p/2 and ‖∇if‖ (i = 0, 1, 2, 3)
respectively.
(1) Let 1 ≤ p < 2. It holds that |Is,t(x) − Is,t(y)| ≤ C|ξ|.
(2) Let 2 ≤ p < 3. It holds that |Is,t(x) − Is,t(y)| ≤ C ′|ξ|.

Let µ be the Wiener measure on Θd = C([0, T ] → Rd | w0 = 0). That is µ is the unique
probability measure such that for any increasing sequence 0 = t0 < t1 < . . . < tl = T and Borel
subsets Ai ⊂ Rd (1 ≤ i ≤ l) it holds that

µ
({

w ∈ Θd
∣∣∣ wti ∈ Ai, 1 ≤ i ≤ l

})
=

∫
Rd

dx1 · · ·
∫

Rd

dxl

l∏
i=1

p(ti − ti−1, xi−1, xi)1Ai(xi),

where p(t, x, y) = 1√
2π

d exp
(
− |x−y|2

2t

)
and x0 = 0. The continuous stochastic process X(t, w) =

wt (0 ≤ t ≤ T,w ∈ Θd) defined on a probability space (Θd,B(Θd), µ) is a realization of Brownian
motion starting at 0. For µ-almost all w, ‖w‖2 = ∞ although ‖w‖p < ∞ for all p > 2.
See [22]. Therefore we cannot define the integral

∫ T
0 f(wt)dwt as the Young integral. This

integral is typical stochastic integral and is defined as an “Itô integral” or “Stratonovich integral”
. However, note that Theorem 2.4 and the following theorem gives a meaning of this integral.
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Theorem 2.6 Let w(n) be the dyadic polygonal approximation of w such that w(n)t = wt for
t = k

2n T, 0 ≤ k ≤ 2n and w(n) is a linear function on each small interval
[

k
2n T, k+1

2n T
]
. We

define W (n)1,W (n)2 by w(n) in the same way as in Definition 2.1. Let

Θ̃d =
{

w ∈ Θd
∣∣∣ lim

n,m→∞
max{‖W (n)1 − W (m)1‖p, ‖W (n)2 − W (m)2‖p/2} = 0

}
. (2.23)

Then µ(Θ̃d) = 1.

By Theorem 2.4, for all w ∈ X, limn→∞ Is,t(w(n)) exist. This is almost surely equal to the
Stratonovich integral. That is,

Theorem 2.7 For µ-almost all w,

lim
n→∞

Is,t(w(n)) =
∫ t

s
f(wu) ◦ dwu =

d∑
i=1

(∫ t

s
f i

j(wu) ◦ dwj
u

)
ei (2.24)

lim
n→∞

W (n)2s,t =
∑

1≤i,j≤d

(∫ t

s
(wi

u − wi
s) ◦ dwj

u

)
ei ⊗ ej , (2.25)

The integral of the right-hand side is the Stratonovich integral.

Remark 2.8 Stratonovich integral is defined by∫ t

s
f i

j(wu) ◦ dwj
u = lim

|D|→0

N∑
i=1

f i
j

(
wti−1

)
+ f i

j (wti)
2

(
wj

ti
− wj

ti−1

)
.

See [10]. Here D = {s = t0 < · · · < tN = t} is a partition of [s, t]. The limit exists in L2. It is
not trivial that this limit equals to the limit of the left-hand side of (2.24). However the proof
is not difficult. For w ∈ X, we define Is,t(w) and W 2

s,t by the limit of Is,t(w(n)) and W (n)2s,t.
The functional w → Is,t(w) is a version of the Stratonovich integral and satisfies the continuity
property as in Theorem 2.4.

3 Proof of continuity theorem

To prove Theorem 2.4, we introduce the following.

Definition 3.1 A continuous function ω(·, ·) : ∆T → [0,∞) is called a control function if it
holds that for any 0 ≤ s ≤ u ≤ t ≤ T ,

ω(s, u) + ω(u, t) ≤ ω(s, t). (3.1)

Let ω1 and ω2 be control functions. Then (ωr
1 + ωr

2)
1/r (0 < r ≤ 1) is also a control function

but ω(s, t) = max{ω1(s, t), ω2(s, t)} may not be a control function. We give examples of control
functions.
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Example 3.2 (1) Let p ≥ 1 and x ∈ Bp,T (Rd). Let ω(s, t) = ‖X1‖p
p,[s,t]. Then ω(s, t) is a

control function.
(2) For a C1 path x and p ≥ 2, define

ω(s, t) = ‖X1‖p
p,[s,t] + ‖X2‖p/2

p/2,[s,t]. (3.2)

First we prove the following.

Theorem 3.3 Let x be a C1 path on Rd.
(1) Let 1 ≤ p < 2. Assume that there exists a control function ω such that for all 0 ≤ s ≤ t ≤ T

|X1
s,t| ≤ ω(s, t)1/p, (3.3)

Then

|Is,t(x)| =
∣∣∣∣∫ t

s
f(xu)dxu

∣∣∣∣ ≤ C
(
ω(s, t)1/p + ω(s, t)2/p

)
, (3.4)

where C denotes a constant which depends on p, ‖∇if‖∞ (0 ≤ i ≤ 1).
(2) Let 2 ≤ p < 3. Assume that there exists a control function ω such that for all 0 ≤ s ≤ t ≤ T

|X1
s,t| ≤ ω(s, t)1/p, (3.5)

|X2
s,t| ≤ ω(s, t)2/p. (3.6)

Then

|Is,t(x)| =
∣∣∣∣∫ t

s
f(xu)dxu

∣∣∣∣ ≤ C
(
ω(s, t)1/p + ω(s, t)2/p + ω(s, t)3/p

)
, (3.7)

where C denotes a constant which depends on p, ‖∇if‖∞ (0 ≤ i ≤ 2).

