
Entropy and Limit theorems in Probability Theory ∗

Shigeki Aida

1 Introduction

Important Notice : Solve at least one problem from the following Problems 1-8 and
submit the report to me until June 29.

What is entropy? Entropy represents the uncertainty of probabilistic phenomena. The
following definition is due to Shannon.

Definition 1.1 (Shannon) Let us consider a finite set E = {A1, . . . , AN}. A nonnegative
function P on E is called a probability distribution if

∑N
i=1 P ({Ai}) = 1. Each Ai is called an

elementary event. A subset of E is called an event. Then, for this probability distribution P , we
define the entropy by

H(P ) = −
N∑

i=1

P ({Ai}) logP ({Ai}). (1.1)

Remark 1.2 We use the convention, 0 log 0 = 0. If we do not mention about the base of the
logarithmic function, we mean by log the natural logarithm, loge. We define for a nonnegative
sequence {pi}N

i=1,

H(p1, . . . , pN ) = −
N∑

i=1

pi log pi. (1.2)

Example 1.3 (1) Coin tossing:
E = {H,T} and P1({H}) = P1({T}) = 1/2. We have H(P1) = log 2.

(2) Dice: E = {1, 2, 3, 4, 5, 6}. P2({i}) = 1/6 (1 ≤ i ≤ 6). Then we have H(P2) = log 6.
(3) Unfair Dice: E = {1, 2, 3, 4, 5, 6}. P3({1}) = 9/10, P3({i}) = 1/50 (2 ≤ i ≤ 6).

H(P3) = log

[(
10
9

)9/10

(50)1/10

]
≤ log

(
10
9

· 3
2

)
< log 2 = H(P1) (1.3)

Problem 1 For unfair dice E = {1, 2, 3, 4, 5, 6} with the probability P4({1}) = 8/10, P4({2}) =
1/10, P4({i}) = 1/40 (i = 3, 4, 5, 6), calculate the entropy H(P4). Is H(P4) bigger than H(P1)?

In the above examples (1) and (2), the entropies are nothing but log(# all elementary events),
because all elementary events have equal probabilities. The notion of entropy appeared in sta-
tistical mechanics also. Of course, the discovery is before that in the information theory. The
following is a basic property of the entropy.

Theorem 1.4 Suppose that |E| = N . Then for any probability distribution P , we have

0 ≤ H(P ) ≤ logN. (1.4)

Then the minimum value is attained by probability measures such that P ({Ai}) = 1 for some
i. The maximum is attained by the uniform distribution P , namely, P (Ai) = 1/N for all
1 ≤ i ≤ N .

∗This is one of lectures of “Mathematics B”in Graduate School of Science in Tohoku University in 2010.
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We refer the proof to the proof of Theorem 3.1 in the next section.
The notion of entropy is used to solve the following problem:

Problem Here are eight gold coins and a balance. One of coins is an imitation and it is slightly
lighter than the others. How many times do you need to use the balance to find the imitation?

Solution: In information theory, the entropy stands for the quantity of the information. In the
above problem, we have eight equal possibilities such that each coin may be imitation. So the
entropy is log 8. We get some information by using the balance. By using the balance one time,
we can get the following three informations: 1.The same weight, 2.The left one is lighter, 3.The
right one is lighter. So it contains information log 3. Thus, by using k-times of the balance, we
get information which is amount of k log 3. So if k log 3 < log 8, we do not get full information.
So we need k ≥ 2 . Also it is not difficult to see that two times is enough. If the number of
coins N satisfies 3n−1 < N ≤ 3n, then n-times is enough. We refer the detail and other various
examples to [15].

Problem 2 In the above problem, how many times do you need to use the balance in the case
where n = 27? Also present a method how to use the balance.

In order to get into the detail, we recall basic notions in probability theory.

2 Basic notions in probability theory

Mathematically, probability space is defined to be a measure space whose total measure equals
1. We refer the audiences to some text books (e.g. [14], [13], [11]) for the precise definition.

Definition 2.1 (1) A triplet (Ω,F , P ) is called a probability space if the following hold. Ω is
a set and F is a family of some subsets of Ω satisfying that

(i) If A1, A2, . . . , Ai, . . . ∈ F , then ∪∞
i=1Ai ∈ F .

