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WEAK POINCARÉ INEQUALITIES ON DOMAINS
DEFINED BY BROWNIAN ROUGH PATHS1

BY SHIGEKI AIDA

Osaka University

We prove weak Poincaré inequalities on domains which are inverse
images of open sets in Wiener spaces under continuous functions of Brownian
rough paths. The result is applicable to Dirichlet forms on loop groups and
connected open subsets of path spaces over compact Riemannian manifolds.

1. Introduction. Let w(t) be thed-dimensional standard Brownian motion
starting at the origin. Let�w(s, t)1 = w(t) − w(s). Also let us consider a two
parameter process with values inR

d ⊗ R
d defined by a Stratonovich stochastic

integral

�w(s, t)2 =
∫ t

s

(
w(u) − w(s)

) ⊗ dw(u),(1.1)

where 0≤ s ≤ t ≤ 1 and⊗ denotes a tensor product. Lyons [17] proved that
solutions of stochastic differential equations (SDEs) are continuous functions
of the Brownian rough path�w(s, t) = (�w(s, t)1,�w(s, t)2). We give a precise
definition of the Brownian rough path in the next section; see also [18] and [15].
The discontinuity of solutions of SDEs in the uniform convergence topology of
w causes difficulties in analysis on Wiener spaces. However, the Lyons results
provide a good topology on Wiener space and may be applied to problems
which have difficulties because of the discontinuity of Wiener functionals; for
example, see [16]. The present paper is an attempt to apply the Lyons continuity
theorem to problems in infinite-dimensional analysis and we prove weak Poincaré
inequalities (WPIs) on some “connected” domain on a Wiener space defined by
a continuous function of Brownian rough paths. The WPI (actually, equivalent
uniform positivity improving property of the corresponding diffusion semigroup)
on a connected domain was first proved by Kusuoka [14] and led to abundant
research on analysis on Wiener space and loop space. The WPI itself was
introduced in [21] and the equivalence to uniform positivity improving property
of the semigroup was proved therein. Aida [4] proved that WPI holds on a domain
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which is a “connected union” of domains on which WPI hold with respect to the
natural Dirichlet forms. This proves that a WPI holds on a connected open set on
a Wiener space with respect to the natural Dirichlet form because the Poincaré
inequality (PI) [actually, stronger logarithmic Sobolev inequality (LSI)] holds on
a ball [1, 4, 6]. Note that the inverse image of an open set by a solution of SDE is
not an open set in the usual topology and the above argument is not applicable to
such a set. However, by the Lyons theorem, by replacing the usual ball with a finer
ball in the sense of rough path, we may apply the above argument. This is the main
idea of this paper.

The structure of this paper is as follows. In Section 2, we introduce notation and
state WPIs on our unit setUa,z defined by Brownian rough path�w, which plays
the role of a ball in the usual continuous category. The domain is a nonconvex
set which is defined by a quadratic Wiener functional, that is, Lévy’s stochastic
area in the Wiener space. However, comparing to convex case, it seems that useful
criteria for the validity of LSI, PI and WPI on unbounded nonconvex domains are
not known. In Section 3, we prove a general result, Lemma 3.1, which enables us
to prove WPI on nonconvex domains. This is a generalization of the fact that PI is
stable when taking the product of the state spaces. Using this result, we prove WPI
onUa,z by an induction on the dimension of the Wiener space. We use the validity
of LSI on a convex domain (Lemma 3.4) as the first step of the induction and, next,
we use Lemma 3.1 to prove general cases. In Section 4, we prove the main theorem
and WPI on a domain on path spaces and a loop group. Note that key results in [1]
for the proof of the weak spectral gap property, which is equivalent to the validity
of WPI on loop spaces, are the existence of a good tubular neighborhood of a
submanifold (which is obtained by a solution of SDE) and a good retract map.
We need to show that the tubular neighborhood can be represented as a connected
union of our finer domains to prove a WPI on general loop spaces over compact
Riemannian manifolds. We will study the general cases and a concrete estimate on
a functionξ(·) in WPI in separate papers.

2. Preliminaries and notation. Let T2(R
d) = R

d ⊕ (Rd ⊗ R
d). Let C(�,

T2(R
d)) be a space of continuous functions on a simplex� = {(s, t) ∈ R

2|0 ≤ s ≤
t ≤ 1} with values inT2(R

d). Let q > 1. Forη :� → R, ‖η‖q is defined by

‖η‖q = sup
D

{
n−1∑
i=0

|η(ti , ti+1)|q
}1/q

,(2.1)

whereD = {0 = t0 < t1 < · · · < tn = 1} runs all partitions of[0,1]. Let ei =
t (0, . . . ,1i, . . . ,0). For η = (η(·, ·)1, η(·, ·)2) ∈ C(�,T2(R

d)), set η1,i (s, t) =
(η(s, t)1, ei), η2,k,l(s, t) = (η(s, t)2, ek ⊗ el) and define

‖η(·, ·)1‖q = max
1≤i≤d

‖η(·, ·)1,i‖q,(2.2)

‖η(·, ·)2‖q = max
1≤k,l≤d

‖η(·, ·)2,k,l‖q .(2.3)
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Let p be a positive number such that 2< p < 3 and define ap-variation norm
‖η‖Cp(�,T2(R

d)) for η(·, ·) ∈ C(�,T2(R
d)) by

‖η(·, ·)‖Cp(�,T2(R
d )) = max{‖η1‖p,‖η2‖p/2},(2.4)

whereCp(�,T2(R
d)) stands for the subset ofC(�,T2(R

d)) that consists of all
elementsη with ‖η‖Cp(�,T2(R

d )) < ∞. Subsequently we denote‖ · ‖Cp(�,T2(R
d ))

by ‖ · ‖Cp for simplicity. Also | · |, ‖ · ‖ stand for the usual Euclidean norm
unless otherwise indicated. We denote byWd (= W1 × · · · × Wd) the set of all
continuous pathsw(·) on [0,1] with values inR

d starting at 0 with the Wiener
measureµ, whereWi denotes the one-dimensional Wiener space. LetHd be the
Cameron–Martin subspace. Forh ∈ Hd , let�h(s, t)1 = h(t) − h(s) and�h(s, t)2 =∫ t
s (h(u) − h(s)) ⊗ dh(u). Then�h(·, ·) = (�h(·, ·)1,�h(·, ·)2) ∈ Cp(�,T2(R

d)) and
this is called a smooth rough path. The closure of all smooth rough paths in the
topology ofCp(�,T2(R

d)) is the space of geometric rough path which we denote
by G�p(Rd). Now we consider Brownian rough paths. We denote byPnw the
dyadic polygonal approximation ofw ∈ Wd such that

(Pnw)(t) = w(tnk ) + 2n
(
w(tnk+1) − w(tnk )

)
(t − tnk ), tnk ≤ t ≤ tnk+1,

wheretnk = k/2n,0≤ k ≤ 2n. Note thatPn is a projection operator onHd such that
PnHd ⊂ Pn+1Hd for all n ∈ N and limn→∞ Pn = IH strongly. SincePnw ∈ Hd ,
we can associate a smooth rough pathPnw ∈ G�p(Rd). The following lemma
was proved in [15] and [18].

LEMMA 2.1. For almost all w, there exists �w ∈ G�p(Rd) such that
limn→∞ ‖Pnw − �w‖Cp = 0. Moreover, the convergence is in the sense of L1(µ).