Remark 3.4 (1) We give the proof for (2) only because the proof of (1) is almost similar to
(1) and much easier. But here is a important remark. Assume that the continuous path x is
of finite p-variation (1 ≤ p < 2) only. In this case, ω(s, t) = ‖X1‖p

[s,t],p is a control function of

X1. As noted already, the limit lim|D|→0 Ĩs,t(x,D) exists and is called the Young integral. The
convergence can be proved by the idea of the proof of this theorem and the estimate in (3.4)
holds. See Remark 3.7.
(2) In the above theorem, we assume the boundedness of f and its derivatives. However, it is
easy to check that the same theorem holds for C2 function (or C1 function in the case of (1))
without assuming the boundedness on ∇if (0 ≤ i ≤ 2), for example, in the case of (2), replacing
the supremum norm of ∇if on Rd by

sup

{
2∑

i=0

‖∇if(x)‖ | |x| ≤ |x0| + ω(0, T )1/p

}
.

For the proof, we use the following simple two lemmas.
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Lemma 3.5 Let N ≥ 2 be a natural number. For a partition D = {s = t0 < t1 < · · · < tN = t},
there exists ti such that

ω(ti−1, ti+1) ≤ 2ω(s, t)
N − 1

(3.8)

Proof.

(N − 1) min
i

ω(ti−1, ti+1) ≤
N−1∑
i=1

ω(ti−1, ti+1)

=
∑

j≥0,2j+2≤N

ω(t2j , t2j+2) +
∑

l≥0,2l+3≤N

ω(t2l+1, t2l+3)

≤ 2ω(s, t). (3.9)

Lemma 3.6 (Chen’s identity) X1
s,t, X

2
s,t satisfies the following algebraic relations. For any

0 ≤ s < u < t ≤ T ,

X1
s,t = X1

s,u + X1
u,t (3.10)

X2
s,t = X2

s,u + X2
u,t + X1

s,u ⊗ X1
u,t. (3.11)

Proof. (3.10) is trivial. We prove (3.11).

X2
s,t =

∫ t

s
(xr − xs) ⊗ dxr

=
∫ u

s
(xr − xs) ⊗ dxr +

∫ t

u
(xr − xs) ⊗ dxr

=
∫ u

s
(xr − xs) ⊗ dxr +

∫ t

u
(xr − xu) ⊗ dxr + (xu − xs) ⊗ (xt − xu)

= X2
s,u + X2

u,t + X1
s,u ⊗ X1

u,t.

Proof of Theorem 3.3 (2) Let D = {s = t0 < · · · < tN = t} and assume that N ≥ 2. Take a
division point i satisfying (3.8). Set D−1 := D \ {ti}. We estimate Js,t(x, D) − Js,t(x, D−1).

Using (3.10), we have

Js,t(x,D) − Js,t(x,D−1)
= Jti−1,ti(x) + Jti,ti+1(x) − Jti−1,ti+1(x)
= f(xti−1)X

1
ti−1,ti + f(xti)X

1
ti,ti+1

− f(xti−1)X
1
ti−1,ti+1

+∇f(xti−1)X
2
ti−1,ti + ∇f(xti)X

2
ti,ti+1

−∇f(xti−1)X
2
ti−1,ti+1

=
(
f(xti) − f(xti−1)

)
X1

ti,ti+1

+∇f(xti−1)X
2
ti−1,ti + ∇f(xti)X

2
ti,ti+1

−∇f(xti−1)X
2
ti−1,ti+1

. (3.12)
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Next using (3.11) and Taylor’s theorem,

Js,t(x,D) − Js,t(x,D−1)

=
[∫ 1

0

{
(∇f)

(
xti−1 + θ(xti − xti−1)

)
− (∇f)(xti−1)

}
dθ

]
X1

ti−1,ti ⊗ X1
ti,ti+1

+∇f(xti−1)X
1
ti−1,ti ⊗ X1

ti,ti+1

+∇f(xti−1)X
2
ti−1,ti + ∇f(xti)X

2
ti,ti+1

−∇f(xti−1)X
2
ti−1,ti+1

=
[∫ 1

0

{
(∇f)

(
xti−1 + θ(xti − xti−1)

)
− (∇f)(xti−1)

}
dθ

]
X1

ti−1,ti ⊗ X1
ti,ti+1

+
(
(∇f)(xti) − (∇f)(xti−1)

)
X2

ti,ti+1
(3.13)

= R(f, x, ti−1, ti)
[
X1

ti−1,ti ⊗ X1
ti−1,ti ⊗ X1

ti,ti+1

]
+S(f, x, ti−1, ti)

[
X1

ti−1,ti ⊗ X2
ti,ti+1

]
, (3.14)

where

R(f, x, ti−1, ti) =
∫ 1

0

(∫ θ

0
(∇2f)

(
xti−1 + τ(xti − xti−1)

)
dτ

)
dθ

S(f, x, ti−1, ti) =
∫ 1

0
(∇2f)

(
xti−1 + θ(xti − xti−1)

)
dθ.

By the assumption on the division point ti,

|Js,t(x,D) − Js,t(x,D−1)| ≤ C · ‖∇2f‖∞

{(
2ω(s, t)
N − 1

)3/p

+
(

2ω(s, t)
N − 1

)1/p (
2ω(s, t)
N − 1

)2/p
}

≤ C

(
2ω(s, t)
N − 1

)3/p

‖∇2f‖∞. (3.15)

Next, we choose a division point t′i from the partition D\{ti} so that (3.8) holds replacing N −1
by N − 2. Repeating this procedure N − 1 times, we obtain

∣∣Js,t(x,D) −
(
f(xs)X1

s,t + ∇f(xs)X2
s,t

)∣∣ ≤ C ·
N∑

k=2

(
2ω(s, t)
k − 1

)3/p

‖∇2f‖∞

≤ 23/pCζ

(
3
p

)
‖∇2f‖∞ω(s, t)3/p,

where ζ(s) =
∑∞

n=1
1
ns . By the assumption that p < 3, ζ

(
3
p

)
< ∞. Thus,

|Js,t(x,D)| ≤ ‖f‖∞ω(s, t)1/p + ‖∇f‖∞ω(s, t)2/p + C‖∇2f‖∞ω(s, t)3/p.