(ii) If A ∈ F , then Ac ∈ F .

(iii) Ω, ∅ ∈ F .

For each A ∈ F , a nonnegative number P (A) is asssigned and satisfying that

(i) 0 ≤ P (A) ≤ 1 for all A ∈ A.

(ii) P (Ω) = 1.

(iii) (σ-additivity) If A1, A2, . . . , Ai, . . . ∈ F and Ai ∩Aj = ∅ (i 6= j), then

P (∪∞
i=1Ai) =

∞∑
i=1

P (Ai).
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The nonnegative function P : F → [0, 1] is called a probability measure on Ω. A ∈ F is called
an event and P (A) is called the probability of A.
(2) A function X on Ω is called a random variable (or measurable function) if for any I = [a, b],
X−1(I) := {ω ∈ Ω | X(ω) ∈ I} ∈ F holds. For random variable X, define

µX(I) = P
(
X−1(I)

)
, (2.1)

where I denotes an interval on R. µX is also a probability on R and it is called the law of X or
the distribution of X.

Problem 3 Let (Ω,F , P ) be a probability space. Prove that if Ai ∈ F (i = 1, 2, . . .), then
∩∞

i=1Ai ∈ F .

Problem 4 Let (Ω,F , P ) be a probability space. Let A,B ∈ F . Under the assumption that
A ⊂ B, prove that P (A) ≤ P (B).

In this course, we consider the following random variables.
(1) The case where X is a discrete-type random variable:

Namely, X takes finite number values {a1, . . . , an}. Then pi := P ({ω ∈ Ω | X(ω) = ai})(=:
P (X = ai)) satisfies that

∑n
i=1 pi = 1. The probability distribution µX of X is given by

µX({ai}) = pi (1 ≤ i ≤ n).
(2) The case where X has a density function:

That is, there exists a nonnegative function f(x) on R such that

P ({ω ∈ Ω | X(ω) ∈ [a, b]}) =
∫ b

a
f(x)dx

for any interval [a, b].

Definition 2.2 For a random variable X, we denote the expectation, the variance by m and σ2

respectively. Namely,
(i) The case where X is a discrete-type random variable and takes values a1, . . . , an:

m = E[X] =
n∑

i=1

aiP (X = ai), (2.2)

σ2 = E[(X −m)2] =
n∑

i=1

(ai −m)2P (X = ai). (2.3)

(ii) The case where X is a continuous-type random variable which has the density function f :

m = E[X] =
∫

R
xf(x)dx, (2.4)

σ2 = E[(X −m)2] =
∫

R
(x−m)2f(x)dx. (2.5)
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Definition 2.3 (Independence of random variables) Let {Xi}N
i=1 be random variables on

a probability space (Ω,F , P ). N is a natural number or N = ∞. {Xi}N
i=1 are said to be

independent if for any {Xik}m
k=1 ⊂ {Xi}N

i=1 (m ∈ N) and −∞ < ak < bk < ∞, the following
hold:

P (Xi1 ∈ [a1, b1], · · · , Xim ∈ [am, bm]) =
m∏

i=1

P (Xik ∈ [ak, bk]). (2.6)

Definition 2.4 Let µ be a probability distribution on R. Let {Xi}∞i=1 be independent random
variables and the probability distribution of Xi is equal to the same distribution µ for all i. Then
{Xi} is said to be i.i.d. (= independent and identically distributed) random variables with the
distribution µ.

3 Entropy and Law of large numbers (Shannon and McMillan’s
theorem)

Suppose we are given a set of numbers A = {1, . . . , N} ⊂ N. We call A the alphabet and
the element is called a letter. A finite sequence {ω1, ω2, . . . , ωn} (ωi ∈ A) is called a sentence
with the length n. The set of the sentences whose length are n is the product space An :=
{(ω1, . . . , ωn) | ωi ∈ A}. Let P be a probability distribution on A. We denote P ({i}) = pi. In
this section, we define the entropy of P by using the logarithmic function to the base N :

H(P ) = −
N∑

i=1

P ({i}) logN P ({i}). (3.1)

We can prove that

Theorem 3.1 For every P , 0 ≤ H(P ) ≤ 1 holds. H(P ) = 0 holds if and only if P ({i}) = 1 for
some i ∈ A. H(P ) = 1 holds if and only if P is the uniform distribution, that is, pi = 1/N for
all i.

