解析学 A 問題 2

- 関数 f(x) が x=a で連続であるとは「任意の $\varepsilon>0$ に対して, $\delta>0$ が存在して $|x-a|<\delta$ となる x に対して $|f(x)-f(a)|\leq \varepsilon$ となる」ことを言う。
- 関数 f(x) が x=a で連続でないとは「ある $\varepsilon>0$ が存在し、任意の $\delta>0$ に対して $|x-a|<\delta$ を満たす x で $|f(x)-f(a)|\geq \varepsilon$ となるものが存在する」ことを言う。
- 1. $f(x) = x^n$ は各 x = a で連続である。これを以下に従い示せ。
 - (1) |x-a| < 1 のとき

$$|x^n - a^n| \le \{(1 + |a|)^n - |a|^n\} |x - a|$$

を示せ。(ヒント:2項定理。)

- $|x-a| \leq \delta$ ならば $|x^n a^n| \leq \varepsilon$ となる δ を一つ求めよ。
- 2. x > 0 に対して、

$$f(x) = egin{cases} rac{1}{p} & x$$
 が有理数で $x = rac{q}{p} \; (p,q \; \mbox{は正整数}) \; \mbox{と既約分数で表されるとき} \ 0 & x$ が無理数のとき

と定める。f(x) は有理数で不連続,無理数で連続であることを示せ。不連続の方は ε としてどんな数が取れるか?