Since lim|D|→0 Js,t(x,D) = Is,t(x), the proof is completed.

Remark 3.7 (1) The idea of the estimate of the integral choosing the minimum point is due
to Young [24]. However, the use of the notion of control function seems to be due to Lyons [15].
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(2) In the above proof, we use the elementary fact that lim|D|→0 Js,t(x,D) converges. But this
elementary fact actually can be checked by the argument above. Let D′ be another partition of
[s, t]. Let D′′ be the common refinement of these two partitions. Let s = t0 < . . . tN = t be the
division point of D. Let D′′(i) = {ti−1 = si

0 < . . . < si
n(i) = ti} be the division point in [ti−1, ti]

of D′′. Note that Js,t(x,D′′) =
∑N

i=1 Jti−1,ti(x,D′′(i)) and Jti−1,ti(x,D′′) =
∑n(i)−1

i=0 Jsi
j ,si

j+1
(x).

Then using the above argument,

|Jti−1,ti(x) − Jti−1,ti(x,D′′)| ≤ 23/pCζ

(
3
p

)
‖∇2f‖∞ω(ti−1, ti)3/p

Therefore

|Js,t(x,D) − Js,t(x,D′′)| ≤
N∑

i=1

|Jti−1,ti(x) − Jti−1,ti(x,D′′)|

≤ 23/pCζ

(
3
p

)
‖∇2f‖∞ max

1≤i≤N
ω(ti−1, ti)

3
p
−1

ω(s, t). (3.16)

This shows the convergence of lim|D|→0 Js,t(x,D). This proof can be extended to the case of
classical Young’s integral.

We prove Theorem 2.4. We state more general results using control functions.

Theorem 3.8 Let x and y be C1 paths on Rd with x0 = y0 and 2 ≤ p < 3. Assume that there
exists a control function ω such that for all 0 ≤ s ≤ t ≤ T ,

max
{
|X1

s,t|, |Y 1
s,t|

}
≤ ω(s, t)1/p (3.17)

max
{
|X2

s,t|, |Y 2
s,t|

}
≤ ω(s, t)2/p (3.18)

|X1
s,t − Y 1

s,t| ≤ εω(s, t)1/p (3.19)

|X2
s,t − Y 2

s,t| ≤ εω(s, t)2/p. (3.20)

Then

|Is,t(x) − Is,t(y)| ≤ εCω(s, t)1/p. (3.21)

C is a constant which depends on ω(0, T ), p and ‖∇if‖∞ (0 ≤ i ≤ 3).

Proof. Let N ≥ 2. We choose the sequence of division points as in (3.8) repeatedly from
D = {s = t0 < · · · < tN = t}. We denote the sequence of partitions by D−k (1 ≤ k ≤ N − 1).
Then

|Js,t(x,D) − Js,t(y,D)|

≤
N−2∑
k=0

|{Js,t(x,D−k) − Js,t(x,D−k−1)} − {Js,t(y,D−k) − Js,t(y,D−k−1)}|

+ |Js,t(x) − Js,t(y)| . (3.22)
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By (3.14) and the assumption,

|{Js,t(x,D−k) − Js,t(x,D−k−1)} − {Js,t(y,D−k) − Js,t(y,D−k−1)}|

≤ C · ε
(

2ω(s, t)
N − k − 1

)3/p (
‖∇2f‖∞ + ‖∇3f‖∞

)
. (3.23)

Also

|Js,t(x) − Js,t(y)| ≤ ε
(
‖f‖∞ + ‖∇f‖∞(ω(0, s)1/p + ω(s, t)1/p) + ‖∇2f‖∞ω(0, s)1/p

)
ω(s, t)1/p.

Taking the sum and the limit |D| → 0, we get the conclusion.
We prove Theorem 2.4 using Theorem 3.8.

Proof of Theorem 2.4 Let us define a control function ω by

ω(s, t) = ‖X1‖p
p,[s,t] + ‖Y 1‖p

p,[s,t] + ‖X2‖p/2
p/2,[s,t] + ‖Y 2‖p/2

p/2,[s,t]

+
(
ε−1‖X1 − Y 1‖p,[s,t]

)p +
(
ε−1‖X2 − Y 2‖p/2,[s,t]

)p/2
. (3.24)

Then all assumptions of Theorem 3.8 hold. (3.21) implies the conclusion.

Remark 3.9 (1) Let x, y : [0, T ] → R be continuous paths with finite p-variation (1 ≤ p < 2).
Then we proved that

∫ T
0 xtdyt can be defined as a limit of Riemann sums. Actually Young

proved that for x and y with ‖x‖p < ∞ and ‖y‖q < ∞, where 1
p + 1

q > 1,
∫ T
0 xtdyt converges.

Actually the above method proves this result too.
(2) Let us consider the case where d = 1. In this case Is,t(x) =

∫ t
s f(xu)dxu is a continuous

functional in the uniform convergence topology. Actually in this case, iterated integral reads∫ t

s
(xu − xs)dxu =

1
2
(xt − xs)2

and this is a continuous functional of X1
s,t. Also it is not difficult to see that the functional

x → y which is obtained by solving the integral equation below is continuous in the uniform
convergence topology:

yt = ξ +
∫ t

0
σ (ys + ξ) dxt (3.25)

where σ is a bounded Lipschitz continuous function. In higher dimensional cases (x is a path
on Rd, σ ∈ C1

b (Rm, L(Rd, Rm))) too, we have continuity property of the map in the uniform
convergence topology under the assumptions that the vector fields {σ(x)ei; 1 ≤ i ≤ d} commute.
See [5, 10]. In this case, we do not need the iterated integrals to solve the equation.