Lemma 3.2 Let g(x) = x log x, or g(x) = − log x. Then for any {mi}N
i=1 with mi ≥ 0 and∑N

i=1mi = 1 and nonnegative sequence {xi}N
i=1, we have

g

(
N∑

i=1

mixi

)
≤

N∑
i=1

mig(xi). (3.2)

Furthermore, when mi > 0 for all i, the equality of (3.2) holds if and only if x1 = · · · = xN .

Proof of Theorem 3.1: First, we consider the lower bound. Applying (3.2) to the case where
mi = xi = pi and g(x) = − log x, we have

H(p1, . . . , pN ) ≥ − log

(
N∑

i=1

p2
i

)
≥ − log 1 = 0. (3.3)
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Clearly, in (3.3), the equality holds if and only if pi = 1 for some i. Next, we consider the upper
bound. By applying Lemma 3.2 to the case where mi = 1/N, xi = pi and g(x) = x log x, for any
nonnegative probability distribution {pi}, we have

g

(
1
N

N∑
i=1

pi

)
≤ 1
N

N∑
i=1

g(pi). (3.4)

Since
∑N

i=1 pi = 1, this implies

− 1
N

logN ≤ 1
N

N∑
i=1

pi log pi.

Thus, −
∑N

i=1 pi log pi ≤ logN and −
∑N

i=1 pi logN pi ≤ 1. By the last assertion of Lemma 3.2,
the equality holds iff pi = 1/N for all i. 2

Now we consider the following situation. Here is a (memoryless) information source S which
sends out the letter according to the probability distribution P at each time independently.
Namely, mathematically, we consider i.i.d. {Xi}∞i=1 with the distribution P . We consider coding
problem of the sequence of letters.

Basic observation: (1) Suppose that P ({1}) = 1 and P ({i}) = 0 (2 ≤ i ≤ N). Then the
random sequence Xi is, actually, a deterministic sequence {1, 1, . . . , 1, . . .}. Thus, the variety
of sequence is nothing. In this case, we do not need to send the all sequences. In fact, if we
know that the entropy of P is 0, then immediately after getting the first letter, we know that
subsequent all letters are 1. Namely, we can encode all sentences, whatever the lengths are, to
just one letter.
(2) Suppose that N ≥ 2 and consider a probability measure such that P ({1}) = P ({2}) = 1/2
and P ({i}) = 0 for 3 ≤ i ≤ N . Then note that the sequences contain i(≥ 3) are not sent
out. Thus the number of possible sequences under P whose lengths are n are 2n. Note that
the number of all sequences of alphabet A whose lengths are k is Nk. Thus, if Nk ≥ 2n(⇐⇒
k
n ≥ logN 2 = H(P )), then all possible sentences whose lengths are n can be encoded into the
sentences whose lengths are k(≤ n). Also the decode is also possible. More precisely, we can
prove the following claim.

Claim If
k

n
≥ H(P ), then there exists an encoder ϕ : An → Ak and a decoder ψ : Ak → An

such that
P
(
ψ(ϕ(X1, . . . , Xn)) 6= (X1, . . . , Xn)

)
= 0. (3.5)

The probability P
(
ψ(ϕ(X1, . . . , Xn)) 6= (X1, . . . , Xn)

)
is called the error probability. For

general P , we can prove the following theorem [6].

Theorem 3.3 (Shannon and McMillan) Take a positive number R > H(P ). For any ε > 0,
there exists M ∈ N such that for all n ≥M and k satisfying that k

n ≥ R, there exists ϕ : An → Ak

and ψ : Ak → An such that

P
(
ψ(ϕ(X1, . . . , Xn)) 6= (X1, . . . , Xn)

)
≤ ε. (3.6)
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R is called the coding rate. We need the following estimates for the proof of the above
theorem.