The limit �w(s, t) = (�w(s, t)1,�w(s, t)2) is called a Brownian rough path. Note
that�w(s, t)2 = ∫ t

s (w(u) − w(s)) ⊗ dw(u) a.s.w, where the right-hand side is the
Stratonovich integral. LetVp(Rd) be the closure ofHd with respect to the norm
‖h‖p := ‖�h1‖p . Thenµ(Vp(Rd)) = 1 by Lemma 2.1 andVp(Rd) is a separable
Banach space by part 3 of Lemma 2.2. Let

Oa(h) = {w ∈ Wd |‖�w −�h‖Cp < a}.(2.5)

This set is a candidate of a ball-like set in the category of the continuity of
Brownian rough paths. For a technical reason, we introduce a different kind of
set.

Let h1 ∈ C([0,1] → R
d) andh2 ∈ Hm. We consider the Stieltjes integral

Ch1,h2(s, t) =
∫ t

s

(
h1(u) − h1(s)

) ⊗ dh2(u),(2.6)

where 0≤ s ≤ t ≤ 1. Of course,Ch1,h2(s, t) is also well defined in the case where
h1 ∈ Hm,h2 ∈ C([0,1] → R

d). Note that�h(s, t)2 = Ch,h(s, t). For these integrals,
we use the following lemma several times.
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LEMMA 2.2. 1.For h1 ∈ C([0,1] → R
d) and h2 ∈ Hm, we have∥∥Ch1,h2

∥∥
p/2 ≤ ‖h1‖p‖h2‖Hm.(2.7)

In the case where h1 ∈ Hm,h2 ∈ C([0,1] → R
d), we have∥∥Ch1,h2

∥∥
p/2 ≤ (‖h1‖Hm + ‖h1‖p)‖h2‖p.(2.8)

2. Let w and z be continuous paths on R
d and R

m, respectively. Then ‖�w1 ⊗
z̄1‖p/2 ≤ ‖w‖p · ‖z‖p.

3. For any h, ‖h‖p ≤ ∫ 1
0 |ḣ(t)|dt .

PROOF. 1. We have∣∣∣∣ ∫ t

s

(
h1(u) − h1(s)

) ⊗ dh2(u)

∣∣∣∣p/2

≤
(∫ t

s
|h1(u) − h1(s)| · |ḣ2(u)|du

)p/2

≤
(
(2ε)−1

∫ t

s
|h1(u) − h1(s)|2du + 2−1ε

∫ t

s
|ḣ2(u)|2du

)p/2

(2.9)

≤ 2−1ε−p/2(t − s)(p/2)−1
∫ t

s
|h1(u) − h1(s)|p du

+ 2−1εp/2
(∫ t

s
|ḣ2(u)|2 du

)p/2

≤ 2−1ε−p/2(t − s)p/2|h1(u∗) − h1(s)|p + 2−1εp/2
(∫ t

s
|ḣ2(u)|2du

)p/2

,

wheres < u∗ < t . Let {tk}nk=1 be a partition of[0,1]. Noting that

∑
k

(∫ tk

tk−1

|ḣ2(u)|2 du

)p/2

= ∑
k

(∫ 1

0
|ḣ2(u)|2 du

)p/2(∫ tk
tk−1

|ḣ2(u)|2 du∫ 1
0 |ḣ2(u)|2du

)p/2

(2.10)

≤ ‖h2‖p
Hm,

we get

n∑
k=1

∣∣∣∣ ∫ tk

tk−1

(
h1(u) − h1(tk−1)

) ⊗ dh2(u)

∣∣∣∣p/2

(2.11)
≤ 2−1(ε−p/2‖h1‖p

p + εp/2‖h2‖p
Hm).
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Minimizing the function ofε on the right-hand side, we get (2.7). NotingCh1,h2 =
−C∗

h2,h1
+�h1 ⊗�h2, (2.8) follows from (2.7) and part 2. HereC∗

h2,h1
stands for the

transposed matrix under the natural identification betweenR
m ⊗ R

d and the space
of (m,d) matrices. We prove statement 2:

‖�w(·, ·)1 ⊗ z̄(·, ·)1‖p/2
p/2 ≤ 2−1(ε‖w‖p

p + ε−1‖z‖p
p)

(2.12)
≤ ‖w‖p/2

p ‖z‖p/2
p .

The proof of part 3 is similar to (2.10).�

The definition ofCh1,h2 can be extended to the Brownian path by using the
Wiener integral. That is, forz ∈ C([0,1] → R

m), we can define, for almost all
w ∈ Wd ,

Cw,z(s, t) =
∫ t

s
w(s, u)1 ⊗ dz(u)(2.13)

as the Wiener integral. Clearly,Cw,z(·, ·) ∈ C(�,R
d ⊗ R

m). Actually, if z has
more regularity, then so doesCw,z. To show this, we introduce a norm which is
useful in many calculations. Forz ∈ C([0,1] → R

m) andκ > p − 1, let

‖z‖p,κ :=
[ ∞∑

n=1

{
nκ

2n∑
k=1

|z(tnk ) − z(tnk−1)|p
}]1/p

.(2.14)

By the Schwarz inequality, we have‖z‖p,κ ≤ C‖z‖Hm . Also it is easy to check that
if ‖z‖p,κ < ∞, then‖PNz‖p,κ < ∞ and limN→∞ ‖PN z−z‖p,κ = 0. The estimate
below can be found in Lemma 2 in [15] and Proposition 4.1.1 in [18]. There exists
a positive numberC such that

‖z‖p ≤ C‖z‖p,κ for all z ∈ C([0,1] → R
m).(2.15)

We denote byVp,κ(R
m) the space that consists of allz ∈ Vp(Rm) with

‖z‖p,κ < ∞. By the above results, we see thatVp,κ(Rm) is a separable Banach
space andµ(Vp,κ(R

m)) = 1.
We give estimates onCw,z.

LEMMA 2.3. Let z ∈ Vp,κ(Rm).

1. It holds that

E[‖Cw,z‖p/2
p/2] ≤ C(p,κ)‖z‖p/2

p,κ .(2.16)

Here C(p,κ) is a positive constant which depends only on p and κ .
2. It holds that

lim
n→∞E

[∥∥Cw,z − CPnw,z
∥∥
p/2

] = 0.(2.17)
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PROOF. 1. We use the argument in Proposition 4.1.1 in [18] and Lemma 2
in [15]. Since

Cw,z(s, t) = (
w(t) − w(s)

) ⊗ (
z(t) − z(s)

) −
∫ t

s
dw(u) ⊗ (

z(u) − z(s)
)
,(2.18)

by part 2 of Lemma 2.2, it suffices to estimateCz,w(·, ·). Note that for any partitions
D = {si}Ni=0 of [s, t],

Cz,w(s, t) =
N∑

i=1

Cz,w(si−1, si) + ∑
1≤i<j≤N

(
z(si) − z(si−1)

) ⊗ (
w(sj ) − w(sj−1)

)
holds. Thus

|Cz,w(s, t)|p/2

≤ 2(p/2)−1

∣∣∣∣∣
N∑

i=1

Cz,w(si−1, si)

∣∣∣∣∣
p/2

+ 2(p/2)−1

∣∣∣∣∣ ∑
1≤i<j≤N

(
z(si) − z(si−1)

) ⊗ (
w(sj ) − w(sj−1)

)∣∣∣∣∣
p/2

(2.19)

≤ 2(p/2)−1

{∣∣∣∣∣
N∑

i=1

Cz,w(si−1, si)