4 The notion of rough path

We can abstract the notion of rough paths from the discussion in the previous sections. Let us
denote Rd and Rm by V and V ′ respectively. But note that rough path theory can be formulated
for Banach spaces V , V ′.
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Definition 4.1 (Multiplicative functional) Let T (V ) = ⊕∞
k=0V

⊗k, where where V 0 = R.
This space is a non-commutative algebra by the product

(ai)
∞
i=0 ⊗ (bi)

∞
i=0 = (ci)

∞
i=0 ,

where ci =
∑i

j=0 aj ⊗ bi−j and the natural sum. Also let T (n)(V ) = ⊕n
k=0V

⊗k on which the
multiplication is defined by (ai)

n
i=0 ⊗ (bi)

n
i=0 = (ci)

n
i=0 , where ci =

∑i
j=0 aj ⊗ bi−j. We give

natural inner product on V ⊗k using the orthonormal basis {ei1 ⊗ · · · ⊗ eik} and the norm on
T (n)(V ) by |a| =

∑n
i=0 |ai| for a = (a0, . . . , an). A map X from ∆T to T (n)(V ) can be written

as X = (X0
s,t, . . . , X

n
s,t) ((s, t) ∈ ∆T ). We denote the all continuous mapping X from ∆T to

T (n)(V ) with X0
s,t ≡ 1 by C0(∆T , T (n)(V )). X ∈ C0(∆T , T (n)(V )) is said to have finite total

p-variation if ‖Xi‖p/i < ∞ for all 1 ≤ i ≤ n. Let us denote by C0,p(∆T , T (n)(V )) the subset
consisting of all continuous maps of finite total p-variation. X ∈ C0(∆T , T (n)(V )) is called a
multiplicative functional of degree n if for any 0 ≤ s ≤ u ≤ t ≤ T

Xs,u ⊗ Xu,t = Xs,t. (4.1)

(4.1) is called Chen’s identity.

Remark 4.2 (1) Let X be a multiplicative functional. Then X1
s,t = X1

s,u + X1
u,t for all 0 ≤

s ≤ u ≤ t ≤ T . Hence X1
s,t = X1

0,t − X1
0,s for 0 ≤ s ≤ t ≤ T . We say that the multiplicative

functional X is a lift of a path ξ + X1
0,t (ξ ∈ V ). The lift is not unique. See Remark 4.5 (3).

(2) Let X ∈ C0(∆T , T (n)(V )) be a multiplicative functional. Then X ∈ C0,p(∆T , T (n)(V )) is
equivalent to that ω(s, t) =

∑n
i=1 ‖X i‖p/i

p/i,[s,t] is a control function. In [16], X ∈ C0(∆T , T (n)(V ))
is said to be of finite p-variation if and only if there exists a control function ω such that

|X i
s,t| ≤ ω(s, t)i/p,∀i = 1, . . . , n, ∀(s, t) ∈ ∆T .

Thus two properties (i) “finite total p-variation”, (ii) “finite p-variation are the same properties
for the multiplicative functionals.

Definition 4.3 (Signature of path) Let x : [0, T ] → V be a continuous bounded variation
path‡ For (s, t) ∈ ∆T , set X1

s,t = xt − xs and

Xi+1
s,t =

∫ t

s
Xi

s,u ⊗ dxu ∈ V ⊗(i+1) (i ≥ 1)

inductively. Let S(x)[s,t] = (1, X1
s,t, X

2
s,t, . . .). S(x)[0,T ] is called the signature of the path x. The

first n + 1 element of S(x)[s,t],

(1, X1
s,t, . . . , X

n
s,t), ((s, t) ∈ ∆T )

is an example of multiplicative functional of degree n.

‡In previous sections, we assume that x is a C1-path. But the continuity and the bounded variation are enough
in the arguments.
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Definition 4.4 (p-rough path, geometric p-rough path) Let p ≥ 1. A multiplicative func-
tional of degree [p] = (the largest integer less than or equal to p) with finite p-variation is called
a p-rough path and we denote the set of all p-rough paths by Ωp(V ). (It is proved that Ωp(V ) is
a complete metric space with the distance function:

dp(X,Y ) = max
1≤i≤[p]

‖X i − Y i‖p/i.

) The first n+1-component of the signature of a continuous bounded variation path is an example
of p-rough path for all p ≥ 1 and is called a smooth rough path. The closure of all smooth rough
paths in Ωp(V ) is denoted by GΩp(V ) and the element is called a p-geometric rough path.

Remark 4.5 (1) In Remark 2.8, we define W 2
s,t for w ∈ Θ̃d ⊂ Θd. (1,W 1

s,t, W
2
s,t) (W 1

s,t =
w(t) − w(s)) is an example of p-geometric rough path, where 2 < p < 3. This geometric rough
path is called the Brownian rough path.
(2) For simplicity, let 2 ≤ p < 3. For a geometric p-rough path X = (1, X1

s,t, X
2
s,t), we denote

X1
s,t =

∑d
i=1 X1,i

s,tei, X2
s,t =

∑
1≤i,j≤d X2,ij

s,t ei ⊗ ej . Then X satisfies the following relations: for
any 1 ≤ i, j ≤ d and 0 ≤ s ≤ t ≤ T ,

X2,ij
s,t + X2,ji

s,t = X1,i
s,t + X1,j

s,t (4.2)

This implies the symmetric part of X2 is uniquely determined by X1. This suggests us another
definition of subset of p-rough path. A p-rough path which satisfies the relation (4.2) is called a
weakly geometric p-rough path. We denote the set which consists of weakly geometric p-rough
paths by WGΩp(V ). Therefore we may define a weakly geometric rough path is a continuous
mapping which takes the values in G(2)(Rd) = Rd×so(d) which is the free nilpotent Lie group of
step 2. The group multiplication is defined as follows: for x = (xi, xjk), y = (yi, yjk) ∈ G(2)(Rd),

x · y =
(

xi + yi, xij + yij +
1
2

(
xiyj − xjyi

))
.