Lemma 3.4 Let {Zi}∞i=1 be i.i.d. Suppose that E[|Zi|] <∞ and E[|Zi|2] <∞. Then

P

(∣∣∣∣Z1 + · · ·Zn

n
−m

∣∣∣∣ ≥ δ

)
≤ σ2

nδ2
, (3.7)

where m = E[Zi], σ2 = E[(Zi −m)2].

Problem 5 Prove Lemma 3.4 using the Chebyshev lemma.

This lemma immediately implies the following weak law of large numbers.

Theorem 3.5 Assume the same assumption on {Zi} as in Lemma 3.4. Then

lim
n→∞

P

(∣∣∣∣Z1 + · · ·Zn

n
−m

∣∣∣∣ ≥ δ

)
= 0. (3.8)

Proof of Theorem 3.3: Take n ∈ N. The probability distribution of the i.i.d. subsequence
{Xi}n

i=1 is the probability distribution Pn defined on An such that for any {ai}n
i=1,

Pn ({ω1 = a1, . . . , ωn = an}) =
n∏

i=1

P ({ai}) . (3.9)

Let us consider random variables on An, Zi(ω) = − logN P ({ωi}) (1 ≤ i ≤ n). Then {Zi}n
i=1

are i.i.d. and the expectation and the variance are finite. In fact, we have

m = E[Zi] = −
n∑

i=1

P ({ωi}) logn P ({ωi}) = H(P )

σ2 = E[(Zi − E[Zi])2] =
n∑

i=1

(logN pi)
2 pi −H(P )2. (3.10)

Take δ > 0 such that R > H(P ) + δ. By Lemma 3.4,

Pn

(
1
n

n∑
i=1

(− logN P ({ωi})) ≥ H(P ) + δ

)
≤ σ2

nδ2
. (3.11)

Hence, for any ε > 0, there exists M ∈ N such that

Pn

(
1
n

n∑
i=1

(− logN P ({ωi})) ≥ H(P ) + δ

)
≤ ε for all n ≥M. (3.12)

Noting {
(ω1, . . . , ωn)

∣∣∣ 1
n

n∑
i=1

(− logN P ({ωi})) < H(P ) + δ

}

=

{
(ω1, . . . , ωn)

∣∣∣ n∏
i=1

P ({ωi}) > N−n(H(P )+δ)

}

⊂

{
(ω1, . . . , ωn)

∣∣∣ n∏
i=1

P ({ωi}) ≥ N−nR

}
=: Cn, (3.13)
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by (3.12), we have, for n ≥M ,

P ((X1, . . . , Xn) ∈ Cn)

= Pn

({
(ω1 . . . , ωn) ∈ An

∣∣∣ n∏
i=1

P ({ωi}) ≥ N−nR

})

≥ Pn

({
(ω1, . . . , ωn) ∈ An

∣∣∣ n∏
i=1

P ({ωi}) ≥ N−n(H(P )+δ)

})
≥ 1 − ε (3.14)

On the other hand, we have

|Cn|N−nR ≤ Pn

({
(ω1, . . . , ωn) ∈ An

∣∣∣ n∏
i=1

P ({ωi}) ≥ N−nR

})
≤ 1 (3.15)

Hence we have
|Cn| ≤ NnR. (3.16)

By this estimate, if k ≥ nR, then, there exists an injective map φ : Cn → Ak and a map
ψ : Ak → Cn such that

ψ(φ(ω1, . . . , ωn)) = (ω1, . . . , ωn) for any (ω1, . . . , ωn) ∈ Cn.

By taking a map ϕ : An → Ak which satisfies ϕ|Cn = φ, we have

P (ψ(ϕ(X1, . . . , Xn)) = (X1, . . . , Xn)) ≥ P ((X1, . . . , Xn) ∈ Cn) ≥ 1 − ε. (3.17)

This completes the proof. 2

4 Entropy and central limit theorem

Let {Xi}∞i=1 be i.i.d. such that m = E[Xi] = 0 and σ2 = E[X2
i ] = 1. Let

Sn =
X1 + · · ·Xn√

n
.