∣∣∣∣∣
p/2

+ ε−1

(
N∑

i=1

|z(si) − z(si−1)|
)p

+ ε

(
N∑

i=1

|w(si) − w(si−1)|
)p}

,

whereε is a positive number. Sinceκ > p − 1 > (p/2)− 1, by the same argument
as in the proof of Proposition 4.1.1 in [18], we have

‖Cz,w‖p/2
p/2 ≤ C(p,κ)

∞∑
n=1

nκ
2n∑

k=1

(|Cz,w(tnk−1, t
n
k )|p/2 + ε−1|z(tnk ) − z(tnk−1)|p

(2.20)
+ ε|w(tnk ) − w(tnk−1)|p

)
,

whereC(p,κ) is a constant which depends only onp andκ , although constants
may change line by line in the calculation below. We estimate the expectation
of Cz,w(·, ·),

E[|Cz,w(tnk−1, t
n
k )|p/2] ≤ C

{∫ tnk

tnk−1

∣∣zu − ztnk−1

∣∣2 du

}p/4

(2.21)

= C
∣∣zuk

− ztnk−1

∣∣p/2
(

1

2n

)p/4

,
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wheretnk−1 ≤ uk ≤ tnk . Thus we get

E[|Cz,w(tnk−1, t
n
k )|p/2]

(2.22)

≤ C

2

{
ε−1(∣∣ztnk

− zuk

∣∣p + ∣∣zuk
− ztnk−1

∣∣p)( 1

2n

)δ/2

+ ε

(
1

2n

)(p−δ)/2}
,

where 0< δ < p − 2. By using this estimate and taking the expectation of both
sides in (2.20), we have

E[‖Cz,w‖p/2
p/2] ≤ C(p,κ)

[ ∞∑
n=1

nκ

{
ε−1‖z‖p

p

(
1

2n

)δ/2

+ ε

(
1

2n

)(p−δ−2)/2
}

(2.23)

+ ε−1‖z‖p
p,κ + ε

∞∑
n=1

nκ

(
1

2n

)(p/2)−1
]
.

Therefore, by choosingε to minimize the right-hand side, we get the desired
estimate.

2. Let P ⊥
n w = w − Pnw. Then it is easy to see that for anyq > 1,

E[|P ⊥
n w(t) − P ⊥

n w(s)|q ] ≤ C|t − s|q/2, where C is a positive number inde-
pendent ofn, t and s. Also E[|CP⊥

n w,z(s, t)|2] ≤ C · E[|Cw,z(s, t)|2] for any n,

E[|CP⊥
n w,z(s, t)|p/2] ≤ C · E[|CP⊥

n w,z(s, t)|2]p/4, P ⊥
n w(tkm) = 0 for all m ≤ n and

limn→∞ E[|CP⊥
n w,z(s, t)|2] = 0 for all t, s. Hence by an argument similar to state-

ment 1, we can complete the proof of part 2.�

Let us introduce a subset ofCq(�,R
d ⊗ R

m) (1 < q < 3
2), Vq(�,R

d ⊗ R
m),

which is the closure of the following linear subspace in theq-variation norm:{
η ∈ Cq(�,R

d ⊗ R
m)

∣∣∣η =
n∑

i=1

Cϕi,φi
,

(2.24)

whereϕi ∈ Hd,φi ∈ Hm andn ∈ N

}
.

Lemma 2.2 implies thatVq(�,R
d ⊗R

m) is a separable Banach space. By Lemmas
2.2 and 2.3, we can find a version ofCw,z with values inVp/2(�,R

d ⊗ R
m) and

anHd -invariant subset ofWd such thatXd
1 + Hd = Xd

1 with µ(Wd \ Xd
1) = 0 and

for all w ∈ Xd
1 andh ∈ Hd ,

Cw+h,z(s, t) = Cw,z(s, t) + Ch,z(s, t) for all 0≤ s ≤ t ≤ 1.(2.25)

We note that by Lemma 2.2,Cw,z is aVp/2(�,R
d ⊗ R

m)-valuedHd -continuous
function. Note thatCz,w := z̄1 ⊗ �w1 − C∗

w,z is a version of Wiener integral∫ t
s (z(u) − z(s)) ⊗ dw(u).
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We consider anotherHd -invariant subset. LetXd
2 be the set of allw which

converge as stated in Lemma 2.1. ThenXd
2 is Hd invariant. To show this note

that for anyϕ,φ ∈ Hd ,

ϕ̄(s, t)2 − φ̄(s, t)2

=
∫ t

s
[(ϕ − φ)(u) − (ϕ − φ)(s)] ⊗ d

(
ϕ(u) − φ(u)

)
+

∫ t

s
[(ϕ − φ)(u) − (ϕ − φ)(s)] ⊗ dφ(u)(2.26)

−
∫ t

s
dφ(u) ⊗ [(ϕ − φ)(u) − (ϕ − φ)(s)]

+ (
φ(t) − φ(s)

) ⊗ [(ϕ − φ)(t) − (ϕ − φ)(s)].
Puttingϕ = Pnw, φ = Pnh and combining Lemma 2.2,Pn(w − h) converges in
Cp for any w ∈ Xd

2 andh ∈ Hd . In this sense,w − h is well defined and (2.26)
still holds for ϕ = w ∈ Xd

2. Also w(∈ Xd
2) → �w(∈ Cp/2(�,R

d ⊗ R
d)) is an

Hd -continuous function by this equation and Lemma 2.2.
We need results analogous to Lemma 2.1 for our purposes.

LEMMA 2.4. For almost all w and in the sense of L1 as N → ∞,
‖(w − PNw)2‖p/2 and ‖Cw−PN w,PN w‖p/2 converge to 0.

PROOF. We use (2.26) in the case whereϕ = w and φ = PNw. Note that
E[|PNw(t) − PNw(s)|p] ≤ C|t − s|p/2. HereC is a positive number independent
of N . Hence, supN E[‖PNw‖p

p,κ ] < ∞. Also by Lemma 2.1 and the independent
property ofPNw andP ⊥

N w = w − PNw, the fourth term on the right-hand side
of (2.26) can be estimated by Lemma 2.2.2 and the Itô–Nisio theorem [12]. So it
suffices to prove that‖CP⊥

N w,PN w‖p/2 converges to 0. Using the independence of

PNw andP ⊥
N w and the Gaussian property, we have

E
[∣∣CP⊥

N w,PNw(tnk−1, t
n
k )

∣∣p/2] ≤ CE[|P ⊥
N w(uk) − P ⊥

N w(tnk−1)|p/2]
(

1

2n

)p/4

,(2.27)

wheretnk−1 ≤ uk ≤ tnk . By this, we have

E

[ ∞∑
n=1

nκ

( 2n∑
k=1

∣∣CP⊥
N w,PNw(tnk−1, t

n
k )

∣∣p/2
)]

≤ CE[‖P ⊥
N w‖p/2

p ]
(2.28)

≤ Cp,κE[‖P ⊥
N w‖p/2

p,κ ].
Noting that P ⊥

N w(tkm) = 0 for all 1 ≤ m ≤ N and 0≤ k ≤ 2m noting that
E[|P ⊥

N w(t) − P ⊥
N w(s)|p] ≤ C|t − s|p/2 (C is independent ofN ), and using
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Lemma 2 in [15], we getE[‖P ⊥
N w‖p

p,κ ] ≤ 2−rN , where r is a small positive
number. Hence by the same argument as in the proof of Lemma 2.3.1 and the
Borel–Cantelli lemma,(w − PNw)2 converges to 0 inL1 and for almost allw.