Anti-symmetric part of X2 is Aij
s,t = 1

2

(
X2,ij

s,t − X2,ji
s,t

)
. Using the multiplication of G(2)(Rd), we

see that (X1
s,t, As,t) = (X1

0,s, A0,s)−1 · (X1
0,t, A0,t) holds. A weakly geometric rough path can be

viewed as a continuous map from [0, T ] to G(2)(Rd). See [15], [9].
Aij

s,t has a simple geometric meaning if X is a smooth rough path defined by a continuous
bonded variation path x. In this case,

Aij
s,t =

1
2

(∫ t

s

(
xi

u − xi
s

)
dxj

u −
∫ t

s

(
xj

u − xj
s

)
dxi

u

)
holds. That is Aij

s,t is the signed area enclosed by the closed curve which is defined by the chord
xsxt and the curve u ∈ [s, t] → xu on R2, where xu = xi

uei + xj
uej . If the path is the Brownian

path, this is called the Lévy’s stochastic area. The functional x ∈ Bp,T (Rd) → Aij
0,T is not

continuous for i 6= j, p = 2. Here is an example for p > 2. Let x(n)t = (x1(n)t, x
2(n)t) and

x1(n)t =
cos(n2t)

n , x2(n)(t) =
sin(n2t)

n , where T = 2π and d = 2. Then the limit of the associated
smooth rough path X(n) = (1, X(n)1, X(n)2) in GΩp(R2) (2 < p < 3) is

(1, 0,
1
2
A(t − s)), A =

(
0 1

−1 0

)
.
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This also implies the non-uniqueness of the extension x → X. Also it is proved that the
functional is not continuous with respect to any topology which are defined by measurable
norms on the Cameron-Martin subspace of the classical Wiener space in [21].
(3) Again for simplicity, let 2 ≤ p < 3. Let φ ∈ Bp/2,T (V ⊗ V ). Let X = (1, X1

s,t, X
2
s,t) be a

p-rough path then X ′ = (1, X1
s,t, X

2
s,t + φ(t) − φ(s)) is also a p-rough path. The necessary and

sufficient condition for that X ′ is a weakly geometric rough path is φ(t) is a skew-symmetric
matrix for all t ∈ [0, T ]. Hence we see strict inclusion GΩp(V ) ⊂ Ωp(V ). Actually WGΩp(V ) ⊂
GΩp(V ) is also a strict inclusion. This follows that Bp/2,T (V ⊗V ) is not a separable space. The
following example is due to [11]. Let q > 1 and fε(t) =

∑∞
k=1 εk2−k/q sin

(
2kπt

)
(0 ≤ t ≤ 1).

Here ε = (εk) is a sequence such that εk = 1 or −1. Then fε ∈ Bq,1(R). Also if ε 6= ε′,
‖fε−fε′‖q > 2 which shows non-separability of Bp,1(R). On the other hand, GΩp(V ) is separable
since

{C1-smooth rough paths}
dp

= {smooth rough path}dp
.

Note that C1-smooth rough path is a smooth rough path defined by a C1-path (this terminology
is not common).

In the definition of p-rough path, the reason why it does not contain tensor elements in V ⊗k

for k > [p] is in the following theorem.

Theorem 4.6 (Extension theorem) Let X be a p-rough path. Then for any n ≥ [p], there
exists a unique multiplicative functional X̃ = (1, X̃1, . . . , X̃n) such that X̃ i

s,t = Xi
s,t for all

(s, t) ∈ ∆T and 1 ≤ i ≤ [p]. We denote it by the same notation. Also the map X →
(X0, X1, . . . , X [p], X [p]+1, . . .) is a continuous map in the p-variation topology. More precisely,
let X and Y be two p-rough paths. Let β be a constant such that

β ≥ 2p2

(
1 +

∞∑
r=3

(
2

r − 2

)([p]+1)/p
)

.

Let ε > 0. If ω is a control function such that

max
(
|X i

s,t|, |Y i
s,t|

)
≤ ω(s, t)i/p

β(i/p)!
1 ≤ i ≤ [p], (s, t) ∈ ∆T (4.3)

|Xi
s,t − Y i

s,t| ≤ ε
ω(s, t)i/p

β(i/p)!
1 ≤ i ≤ [p], (s, t) ∈ ∆T , (4.4)

then (4.3) and (4.4) hold for all i ≥ [p] + 1.

The following inequality is used to prove Theorem 4.6.

Lemma 4.7 (Neo-classical inequality) For any p ∈ [1,∞], n ∈ N and s, t ≥ 0,

1
p2

n∑
i=0

s
i
p t

n−i
p(

i
p

)
!
(

n−i
p

)
!
≤ (s + t)

n
p(

n
p

)
!

.
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In previous sections, we define a line integral along C1-path xt by the limit lim|D|→0 Js,t(x,D).
Note that we use the algebraic relations ((3.10) and (3.11)) and estimates ((3.5) and (3.6)) only
to prove the convergence. By this we arrive at the notion of integral against a rough path.
However, an integration of a one form against a rough path should be also a rough path. This is
important when we solve a differential equation driven by rough path because we use Picard’s
iteration procedure to solve the equation.