Then we have

Theorem 4.1 (Central limit theorem=CLT) For any −∞ < a < b <∞,

lim
n→∞

P (Sn ∈ [a, b]) =
∫ b

a

1√
2π
e−

x2

2 dx. (4.1)

The probability distribution whose density is G(x) = 1√
2π
e−

x2

2 dx is called a normal distri-
bution (Gaussian distribution) with mean 0 and variance 1 and the notation N(0, 1) stands for
the distribution. A standard proof of CLT is given by using the characteristic function of Sn,
ϕ(t) = E[e

√
−1tSn ] (t ∈ R). Below, we assume

Assumption 4.2 The distribution of Xi has the density function f , namely,

P (Xi ∈ [a, b]) =
∫ b

a
f(x)dx.
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Then, we can prove that the distribution of Sn also has the density function fn(x) by
Lemma 4.3 (1). In this case, (4.1) is equivalent to

lim
n→∞

∫ b

a
fn(x)dx =

∫ b

a
G(x)dx. (4.2)

By using the entropy of Sn, we can prove a stronger result

lim
n→∞

∫
R
|fn(x) −G(x)|dx = 0 (4.3)

under additional assumptions on f . For the distribution P which has the density f(x), and a
random variable X whose distribution is P , we define the entropy H and Fisher’s information
I by

H(P ) = −
∫

R
f(x) log f(x)dx, (4.4)

I(P ) =
∫

R

f ′(x)2

f(x)
dx. (4.5)

We may denote H(P ) by H(X), H(f) and may denote I(P ) by I(X), I(f).
We summarize basic results on H and I.

Lemma 4.3 (1) If random variables X and Y have the density functions f and g respectively

then a(X + Y ) (a > 0) has the density function h(x) =
1
a

∫
R
f
(x
a
− y
)
g(y)dy.

(2) (Gibbs’s lemma) Let f(x) be a density of a probability whose mean 0 and the variance is 1,
that is, ∫

R
xf(x)dx = 0, (4.6)∫

R
x2f(x) = 1. (4.7)

Then we have,
H(f) ≤ H(G). (4.8)

The equality holds if and only if f(x) = G(x) for all x.
(3) (Shannon-Stam’s inequality) Let X,Y be independent random variables whose density func-
tions satisfy (4.6) and (4.7). Then for a, b ∈ R with a2 + b2 = 1, we have

a2H(X) + b2H(Y ) ≤ H(aX + bY ). (4.9)

The equality holds iff the laws of X and Y are N(0, 1).
(4) (Blachman-Stam’s inequality) Let X,Y be independent random variables whose density
functions satisfy (4.6) and (4.7). Then for a, b ∈ R with a2 + b2 = 1,

I(aX + bY ) ≤ a2I(X) + b2I(Y ). (4.10)

(5) (Csiszár-Kullback-Pinsker) For a probability density function f satisfying (4.6) and (4.7),
we have (∫

R
|f(x) −G(x)|dx

)2

≤ 2 (H(G) −H(f)) . (4.11)
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(6) (Stam’s inequality) For a probability density function f , we have

e−2H(f) ≤ 1
2πe

I(f). (4.12)

(7) (Gross’s inequality) For a probability density function f , we have

−2H(f) ≤ I(f) − log
(
2πe2

)
. (4.13)

Problem 6 Using Stam’s inequality and an elementary inequality log x ≤ x− 1 (x > 0) , prove
Gross’s inequality.

Problem 7 Prove Stam’s inequality by using Gross’s inequality in the following way.
(1) Show that ft(x) =

√
tf(

√
tx)is a probability density function for any t > 0. Next substituting

ft(x) to Gross’s inequality, get an upper bound estimate for −2H(f).
(2) Optimize the estimate for −2H(f) choosing suitable t and prove Stam’s inequality.

Problem 8 Prove that Gross’s inequality is equivalent to the following Gross’s logarithmic
Sobolev inequality:

For all u = u(x) with
∫

R u(x)
2dµ(x) = 1, we have∫

R
u(x)2 log u(x)2dµ(x) ≤ 2

∫
R
|u′(x)|2dµ(x), (4.14)

where dµ(x) = 1√
2π
e−

x2

2 dx.