�

By (2.26) and Lemma 2.2, it is easy to see that the setXd
3 of all w for which the

convergences in Lemma 2.4 are valid isHd invariant. LetXd = ⋂3
i=1 Xd

i . Clearly,
Xd is also anHd -invariant subset withµ(Xd) = 1.

Now we define our unit set fora > 0 andz ∈ Vp,κ(Rd):

Ua,z = {w ∈ Xd |‖�w(·, ·)‖Cp < a,‖Cw,z‖p/2 < a,‖Cz,w‖p/2 < a}.(2.29)

Let dµa,z = dµ|Ua,z/µ(Ua,z). We prove µ(Ua,z) > 0 in Lemma 2.6. Since
Ua,z is an Hd -open set with positive measure, we can define a Dirichlet form
[Ea,z,D(Ea,z)] onL2(Ua,z, dµa,z). It is the smallest closed extension of

Ea,z(f, f ) =
∫
Ua,z

|Df (w)|2H dµa,z for all f ∈ FC∞
b |Ua,z .(2.30)

Here FC∞
b is the set of smooth cylindrical functions with bounded derivatives.

More generally, we can define a closeable Dirichlet form on theHd -open set
domainU such thatEU(f,f ) = ∫

U |Df (w)|2H dµU(w), wheref ∈ FC∞
b |U and

dµU(·) = dµ(·)/µ(U). Refer to [3] and the references therein for the definition.
The Dirichlet form is independent of the choice of theHd -continuous version of
the defining functions of the domain. In this paper, we consider the smallest closed
extension only. We prove WPI forEa,z in the next section; that is, we prove the
following lemma.

LEMMA 2.5. There exists a nonnegative jointly measurable function ξ(δ, a, z)
[(δ, a, z) ∈ (0,∞) × (0,∞) × Vp,κ(Rd)] which is a nonincreasing function of δ

such that for any f ∈ D(Ea,z),∫
Ua,z

(
f (w) − 〈f 〉µa,z

)2
dµa,z(w) ≤ ξ(δ, a, z)Ea,z(f, f ) + δ‖f ‖2∞,(2.31)

where 〈f 〉µa,z stands for the expectation with respect to µa,z.

The joint measurability is almost obvious by the definition ofξ(δ, a, z). The
problem is to prove the boundedness. Finally, we prove the positivity of the
measure ofUa,z for all a > 0 andz although it seems to be almost obvious. Note
that we will use the notations in the proof of Lemma 2.6 in the argument below.

LEMMA 2.6. For all a > 0 and z ∈ Vp,κ(Rm), µ(Ua,z) > 0.
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PROOF. We prove this by induction on the dimension. We consider the case
whered = 2. Let

Ua,z,1 = {
w1 ∈ W1|‖w1‖p < a,

∥∥Cw1,z
∥∥
p/2 < a,

∥∥Cz,w1

∥∥
p/2 < a

}
,(2.32)

Wa,(w1,z),2 = {
w2 ∈ W2|

∥∥Cw2,(w1,z)
∥∥
p/2 < a,

(2.33) ∥∥C(w1,z),w2

∥∥
p/2 < a,‖w2‖p < a

}
.

Note that a measureν on a Banach spaceB is called a Gaussian measure
with mean 0 if all random variablesϕ(x) are one-dimensional Gaussian random
variables with mean 0, whereϕ ∈ B∗ andx ∈ B. Although we do not determine
the dual spacesVp/2(�,R

m) of Vp(R), we can conclude that the law of
(w1,Cw1,z,Cz,w1) defines a Gaussian measure onVp(R) × Vp/2(�,R

m) ×
Vp/2(�,R

m) with mean 0. Let us explain it. ForCw1,z, there existσ(w1)-
measurable independent Gaussian random variables with mean 0,{ξn}n and
{Cn(·, ·)} ⊂ Vp/2(�,R

m), and a subsequence{n(k)}∞k=1 ⊂ N such thatCw1,z =
limk→∞

∑n(k)
l=1 Clξl for almost allw1 in the topology ofVp/2(�,R

m). Clearly

the law of
∑n(k)

l=1 Clξl is a Gaussian measure with mean 0 onVp/2(�,R
m).

These statements imply that the law ofCw1,z is also a Gaussian measure with
mean 0. The proof of the Gaussian property of other random variables is similar.
Generally, any neighborhood of a 0 vector has a positive measure for any Gaussian
measure with mean 0 on a separable Banach space; see Theorem 3.6.1 in [5].
Thus,µ(Ua,z,1) > 0. The set (2.33) is defined for almost allw2 for eachw1 ∈
Vp,κ(R). Also the law of(C(w1,z),w2,Cw2,(w1,z),w2) is a Gaussian measure on
Vp/2(�,R

m+1)× Vp/2(�,R
m+1) × Vp(R) with mean vector 0 for each fixedw1,

soµ(Wa,(w1,z),2) > 0 for almost allw1 ∈ Vp,κ(R). SinceUa,z coincides with{
(w1,w2) ∈ W2|w1 ∈ Ua,z,1,w2 ∈ Wa,(w1,z),2

}
,

except a null set, by the Fubini theorem, we haveµ(Ua,z) > 0. Next we prove
the (d + 1)-dimensional case by using thed-dimensional case. We denotew =
(w′,wd+1) ∈ Wd × Wd+1. For a givenz, we consider a domainUa,z in Wd+1. Let

Ua,z,d = {w′ ∈ Wd |‖�w′‖Cp < a,‖Cw′,z‖p/2 < a,‖Cz,w′‖p/2 < a},(2.34)

Wa,(w′,z),d+1 = {
wd+1 ∈ Wd+1|

∥∥C(w′,z),wd+1

∥∥
p/2 < a,

(2.35) ∥∥Cwd+1,(w′,z)
∥∥
p/2 < a,‖wd+1‖p < a

}
.

Then, for almost allw,

Ua,z = {
w ∈ Wd+1|w′ ∈ Ua,z,d,wd+1 ∈ Wa,(w′,z),d+1

}
.(2.36)

By the same reasoning as in the case whered = 1,µ(Wa,(w′,z),d+1) > 0 for almost
all w′ ∈ Vp,κ(Rd). Therefore, we complete the proof by the Fubini theorem again.

�
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3. WPI on Ua,z. We begin by proving a lemma in general settings which
is used to prove Lemma 2.5. Let(Yi,Fi ,mi) (i = 1,2) be complete probability
spaces and Dirichlet forms[Ei ,D(Ei)] on them. Let�i(·, ·) be the square field
operator ofEi . Let us consider a completed product probability spaceY1 × Y2 and
let U be a measurable subset ofY1 × Y2. Forx ∈ Y1 andy ∈ Y2, defineUx = {y ∈
Y2|(x, y) ∈ U } andUy = {x ∈ Y1|(x, y) ∈ U }. Let U1 = {x ∈ Y1|m2(Ux) > 0} and
U2 = {y ∈ Y2|m1(U

y) > 0}. Let mx (my ) be the normalized probability measure
on the sectionUx (Uy ). We consider a pre-Dirichlet form on a sectionUx for
almost allx ∈ U1:

E2,x(f, f ) :=
∫
Ux

�2(f, f )(y) dmx(y).(3.1)

We defineE1,y on L2(Uy, dmy(x)) in the same way. Letf (x, y) be a measurable
function onY1 × Y2 such thatf (x, ·) ∈ D(E2) andf (·, y) ∈ D(E1) for fixed x, y.
For suchf , set

�(f,f )(x, y) = �1
(
f (·, y), f (·, y)

)
(x) + �2

(
f (x, ·), f (x, ·))(y)(3.2)

and define

EU(f,f ) :=
∫
U

�(f,f )(x, y) dmU(x, y),(3.3)

wheredmU denotes the normalized probability measure of the restriction of the
product measuredm := dm1⊗dm2 to U . We denote byDU the set of all functions
f with EU(f,f ) < ∞.