Definition 4.8 (Line integral along rough path) Let 2 ≤ p < 3 and X = (1, X1, X2) be a
p-rough path. Let Xt = ξ + X1

0,t
§. Let f ∈ C2

b (V,L(V,W )) (V = Rd,W = Rm) and set

X̃1
s,t := f(Xs)X1

s,t + (∇f)(Xs)X2
s,t (4.5)

X̃2
s,t := f(Xs) ⊗ f(Xs)

(
X2

s,t

)
. (4.6)

It can be proved that the following limits exist

Z1
s,t = lim

|D|→0

N∑
i=1

X̃1
ti−1,ti (4.7)

Z2
s,t = lim

|D|→0

{
N∑

i=1

X̃2
ti−1,ti +

N∑
i=1

Z1
s,ti−1

⊗ Z1
ti−1,ti

}
, (4.8)

and (1, Z1, Z2) is also a p-rough path, where D = {s = t0 < . . . < tN = t}. We denote∫ t
s f(Xu)dX1

u = Z1
s,t,

∫ t
s f(Xs)dX2

u = Z2
s,t and∫ t

s
f(Xu)dXu =

(
1,

∫ t

s
f(Xu)dX1

u,

∫ t

s
f(Xs)dX2

u

)
∈ Ωp(W ). (4.9)

Remark 4.9 (1) Let X = (1, X1, X2) be a smooth rough path. Then

Z2
s,t '

∫ t

s
X̃1

s,u ⊗ duX̃1
s,u

=
∫
{s<u1<u2<t}

˙̃X1
s,u1

⊗ ˙̃X1
s,u2

du1du2

=
∫
{s<u1<u2<t}

(
f(Xs)Ẋ1

s,u1
+ (∇f)(Xs)Ẋ2

s,u1

)
⊗(

f(Xs)Ẋ1
s,u2

+ (∇f)(Xs)Ẋ2
s,u2

)
du1du2

' f(Xs) ⊗ f(Xs)

(∫
{s<u1<u2<t}

Ẋ1
s,u1

⊗ Ẋ1
s,u2

du1du2

)
= f(Xs) ⊗ f(Xs)X2

s,t

(2) (1, X̃1, X̃2) does not satisfies the Chen identity. But it belongs to C0,p(∆T , T (2)(V )) and
satisfies the following relation: there exists a constant C such that for any s < u < t

|X̃1
s,u + X̃1

u,t − X̃1
s,t| ≤ Cω(s, t)θ (4.10)

|X̃2
s,u + X̃2

u,t + X̃1
s,u ⊗ X̃1

u,t − X̃2
s,t| ≤ Cω(s, t)θ, (4.11)

§Note that Xt is a continuous path on Rd starting at ξ. Line integral depends on the extra datum, the starting
point ξ.
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where θ > 1 (in this case θ = 3
p > 1). (4.10) follows from the same argument as in (3.14).

The existence of the limit of (4.8) also follows from the above estimates (4.10) and (4.11). The
element of C0,p(∆T , T (2)(V )) satisfying (4.10) and (4.11) is called a almost p-rough path.
(3) Let us consider the case where p > 3. Then the line integral for p-geometric rough path also
can be defined.
(4) Let X = (1, X1, X2) be a smooth rough path. Then rough path

∫
f(Xu)dXu is nothing but

the smooth rough path which is defined by the continuous bounded variation path
∫ t
0 f(Xu)dXu.

Theorem 3.8 can be extended to the following theorem.

Theorem 4.10 (Continuity theorem of line integral as a functional of rough path) Let
f ∈ C3

b (V,L(V, V ′)). Let X = (1, X1, X2), Y = (1, Y 1, Y 2) ∈ Ωp(V ). Assume that there exists a
control function ω such that

max
(
|X i

s,t|, |Y i
s,t|

)
≤ ω(s, t)i/p, i = 1, 2, (s, t) ∈ ∆T (4.12)

|Xi
s,t − Y i

s,t| ≤ εω(s, t)i/p, i = 1, 2, (s, t) ∈ ∆T . (4.13)

Also assume that X0 = Y0. Then there exists a constant C,C ′ which depend only on ω(0, T ),
‖∇if‖∞ (i = 0, 1, 2, 3) such that for all (s, t) ∈ ∆T

max
{∣∣∣∣∫ t

s
f(Xs)dXi

s

∣∣∣∣ ,

∣∣∣∣∫ t

s
f(Ys)dY i

s

∣∣∣∣} ≤ Cω(s, t)i/p, i = 1, 2 (4.14)∣∣∣∣∫ t

s
f(Xs)dXi

s −
∫ t

s
f(Ys)dY i

s

∣∣∣∣ ≤ εC ′ω(s, t)i/p, i = 1, 2 (4.15)

Let us consider a differential equation driven by C1-path x : [0, T ] → V . Let f ∈ C3
b (V ′, L(V, V ′))

and consider

ẏt = f(ξ + yt)ẋt (4.16)
y0 = 0. (4.17)

We rewrite this equation as follows.(
ẋt

ẏt

)
=

(
I 0

f(ξ + yt) 0

)(
ẋt

ẏt

)
. (4.18)

Set

f̂ (x, y) =
(

I 0
f(ξ + y) 0

)
∈ L(V ⊕ V ′, V ⊕ V ′).

Then zt = t(xt, yt) ∈ V ⊕ V ′ is a solution of

zt = ξ +
∫ t

0
f̂(zs)dzs. (4.19)

Definition 4.11 (Differential equation driven by rough path) Let X = (1, X1, X2) ∈
Ωp(V ) be a p-rough path (2 ≤ p < 3). Then p-rough path Z ∈ Ωp(V ⊕ V ′) is called a so-
lution to the following differential equation:

dYt = f(Yt)dXt, Y0 = ξ, (4.20)

if (1) Z =
∫

f̂(Z)dZ, (2) πV (Z) = X hold.
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Remark 4.12 Let 2 ≤ p < 3. Let A ∈ L(V, V ′) be a linear map between euclidean spaces.
This induces a map from T (2)(V ) to T (2)(V ′) by

A(v1 ⊗ · · · ⊗ vn) = Av1 ⊗ · · · ⊗ Avn,

where v1⊗· · ·⊗vn ∈ V ⊗n. This induces a map A : Ωp(V ) → Ωp(V ′). πV is a projection operator
on V ⊕ W to V and this defines a map πV : Ωp(V ⊕ W ) → Ωp(V ).

The following theorem can be found in [16]. Actually, under weaker assumptions, the univer-
sal limit theorem holds but the continuity property of the solution is weaker than the following
local Lipschitz continuity property.

Theorem 4.13 (Universal limit theorem) Let 2 ≤ p < 3. Let f ∈ C3
b (V ′, L(V, V ′)).