Remark 4.4 N (f) = e2H(f) is called the Shannon’s entropy power functional. Stam [9] proved
his inequality in 1959. This inequality reveals a relation between the Fisher information and
the Shannon entropy. Later, Gross [5] proved his log-Sobolev inequality in the form (4.14) in
1975. He also proved that the log-Sobolev inequality is equivalent to the hypercontractivity of
the corresponding Ornstein-Uhlenbeck semi-group. The hypercontractivity is very important in
the study of quantum field theory. Gross’s motivation is in the study of quantum field theory.
After Gross’s work, the importance of the log-Sobolev inequality was widely known. Meanwhile,
the contribution of the Stam had been forgotton but some people noted his contribution like in
[2, 3] and some people call the inequality as Stam-Gross logarithmic Sobolev inequality as in [10].
My recent work [1] is related with semiclassical problem of P (φ)2 Hamiltonians which appear
in the constructive quantum field theory. In the work, I used logarithmic Sobolev inequality to
determine the asymptotic behavior of the ground state energy (=the lowest eigenvalue of the
Hamiltonian) under the semiclassical limit ~ → 0.

By Lemma 4.3 (1), Sn has a density function fn. Also note that H(Snm) ≥ H(Sn) for any
n,m ∈ N. We can prove fn converges to G.

Theorem 4.5 Assume that f is C1-function and I(f) <∞. Then for any n, fn is a continuous
function. Moreover we have

lim
n→∞

fn(x) = G(x) for all x (4.15)

lim
n→∞

H(fn) = H(G), (4.16)

lim
n→∞

∫
R
|fn(x) −G(x)|dx = 0. (4.17)
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Sketch of Proof: By Shannon-Stam’s inequality, we can prove that (4.16). This and Csiszár-
Kullback-Pinsker inequality implies (4.17). On the other hand, Blachman-Stam inequality im-
plies I(fn) ≤ I(f). This and (4.17) implies (4.15). See [2], [7] and references in them for the
detail. 2

5 Boltzmann’s H-theorem, Markov chain and entropy

We recall kinetic theory of rarefied gases. Let (vi
x(t), vi

y(t), v
i
z(t)) be the velocity of the i-

th molecule at time t (1 ≤ i ≤ N). N denotes the number of molecules. The velocities
vi(t) = (v1

x(t), vi
y(t), v

i
z(t)) obey Newton’s equation of motion, but N is very big and it is almost

meaningless to know each behavior of vi(t). Boltzmann considered the probability distribution
of the velocity, say, ft(vx, vy, vz)dvxdvydvz and derived the following his H-theorem:

Theorem 5.1 (Boltzmann) Let

H(t) = −
∫

R3

ft(vx, vy, vz) log ft(vx, vy, vz)dvxdvydvz.

Then
d

dt
H(t) ≥ 0.

Remark 5.2 (1) In statistical mechanics, the entropy is nothing but kH(t), where k is the
Boltzmann’s constant (=1.38 × 10−23J ·K−1). Therefore, the above theorem implies that the
entropy increases.
(2) Some people raised questions about the H-theorem.
(i) Newton’s equation of motion for the particles x(t) = (xi(t))N

i=1 moving in a potential U
reads as follows:

miẍi(t) = − ∂U

∂xi
(x(t)) (5.1)

xi(0) = xi,0, (5.2)
ẋi(0) = vi, (5.3)

where (xi,0), (vi) are initial positions and the initial velocities. mi is the mass of xi. The time
reversed dynamics x(−t) is the solution of (5.1) with initial velocity −vi. Clearly, it is impossible
that both entropies of x(t) and x(−t) increase. This is a contradiction.
(ii) The second question is based on Poincaré’s recurrence theorem:
• There exists a time t0 such that x(t0) is close to x(0).

Then at that time t0, the entropy also should be close to each other. Therefore, the monotone
property of entropy does not hold.

The reason why the above paradox appeared is in the statistical treatment of rarefied gases.
We refer the recent progress based on probabilistic models to [4].

Note: Poincaré’s recurrence theorem holds under some additional assumptions on U .
From now on, we consider stochastic dynamics which are called Markov chains and prove

that the entropy of the dynamics increases when time goes on.
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Example 5.3 There are datum on the weather in a certain city.