LEMMA 3.1. Assume that the following statements hold:

A1. For almost all x ∈ U1 an y ∈ U2, there exist jointly measurable functions
ξ2(x, δ) and ξ1(y, δ) which are nonincreasing functions of δ > 0 such that
WPI holds on almost all sections:∫

Ux

(
f (y) − 〈f 〉mx

)2
dmx(y) ≤ ξ2(x, δ)E2,x(f, f ) + δ‖f ‖2∞,(3.4) ∫

Uy

(
f (x) − 〈f 〉my

)2
dmy(x) ≤ ξ1(y, δ)E1,y(f, f ) + δ‖f ‖2∞.(3.5)

A2. For any ε > 0, there exist a measurable subset U1,ε ⊂ U1 and δ(ε) > 0 such
that

m1(U1 \ U1,ε) ≤ ε,(3.6)

m2(Ux ∩ Ux′) ≥ δ(ε) for any x, x′ ∈ U1,ε.(3.7)

Then WPI holds for the pre-Dirichlet form EU on the domain DU .
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PROOF. First we prove that for anyε > 0, there existsÛi,ε ⊂ Ui with
mi(Ui \ Ûi,ε) ≤ ε such that

ξ(δ, ε) = sup{ξ1(y, δ), ξ2(x, δ)|x ∈ Û1,ε, y ∈ Û2,ε} < ∞ for all δ > 0.(3.8)

Let n ∈ N. TakeUn,i ⊂ Ui such thatmi(Ui \ Un,i) ≤ 1/n2 and

sup
{
ξ1

(
y,

1

n

)
, ξ2

(
x,

1

n

)∣∣∣x ∈ Un,1, y ∈ Un,2

}
< ∞.

Then, for sufficiently largeN , it suffices to setUi,ε = ⋂∞
n=N Un,i for our purpose.

Note that∫ ∫
U×U

(
f (x, y) − f (x′, y′)

)2
dm(x, y) dm(x′, y′)

(3.9)
≤

∫ ∫
Ũε

(
f (x, y) − f (x′, y′)

)2
dm(x, y) dm(x′, y′) + 8ε‖f ‖2∞,

whereŨε = {(x, y) ∈ U, (x′, y′) ∈ U |x ∈ U1,ε, x
′ ∈ U1,ε}. Let z ∈ Ux ∩ Ux′ for

x, x′ ∈ U1,ε. Noting that

I
(
(x, y), (x′, y′)

)
:= (

f (x, y) − f (x′, y′)
)2

(3.10)
≤ 3

{(
f (x, y) − f (x, z)

)2

+ (
f (x, z) − f (x′, z)

)2 + (
f (x′, z) − f (x′, y′)

)2}
and by assumption A2,

I
(
(x, y), (x′, y′)

) ≤ 3

δ(ε)

∫
Ux∩Ux′

(
f (x, y) − f (x, z)

)2
dm2(z)

+ 3

δ(ε)

∫
Ux∩Ux′

(
f (x, z) − f (x′, z)

)2
dm2(z)

(3.11)

+ 3

δ(ε)

∫
Ux∩Ux′

(
f (x′, z) − f (x′, y′)

)2
dm2(z)

:= I1 + I2 + I3.

Let ε′ be a positive number. By using A1 and the property ofÛ1,ε′ ,∫ ∫
Ũε

I1dm(x, y) dm(x′, y′)

≤ 3

δ(ε)

∫
x∈U1,ε∩ Û1,ε′

(∫ ∫
z,y∈Ux

(
f (x, y)

− f (x, z)
)2

dm2(z) dm2(y)

)
dm1(x)(3.12)
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+ 12ε′

δ(ε)
‖f ‖2∞

≤ 6ξ(δ, ε′)
δ(ε)

∫
x∈U1,ε∩Û1,ε′

(∫
y∈Ux

�2
(
f (x, ·))(y) dm2(y)

)
dm1(x)

+
(

12ε′

δ(ε)
+ 6δm(U)

δ(ε)

)
‖f ‖2∞

= 6ξ(δ, ε′)
δ(ε)

∫ ∫
U

�2
(
f (x, ·))(y) dm1(x) dm2(y)

+
(

12ε′

δ(ε)
+ 6δm(U)

δ(ε)

)
‖f ‖2∞.

Next, we estimate the integral ofI2:∫ ∫
Ũε

I2dm(x, y) dm(x′, y′)

≤ 3

δ(ε)

∫
z∈Û2,ε′

(∫ ∫
x,x′∈Uz

(
f (x, z) − f (x′, z)

)2
dm1(x) dm1(x

′)
)

dm2(z)

+ 12ε′

δ(ε)
‖f ‖2∞(3.13)

≤ 6ξ(δ, ε′)
δ(ε)

∫ ∫
U

�1
(
f (·, y)

)
(x) dm1(x) dm2(y)

+
(

12ε′

δ(ε)
+ 6δm(U)

δ(ε)

)
‖f ‖2∞.

The integral ofI3 can be estimated in the same way asI1. Consequently we have∫ ∫
U×U

(
f (x, y) − f (x′, y′)

)2
dm(x, y) dm(x′, y′)

≤ 18ξ(δ, ε′)
δ(ε)

∫ ∫
U

�(f,f )(x, y) dm(x, y)(3.14)

+
(

8ε + 36ε′

δ(ε)
+ 18δm(U)

δ(ε)

)
‖f ‖2∞.

This completes the proof.�

REMARK 3.2. Assume PI hold in A1, and assume the coefficientsξ2(x) and
ξ1(y) can be taken independently ofx and y. Further assume that there exists
U1,0 ⊂ U1 such thatm1(U1 \ U1,0) = 0 and infx,x′∈U1,0 m2(Ux ∩ Ux′) > 0. Then
we see that PI holds onU by the above method. The following domain is such an
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example. LetY1 = W1 andY2 = W2, that is, one-dimensional Wiener spaces. For
positive numbersa andb with a < b2, let

Ua,b = {(w1,w2)|‖w1‖p‖w2‖p < a,‖w1‖p < b,‖w2‖p < b} ⊂ Y1 × Y2.(3.15)

By Lemma 3.4, this example satisfies the above assumptions.

To apply Lemma 3.1 to our problem, we use the following lemma.

LEMMA 3.3. For w ∈ Wd+1, we denote w = (w′,wd+1) ∈ Wd × Wd+1. Let
Wa,(w′,z),d+1 be the set given in (2.35). Let r be a positive number less than 1

3. The
following estimates hold.

1. For any ε > 0, we have

µ
(‖wd+1‖p,κ < ε,

∥∥Cwd+1,z
∥∥
p/2 < ε,

∥∥Cz,wd+1

∥∥
p/2 < ε

)
> 0.