(1) Let X = (1, X1, X2) ∈ Ωp(V ). Then there exists a unique solution to (4.20).
(2) Let X = (1, X1, X2), Y = (1, Y 1, Y 2) ∈ Ωp(V ). Assume that there exists a control function
ω such that

max
(
|X i

s,t|, |Y i
s,t|

)
≤ ω(s, t)i/p, i = 1, 2, (s, t) ∈ ∆T , (4.21)

|Xi
s,t − Y i

s,t| ≤ εω(s, t)i/p, i = 1, 2, (s, t) ∈ ∆T . (4.22)

Let Z(X), Z(Y ) be the solutions whose driving rough paths are X and Y with the same starting
point. Then there exist constants C,C ′ which depends on ω(0, T ), ‖∇if‖∞ (i = 0, 1, 2, 3) such
that

max
(
|Z(X)i

s,t|, |Z(Y )i
s,t|

)
≤ Cω(s, t)i/p, i = 1, 2, (4.23)

ε|Z(X)i
s,t − Z(Y )i

s,t| ≤ C ′ω(s, t)i/p, i = 1, 2. (4.24)

Remark 4.14 (1) Suppose that X = (1, X1, X2) is a smooth rough path defined by a path
x ∈ B1,T (V ). Then there exists a unique solution to the classical integral equation:

zt = ξ +
∫ t

0
f̂(zs)dzs.

The solution Z(X) in rough path analysis is the smooth rough path associated to this z.
(2) In terms of p-variation distance, the universal limit theorem implies that the map X →
Z(X) is a continuous (actually locally Lipschits continuous under the above strong assumption)
mapping.
(3) Note that we can define a line integral for a geometric p-rough path for p ≥ 3. We have the
similar kind of continuity theorem for solutions driven by geometric p-rough paths for p ≥ 3.

5 Relation to stochastic processes

5.1 Brownian rough path

Let f ∈ C2
b (V ′, L(V, V ′)) and w be the standard Brownian motion on V .We consider Stratonovich

SDE:

X(t, ξ, w) = ξ +
∫ t

0
f(X(s, ξ, w)) ◦ dw(s).

Recall that w(n) is the dyadic polygonal approximation of w.
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Theorem 5.1 (Ikeda-Watanabe, Wong-Zakai)

lim
n→∞

∫
Θd

sup
0≤t≤T

|X(t, ξ, w(n)) − X(t, ξ, w)|2dµ(w) = 0

By the remark in the previous section, Z(w(n))1s,t = X(t, ξ, w(n)) − X(s, ξ, w(n)). Thus

X(t, ξ, w) = ξ + Z1(W )0,t µ − a.s. w.

This shows that a version of the solution of SDE is a continuous functional on the space of
Brownian rough path in p-variation distance.

Once, this is checked using the polygonal approximation, we see the following theorem by
the universal limit theorem.

Theorem 5.2 Let φn : [0, T ] × Θd → V (n ∈ N) be a measurable map such that
(i) φn(·, w) ∈ B1,T (V )for all n,w.
(ii) Let W be the Brownian rough path and Φn be the smooth rough path associated to φn. It
holds that

lim
n→0

dp(Φn,W ) = 0 in probability.

Then for all p > 2

lim
n→∞

‖X(·, ξ, φn(w)) − X(·, ξ, w)‖p = 0 in probability.

Let ei = t (0, . . . , 1, . . . , 0) and {fn}∞n=1 be a orthonormal basis in L2([0, T ], dx). Let {gn | n =
1, 2, . . .} = {fkei | k ≥ 1, 1 ≤ i ≤ d}. Then

φn(t, w) =
n∑

k=1

∫ T

0
(gk(t), dwt) gk(t)

is an example. We refer this to [23] for Japanese audiences.
S. Watanabe, RIMS Kokyuroku 1032, 3rd Workshop on Stochastic Numerics, 1998.

5.2 Fractional Brownian motion

Actually, [16] discussed more general Gaussian processes. Here we explain fractional Brownain
motion only.

Definition 5.3 A real valued mean 0 Gaussian process (wt) is called fractional Brownian mo-
tion(fBm) with Hurst parameter h (0 < h < 1) if

E[wtws] =
1
2

(
|t|2h + |s|2h − |t − s|2h

)
.

If (wt) is fBm with h, then E[|wt − ws|m] = Cp|t − s|hm t, s ≥ 0, m > 0.

• h = 1/2 =⇒ (wt) is standard Brownian motion.

• (wt) is Hölder continuous of order h − ε, ∀ε > 0.
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• (wt) is of finite 1
h + δ-variation ∀δ > 0.

Let {wi
t}d

i=1 be independent 1-dimensional fBms and set wt = (w1
t , . . . , w

d
t ). Then we see

that

(i) If h 6= 1/2, then wt is not a semimartingale.

(ii) If h > 1/2, then sample path is more regular than standard Bm and Young integral can
be applied.

(iii) For 1/4 < h < 1/2, one can lift the fBm to geometric p-rough path (2 < p < 4) canonically.

Theorem 5.4 Let wt be a d-dimensional fBm with h > 1/4. Let X(n) = (1, X(n)1s,t, X(n)2s,t, X(n)3s,t)
be a smooth rough path associated to the dyadic polygonal approximation of w. Then X(n) con-
verges to the unique geometric rough path (1, X1, X2, X3) in p-variation distance both almost
surely and in L1, for any p < 4 such that ph > 1.

Why h ≤ 1/4? For any p > 4 and m > n,

E[‖X2(m) − X2(m + 1)‖p/2] ≥ C

(
1
2n

)(p−4)/4

which shows X2(n) is not a Cauchy sequence. On the other hand, Lyons-Victoir [18] proved
that

Let x ∈ Bp,T (V ). Let q > p. Then there exists a geometric q-rough path X = (1, X1, . . . , X [q])
such that X1

0,t = xt for all t.
In Brownian motion case, the first level path of the rough path solution coincides with the

solution of the Stratonovich stochastic differential equation. Stratonovich integral is defined for
more general stochastic processes (including anticipating cases). See Nualart [20]. Thus, we can
give a meaning to the solution driven by fractional Brownian motions using the Stratonovich
integral if the solution exists. Hence, it is one of a basic problem to study the relation between
two solutions.