Today Tomorrow

Fine day �����*Fine day · · ·Probability 2
3

HHHHHjRainy day · · ·Probability 1
3

Rainy day �����*Fine day · · ·Probability 1
2

HHHHHjRainy day · · ·Probability 1
2

Today(=0-th day)is fine, then how much is the probability that the n-th day is also fine?
Solution:

Let pk be the probability that the k-th day is fine and set qk = 1−pk, that is the probability
that k-th day is rainy day. Then (pk, qk) satisfies the following recurrence relation:

(pk, qk) = (pk−1, qk−1)
(

2
3

1
3

1
2

1
2

)
. (5.4)

So we obtain

(pk, qk) = (1, 0)
(

2
3

1
3

1
2

1
2

)k

.

Definition 5.4 Let E = {S1, . . . , SN} be a finite set. E is called a state space. We consider a
random motion of a particle on S. Let {pij}i,j∈E be nonnegative numbers satisfying that

N∑
j=1

pij = 1 for all 1 ≤ i ≤ N. (5.5)

pij denotes the probability that the particle moves from Si to Sj. If the probability that the
particle locates at Si is πi (1 ≤ i ≤ N) at the time n, then the probability that the particle
locates at Sj at the time n+ 1 is

∑N
i=1 πipij. That is, if the initial distribution of the particle is

π(0) = (π1, . . . , πN ), then the distribution π(n) = (π1(n), . . . , πN (n)) at time n is given by

π(n) = π(0)Pn, (5.6)

where P denotes the N × N matrix whose (i, j)-element is pij. Below, we denote by p
(n)
ij the

(i, j)-element of Pn.

We prove the following.

Theorem 5.5 Assume that

(A1)
N∑

i=1

pij = 1 for all 1 ≤ j ≤ N .

11



(A2) (Mixing property of the Markov chain) There exists n0 ∈ N such that p(n0)
ij > 0 for any

i, j ∈ {1, . . . , N},.
Then for any initial distribution π = (π1, . . . , πN ), we have

lim
n→∞

π(n)i =
1
N
. for all 1 ≤ i ≤ N. (5.7)

Note that (π(n)i)N
i=1 = π(n) = πPn.

Remark 5.6 (A1) is equivalent to

(1, . . . , 1) = (1, . . . , 1)P.

Also (A1) holds if pij = pji for all i, j ∈ E.

This theorem can be proved by using the entropy of π(n) and Lemma 3.2. Recall

H(π) = −
N∑

i=1

πi log πi.

Lemma 5.7 Let Q = (qij) be a (N,N)-probability matrix, that is, qij ≥ 0 for all i, j and∑N
j=1 qij = 1 for all i. Assume

∑N
i=1 qij = 1 for any j. Then for any π, H(πQ) ≥ H(π). In

addition, if qij > 0 for all i, j, then, H(πQ) > H(π) for all π 6= (1/N, . . . , 1/N).

Proof.

H(πQ) = −
N∑

i=1

(πQ)i log (πQ)i

= −
N∑

i=1

(
N∑

k=1

πkqki

)
log

(
N∑

k=1

πkqki

)
. (5.8)

Since
∑N

k=1 qki = 1, by applying Lemma 3.2 to the case where mk = qki, xk = πk,(
N∑

k=1

πkqki

)
log

(
N∑

k=1

πkqki

)
≤

N∑
k=1

qkiπk log πk. (5.9)

(5.8), (5.9) and
∑N

i=1 qki = 1 imply H(πQ) ≥ H(π). The last assertion follows from the last
assertion of Lemma 3.2. 2

By using this lemma, we prove Theorem 5.5.

Proof of Theorem 5.5 Since π(n) moves in a bounded subset in RN , there exist the accumu-
lation points. That is, there exist x = (x1, . . . , xN ) and a subsequence {π(n(k))}∞k=1 such that
limk→∞ π(n(k)) = x. x is also a probability and satisfies that H(x) = limk→∞H(π(n(k))). Note
that Pn0 is a probability matrix and all elements of Pn0 are positive. So if x 6= (1/N, . . . , 1/N),
then H(xPn0) > H(x). But xPn0 = limk→∞ πPn(k)+n0 and H(xPn0) = limk→∞H(πPn(k)+n0).
Since H(π(n)) is an increasing sequence, H(xPn0) = H(x). This is a contradiction. So
x = (1/N, . . . , 1/N) which completes the proof. 2
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