2. For 0 < ε ≤ C(p,κ)−2/pa(αa,a,zr)
4/p, it holds that

µε,a,z
(
max

{∥∥Cw′,wd+1

∥∥
p/2,

∥∥Cwd+1,w′
∥∥
p/2

} ≥ a
) ≤ (αa,a,zr)

2,(3.16)

where µε,a,z denotes the conditional probability measure

µε,a,z(·) = µ
(·∣∣‖wd+1‖p,κ < ε,

∥∥Cwd+1,z
∥∥
p/2 < a,

∥∥Cz,wd+1

∥∥
p/2 < a

)
,(3.17)

αa,a,z = µ(‖�w′‖Cp < a,‖Cw′,z‖p/2 < a,‖Cz,w′‖p/2 < a) and C(p,κ) is a
constant which depends on p and κ only. We take ε in the above interval in
parts 3 and 4.

3. Define

Vp,r,a,z,ε = {
w′ ∈ Wd |µε,a,z

(
Wa,(w′,z),d+1

) ≥ 1− rαa,a,z
}
.(3.18)

Then it holds that

µ(Vp,r,a,z,ε|‖�w′‖Cp < a,‖Cw′,z‖p/2 < a,‖Cz,w′‖p/2 < a) ≥ 1− r.(3.19)

4. For any w′
1,w′

2 ∈ Vp,r,a,z,ε,

µ
(
Wa,(w′

1,z),d+1 ∩ Wa,(w′
2,z),d+1

) ≥ 1
3α̃ε,a,z,(3.20)

where α̃ε,a,z = µ(‖wd+1‖p,κ < ε,‖Cwd+1,z‖p/2 < a,‖Cz,wd+1‖p/2 < a).

PROOF. 1. The law of(wd+1,Cwd+1,z,Cz,wd+1) ∈ Vp,κ(R) × Vp/2(�,R
m) ×

Vp/2(�,R
m) is a Gaussian measure with mean 0. Hence, the open ball centered

at 0 has positive probability.
2. By Lemma 2.3,

E
[∥∥Cw′,wd+1

∥∥p/2
p/2

∣∣‖wd+1‖p,κ < ε,
∥∥Cwd+1,z

∥∥
p/2 < a,

∥∥Cz,wd+1

∥∥
p/2 < a

]
(3.21)

≤ C(p,κ) · εp/2,
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where C(p,κ) is a positive constant which depends only onp and κ . By
Chebyshev’s inequality and Lemma 2.2.2, we obtain (3.16).

3. By (3.16),

1− (αa,a,zr)
2

≤ µε,a,z
(∥∥Cw′,wd+1

∥∥
p/2 < a,

∥∥Cwd+1,w′
∥∥
p/2 < a

)
=

∫
W′

(∫
Wd+1

χ[0,a)

(
max

{∥∥Cw′,wd+1

∥∥
p/2,(3.22)

∥∥Cwd+1,w′
∥∥
p/2

})
dµε,a,z(wd+1)

)
dµ(w′)

=
∫

W′
µε,a,z

(
Wa,(w′,z),d+1

)
dµ(w′).

Hence, by Lemma 5.3 in [4], we getµ(Vp,r,a,z,ε) ≥ 1− rαa,a,z. Thus,

µ(Vp,r,a,z,ε ∩ {w′ ∈ W′|‖�w′‖Cp < a,‖Cw′,z‖p/2 < a,‖Cz,w′‖p/2 < a})
≥ µ(Vp,r,a,z,ε) − (1− αa,a,z)(3.23)

≥ (1− r)αa,a,z.

4. Sincer < 1
3, µε,a,z(Wa,(w′

i ,z),d+1) ≥ 2
3. So it holds that

µε,a,z
(
Wa,(w′

1,z),d+1 ∩ Wa,(w′
2,z),d+1

) ≥ 1
3,

which implies (3.20). �

The assertion thatWa,(w′,z),d+1 is anH -convex set inWd+1 and implies the
following result which is a key to proving Lemma 2.5; refer to [6]. We denote
Wa,(w′,z), for simplicity, instead ofWa,(w′,z),d+1.

LEMMA 3.4. Let dµa,(w′,z) = dµ|Wa,(w′,z)/(µ(Wa,(w′,z))). Let Ea,(w′,z) be the
Dirichlet form on Wa,(w′,z). Then for any f ∈ D(EWa,(w′,z) ) the following LSI and
PI hold: ∫

Wa,(w′,z)
f 2(w) log

(
f 2(w)/‖f ‖2

L2(Wa,(w′,z))
)
dµWa,(w′,z) (w)

(3.24)
≤ 2

∫
Wa,(w′,z)

|Df (w)|2H dµWa,(w′,z) ,∫ ∫
Wa,(w′,z)×Wa,(w′,z)

(
f (w) − f (w′)

)2
dµ(w)dµ(w′)

(3.25)
≤ 2µ

(
Wa,(w′,z)

) ∫
Wa,(w′,z)

|Df (w)|2H dµ(w).
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We prove Lemma 2.5 by using Lemma 3.1.

PROOF OF LEMMA 2.5. Recall the notation which we used in the proof
of Lemma 2.6. First, we prove the case whered = 2. Below we denoteUa,z
by U simply. Also, we use the notation in Lemma 3.1. In the present case,
Y1 = W1, Y2 = W2, mi is the Wiener measure onWi and m is the Wiener
measure onW2 = W1 × W2. In this case,Ui = {wi ∈ Wi |‖Cwi,z‖p/2 < a,

‖Cz,wi
‖p/2 < a,‖wi‖p < a}. Note that for w1 ∈ U1, Uw1 = Wa,(w1,z),2. By

Lemma 3.4, PI holds onUw1. Also PI holds onUw2 for the same reason. These
statements imply that A1 holds forU . We prove A2. LetVp,r,a,z,ε be the set
in (3.18). Thenm(U1 ∩ Vp,r,a,z,ε) ≥ m(U1)(1 − r). Therefore, by (3.20), for
sufficiently smallr , Vp,r,a,z,ε satisfies the property of A2. This completes the proof
in the case ofd = 2. Now, we prove Lemma 2.5 in general dimension. We assume
that Theorem 4.1 is valid in the case ofd dimension. We prove Theorem 4.1 in the
case of(d + 1) dimension. We apply Lemma 3.1 in the case whereY1 = Wd ,
Y2 = Wd+1 and U = Ua,z. Note that the section ofUa,z by w′ is nothing but
Wa,(w′z),d+1 ⊂ Wd+1. By Lemma 3.4, PI holds on the set. Also the section of
Ua,z by wd+1 ∈ Vp,κ(R) is Ua,(z,wd+1),d . Therefore WPI holds on the set with
a constantξ(δ, a, z,wd+1) by the assumption of induction. Clearly, we take this
function to be measurable with respect to the variablesa, δ, z andwd+1. These
imply A1. By Lemma 3.3 parts 3 and 4, for anyδ > 0, we can find a subset
Ua,z,d,δ of Ua,z,d such thatµ(Ua,z,d \ Ua,z,d,δ) ≤ δ and, for anyw′,w′′ ∈ Ua,z,d,δ,
m2(Wa,(w′,z) ∩ Wa,(w′′,z)) > β(δ, a, z), whereβ(δ, a, z) is a positive number. This
implies A2. Consequently, we complete the proof.�

For h ∈ Hd anda > 0, let

Ba,h = {w ∈ Xd |‖(w − h)2‖p/2 < a,
(3.26)

‖Cw−h,h‖p/2 < a,‖Ch,w−h‖p/2 < a,‖w − h‖p < a}.
As a corollary of Lemma 2.5, we have the following lemma.

LEMMA 3.5. For any h ∈ Hd and a > 0, Ba,h = Ua,h + h a.s. and WPI holds
on Ba,h.