Coutin, Friz, Victoir [4] proved the following:
Suppose that the driving process is fBm with h > 1/4. Then the first level path X1

0,t of the
rough path solution is equal to the solution in the sense of Stratonovich differential equation.

Finally, I make a small remark on some works on Malliavin calculus (existence of density
function of the law of the random variable) of fBms.

Consider differential equation driven by d-dimensional fBm:

dX(t, ξ, w) =
d∑

i=1

fi(X(t, ξ, w))dwi(t)

X(t, ξ, w) = ξ

• h > 1/2: Assume fi ∈ C∞
b (Rm, Rm).

F. Baudoin and M. Hairer [3] proved that the existence of smooth density of X(t) under
Hörmander’s condition.
• 1/4 < h ≤ 1/2

18



(1) Cass, T., Friz,P. and Victoir, N.: Non-degeneracy of Wiener functionals arising from
rough differential equations, arXiv:0707.0154 (July, 2007)

This studies elliptic cases and prove the existence of the density function.
(2) Cass,T., Friz,P.: Densities for rough differential equations under Hörmander’s condition,

arXiv:0708.3730 (August,2007)
This proves the existence of density function under Hörmander’s condition.
However the smoothness of the density function seems to be still open problems.

6 Applications

There are several applications of rough path analysis to problems in stochastic analysis.
We list some of them below.

(I) Freidlin-Wentzell type large deviation

(II) Support theorem

Also I note that universal limit theorem and estimates in rough path analysis were applied
in the following problems:

(III) Weak Poincaré inequality [1]

(IV) Semiclassical approximation of Schrödinger operators on path sapces by the Schrödinger
operators with quadratic potential finctions on Wiener spaces [2]

We explain (I) and (II). Ledoux, Qian and Zhang [13] are the first to study these problems
using rough path analysis. Below, we put T = 1.
(I) Freidlin-Wentzell type large deviation

Theorem 6.1 (Schilder) Let µε be the law of εw, where w is the d-dimensional Bm. Let

I(w) =

{
1
2‖w‖2

Hd w ∈ Hd,

+∞ w /∈ Hd.

Then µε satsifies the Large deviation principle with the good rate function I: for any A ⊂ Θd,

− inf
w∈

◦
A

I(w) ≤ lim
ε→0

ε2 log µε(
◦
A) ≤ lim

ε→0
ε2 log µε(Ā) ≤ − inf

w∈Ā
I(w).

Now we consider the image measure of νε by a measurable map F : Θd → S, where S is a
Polish space. Suppose that F : Θd → S be a continuous mapping. Let νε = F∗µε. Then

Theorem 6.2 νε satisfies the LDP with the good rate function J(γ) = inf {I(w) | F (w) = γ}.

The solution of X(t, ξ, w) to

dX(t, ξ, w) = f(X(t, ξ, w)) ◦ dwt

X(t, ξ, w) = ξ
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is not continuous but νε = X∗µε on S = C([0, 1] → V ′) satsifies the LDP with the rate function:
J(γ) = inf {I(w) | X(·, ξ, w) = γ}. (Freidlin-Wentzell)

This is usually proved by showing that X(·, ξ, w(n)) is a exponentially good approximation
of X. By the universal limit theorem, it is enough to show that W (n) converges to the Brownian
rough path W in exponentially good sense in p-variation distance.

To be explicit,
(1)For ∀δ > 0,

lim
n→∞

lim sup
ε→0

ε2 log µε (dp(W (n),W ) ≥ δ) = −∞

(2) For all α > 0,
lim

n→∞
sup

‖w‖
Hd≤α

dp (W (n),W ) = 0.

The above application is due to [13]. Here is some extension of it. One can consider the
same problem in more general cases. In fact, in the case of fBm with h > 1/4, [19] proved that
LDP holds with the similar rate function.
(II) Support theorem

Let Hd be the Cameron-Martin subspace of Θd.

Theorem 6.3 Let S be a separable metric space. Let F : Θd → S be a continuous map. Then

supp(F∗µ) = {F (h) | h ∈ Hd},

where Hd is the Cameron-Martin subspace and the closure is taken w.r.t. the topology of S.

Proof. ⊂: This follows from limn→∞ F (w(n)) = F (w) for w ∈ Xd. ⊃: We show F (h) ∈
supp(F∗µ) for all h ∈ Hd. Since F : Θd → S is continuous, for any ε > 0, there exists δ > 0
such that F (Bδ(h)) ⊂ Bε(F (h)). Hence

(F∗µ) (Bε(F (h))) ≥ µ (Bδ(h)) > 0.

We have used that (i) Hd⊂ suppµ, (ii) F is a continuous mapping from Θd to S.
Let X(t, ξ, w) be the solution to

dX(t, ξ, w) = f(X(t, ξ, w)) ◦ dw(t),
X(0, ξ, w) = ξ ∈ V ′.

We have a measurable map X(·, ξ, ·) : Θd → Bp(V ′).

Theorem 6.4
suppX∗µ = {X(·, ξ, h) | h ∈ Hd}

‖ ‖p
.

Let H be the smooth rough path associated to h ∈ Hd and set

Uε(h) =
{

w ∈ Θ̃d | dp(W,H) < ε
}

.

Then (see also [1]),

Lemma 6.5 ( [13]) For any ε > 0, h ∈ Hd, it holds that µ(Uε(h)) > 0.

This lemma and the universal limit theorem imply that X(·, ξ, h) ∈ supp X∗µ.
There are extension of the above diffusion cases to fBms.
• h > 1/3: Feyel, D. and de La Pradelli,A [6]
• 1/4 < h < 1/3: Coutin, Friz, Victoir [4]
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