PROOF. The equalityBa,h = Ua,h + h is obvious. Letf ∈ FC∞
b . Then

applying WPI forf (w + h) on Ua,h and using the Cameron–Martin formula, we
have ∫

Ba,h

(
f (w) − µ(Ua,h)

−1Eµ[fρh :Ba,h])2
ρh(w)µ(Ua,h)

−1dµ(w)

(3.27)
≤ ξ(δ, a,h)

∫
Ba,h

|Df (w)|2Hµ(Ua,h)
−1ρh(w) dµ(w) + δ‖f ‖2∞,
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whereρh(w) = exp((w,h) − ‖h‖2
Hd

/2). By Lemma 2.2 in [4], this completes the
proof. �

The following lemma shows that Lemma 2.4 is a stronger statement than
Lemma 2.1.

LEMMA 3.6. 1.For any h ∈ Hd , the following estimate holds:

‖�w2 −�h2‖p/2 ≤ ‖(w − h)2‖p/2 + 2‖Cw−h,h‖p/2 + ‖h‖p‖w − h‖p.(3.28)

2. The following inclusion holds for any ε > 0 and h ∈ Hd :

Bε/(3+‖h‖p),h ⊂ {w ∈ Xd |‖�w(·, ·) −�h(·, ·)‖Cp < ε}.(3.29)

PROOF. Statement 1 follows from (2.26) immediately. Statement 2 follows
from 1 immediately. �

REMARK 3.7. At the moment, I do not know whether stronger PI or LSI
hold onUa,z. Here, we prove thatUa,0 is not H convex in the sense of [6] in
the case ofd = 2. This implies that the usual convexity criterion as in [6] is not
applicable toUa,0 at least. The proof is as follows. First note that the functional
onH2 with values inCp(�,R) such thatF(h)(s, t) = ∫ t

s (h1(u)−h1(s))ḣ2(u) du,
whereh = (h1, h2), is not continuous in the topology ofVp(R2); see [22]. Hence,
there exists a sequencehn = (hn

1, h
n
2) ∈ H2 such that lim supn→∞ ‖hn‖p < a and

limn→∞ ‖F(hn)‖p/2 = ∞. Setϕn = (hn
1,0) ∈ H2, φn = (0, hn

2) ∈ H2 andηn =
φn − ϕn. Then, for sufficiently large fixedn, there exists a small positive number
ε such that for almost all elements,Bε,ϕn,Bε,ϕn + ηn ⊂ Ua,0 by Lemma 2.2.1.
HoweverBε,ϕn + 1

2ηn ⊂ Uc
a,0 for almost all elements. This shows thatUa,0 is not

anH -convex set.

4. Main theorem. First we state our main theorem,

THEOREM 4.1. Let F be a real-valued function on Hd and assume that F

satisfies the following continuity condition. For any R > 0 and h1,h2 ∈ Hd with
‖�h1‖Cp ,‖�h2‖Cp ≤ R, it holds that

|F(h1) − F(h2)| ≤ C(R)‖�h1 −�h2‖Cp,(4.1)

where C(R) is an increasing positive function of R. Then the following statements
hold.

1. In the Hilbert space topology of Hd , F is a continuous function.
2. For any w ∈ Xd , limn→∞ F(Pnw) converges. We denote the limit by F̃ (w).

Then F̃ (w) is an Hd -continuous function.
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3. Let ŨF = {w ∈ Xd |F̃ (w) > 0} and UF = {h ∈ Hd |F(h) > 0}. Then UF �= ∅ is
equivalent to µ(ŨF ) > 0. Also if UF is a connected set in Hd , then WPI holds
on ŨF .

PROOF. By Lemma 2.2 and the assumption,

|F(h1) − F(h2)|
≤ C

(
C1 max

i
{(‖hi‖Hd + 1)‖hi‖Hd }

)
(‖h1‖Hd + ‖h2‖Hd + 1)‖h1 − h2‖Hd .

This proves statement 1. SincePnw converges inG�p(Rd), by the assumption
of continuity, the convergence in part 2 is obvious. By (4.1), it holds that for any
η1, η2 ∈ Xd with ‖η̄1‖Cp,‖η̄2‖Cp < R,

|F̃ (η1) − F̃ (η2)| ≤ C(R)‖η̄1 − η̄2‖Cp .

By (2.26), we see theHd continuity. Now we prove part 3. We see that the
probability measure ofOε(h) = {w ∈ Xd |‖�w −�h‖Cp ≤ ε} is positive by Lemmas
2.6 and 3.6 part 2. Assume that there existsh ∈ Hd such thatF(h) > 0. Take
w ∈ Oε(h). Then by the assumption ofF ,

|F̃ (w) − F(h)| ≤ C(‖�h‖Cp + ε)ε.

This impliesµ(F̃ > 0) > 0. Conversely, we assumeµ(F̃ > 0) > 0. Then there
existsw ∈ Xd such that̃F(w) > 0. Then for sufficiently largek, F(Pnw) > 0. Now
we prove the latter half of statement 3. Take a countable dense set{φi}∞i=1 ⊂ UF

in the topology ofHd . Let

Br,φi,H = {
h ∈ Hd |‖(h − φi)2‖p/2 < r,∥∥Ch−φi,φi

∥∥
p/2 < r,

∥∥Cφi,h−φi

∥∥
p/2 < r,‖h − φi‖p < r

}
.

For eachφi , let {ri
k}∞k=1 be all positive rational numbersr such that

inf
{
F(h)|h ∈ Br,φi ,H

}
> 0.(4.2)

We use the following two claims; see (3.26) for the definition ofBri
k,φi

.

CLAIM 1. We have

UF = ⋃
i,k

Bri
k,φi,H

,(4.3)

ŨF = ⋃
i,k

Bri
k,φi

a.s.(4.4)

CLAIM 2. The following two statements are equivalent:

1. Bri
k,φi,H ∩ B

r
j
k ,φj ,H �= ∅;



3134 S. AIDA

2. µ(Bri
k,φi

∩ B
r
j
k ,φj

) > 0.

We can complete the proof of the theorem by these claims. By the connectivity
assumption, we can change the order such that{Bri

k,φi,H} = {Bk}∞k=1 and

(
⋃l

k=1Bk) ∩ Bl+1 �= ∅ for all l ≥ 1. Let us denote bỹBk the subset ofŨF

that corresponds toBk . Then ŨF = ⋃
k B̃k and µ((

⋃l
k=1 B̃k) ∩ B̃l+1) > 0.

Therefore, by Theorem 6.10 in [4], WPI holds onUF̃ . Now, we prove the claims.
Noting the continuity ofF , for sufficiently smallr , we see that (4.2) holds, so
the set on the right-hand side of (4.3) is a nonempty set. Takeh0 ∈ UF and fix a
rational number 0< ε < 1 such that

inf
{
F(h)|h ∈ Bε,h0,H

} ≥ δ := F(h0)

2
.(4.5)

Then noting

(h − φi)(s, t)2 − (h − h0)(s, t)2

= (h0 − φi)(s, t)2 +
∫ t

s
[(h0 − φi)(u) − (h0 − φi)(s)] ⊗ d(h − h0)(u)

(4.6)

−
∫ t

s
d(h − h0)(u) ⊗ [(h0 − φi)(u) − (h0 − φi)(s)]

+ [(h − h0)(t) − (h − h0)(s)] ⊗ [(h0 − φi)(t) − (h0 − φi)(s)],
by Lemma 2.2, we get

‖(h − h0)2‖p/2 ≤ ‖(h − φi)2‖p/2
(4.7)

+ 6‖h0 − φi‖Hd (‖h − φi‖p + ‖φi − h0‖Hd ),∥∥Ch−h0,h0

∥∥
p/2 ≤ ∥∥Ch−φi,φi

∥∥
p/2 + ‖h0 − φi‖Hd (‖h − φi‖p + 2‖h0‖p),(4.8)

‖h − h0‖p ≤ ‖h − φi‖p + ‖φi − h0‖Hd .(4.9)

Hence, forφi andh with ‖φi − h0‖Hd ≤ ε2 andh ∈ Bε1,φi ,H, we have

‖(h − h0)2‖p/2 ≤ ε1 + 6ε2(ε1 + ε2),(4.10) ∥∥Ch−h0,h0

∥∥
p/2 ≤ ε1 + ε2(ε1 + 2‖h0‖p),(4.11)

‖h − h0‖p ≤ ε1 + ε2.(4.12)

Hence, it holds that inf{F(h)|h ∈ Bε1,φi ,H} ≥ δ for φi above,ε1 = 1
6ε andε2 =

ε/(36(1+ 2‖h0‖p)). By applying (4.7), (4.8) and (4.9) to the case whereh = φi ,
we see thath0 ∈ Bε1,φi ,H for the sameε1, ε2 and φi . This proves (4.3). Now
we prove (4.4). Takeη ∈ ŨF and chooseδ > 0 andR > 0 such thatF̃ (η) > δ

and‖η̄‖Cp ≤ R < ∞. Then by the definition of̃F , there existsε > 0 such that
F̃ (w) ≥ δ/2 holds for allw with ‖�w − η̄‖Cp < ε. Also there existsN ∈ N such
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that for all n ≥ N , ‖Pnη − η̄‖Cp < ε/2. By Lemma 2.4, there existsl > N

such thatη ∈ Bε/(8(3+‖η‖p)),Plη. Chooseφi such that‖φi − Plη‖Hd is sufficiently
small. Then, applying (4.6) to the case whereh = η and h0 = Plη, we have
η ∈ Bε/(4(3+‖φi‖p)),φi

. Also, by Lemma 3.6.2,

Bε/(4(3+‖φi‖p)),φi
⊂ {w ∈ Xd |‖�w − φ̄i‖Cp < ε/4}

(4.13)
⊂ {w ∈ Xd |‖�w − Plη‖Cp < ε/2} ⊂ ŨF .

Assume (4.2). We need to prove thatBr,φi
⊂ ŨF . Takew ∈ Br,φi

. Applying (2.26)
to the case whereϕ = w − φi and φ = Pnw − φi , we havePnw ∈ Br,φi ,H for
all sufficiently largen. This impliesF(Pnw) ≥ δ andF̃ (w) ≥ δ. This proves (4.4).
Now we prove Claim 2. AssumeBr1,φ1,H ∩Br2,φ2,H �= ∅. Then there existsh ∈ Hd

such that‖φi − h‖Cp < ri , ‖Cφi−h,φi
‖p/2 < ri and‖Cφi,φi−h‖p/2 < ri . By (2.26),

Cφi−w,φi−w(s, t) − Cφi−h,φi−h(s, t)

= (h − w)(s, t)2 +
∫ t

s

(
(h − w)(u) − (h − w)(s)

) ⊗ dφi(s)

−
∫ t

s
dφi(u) ⊗ (

(h − w)(u) − (h − w)(s)
)

(4.14)

−
∫ t

s

(
(h − w)(u) − (h − w)(s)

) ⊗ dh(u)

+
∫ t

s
dh(u) ⊗ (

(h − w)(u) − (h − w)(s)
)

+ (
(φi − h)(t) − (φi − h)(s)

) ⊗ (
(h − w)(t) − (h − w)(s)

)
.

Therefore, by Lemma 2.2,w ∈ Bri ,φi
holds for w such that‖h − w‖Cp is

sufficiently small. This impliesµ(Br1,φ1 ∩Br2,φ2) > 0. Next we assumeµ(Br1,φ1 ∩
Br2,φ2) > 0. Takew ∈ Br1,φ1 ∩ Br2,φ2. Then by (4.14),Pnw ∈ Br1,φ1,H ∩ Br2,φ2,H.
This completes the proof of Claim 2 and, hence, the theorem.�

Finally we present examples.

EXAMPLE 1. Let (M,g) be ad-dimensional compact Riemannian manifold.
We consider an orthonormal frame bundleπ :O(M) → M . Let us take a metric
connection and let{Li}di=1 be the corresponding canonical horizontal vector fields.
Let us consider a Stratonovich stochastic differential equation

dr(t, u,w) =
d∑

i=1

Li

(
r(t, u,w)

) ◦ dwi(t),(4.15)

r(0) = u,(4.16)
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where π(u) = x and w = (w1, . . . ,wd) denotes thed-dimensional Brownian
motion. Let X(t, x,w) = π(r(t,w)), where X(t, x,w) is a Brownian motion
whose generator is�/2, where� is the Laplace–Beltrami operator. Let us denote
by η(t, u,h) the solution to the ordinary differential equation which is given
by replacingw with h ∈ Hd . We denoteξ(t, x,h) = π(η(t, u,h)). Let y ∈ M

and consider a small open geodesic ballBε(y) centered aty with radiusε. Let
us consider a smooth functionϕ on M such thatϕ(z) > 0 holds if and only
if z ∈ Bε(y). Then F(h) = ϕ(ξ(1, x,h)) satisfies the continuity assumption in
Theorem 4.1 and̃F(w) = ϕ(X(1, x,w)); see [17], Theorem 6.2.2, and [18],
Proposition 6.2.2. Actually, the continuity result in Theorem 6.2.2 in [18] is a
stronger statement than we require in our theorem. Note that the connectivity
of UF is equivalent to the simply connectedness ofM . Therefore, WPI holds on
UF̃ = {w ∈ Wd |X(1, x,w) ∈ Bε(y)} if M is simply connected.

EXAMPLE 2. Next suppose thatM is isometrically embedded intoRN and
let P (x) :RN → TxM be the projection operators. Consider a gradient Brownian
system

dX(t, x,w) = P
(
X(t, x,w)

) ◦ dw(t),(4.17)

X(0, x,w) = x.(4.18)

In this case,w ∈ WN . SupposeM is simply connected. Then by the same argument
as above, we have that WPI holds on{w ∈ WN |X(1, x,w) ∈ Bε(y)}. By this,
Lemmas 4.2–4.5 in [2] and Lemma 5.1 in [1], we see that WPI holds on the
subset{γ ∈ Px(M)|γ (1) ∈ Bε(y)} with natural Dirichlet form. Also, it is easy
to prove that WPI holds for the natural Dirichlet forms on any open connected sets
onPx(M) by a similar argument. Refer to [2] for the definition of Dirichlet forms.

EXAMPLE 3. We present an example for loop space. Suppose thatM is
a compact Lie groupG with biinvariant Riemannian metric. LetLe(G) =
C([0,1] → G|γ (0) = γ (1) = e), where e denotes the unit element. By using
the H derivativeDhF(γ ) = limε→0 ε−1(F (eεh(·)γ (·)) − F(γ )), we can define a
Dirichlet form; see [9]. By using the tubular neighborhood, the retract map in [9],
the conclusion in Example 1 above and Lemma 2.2 in [4], we see that WPI holds
on Le(G) if G is simply connected. We will study general cases for loop spaces
over Riemannian manifolds in forthcoming papers.
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