
レポート問題

1. Let {Xi}∞i=1 be the i.i.d. such that P (Xi = 1) = p, P (Xi = 0) = 1−p, where 0 < p < 1.

Let Sn =
∑n

i=1 Xi. Using the Stirling formula, prove that for any p < a < b < 1,

lim
n→∞

1

n
log P

(
Sn

n
∈ [a, b]

)
= − inf

x∈[a,b]
I(x),

where

I(x) = x log
x

p
+ (1 − x) log

1 − x

1 − p
.

2. (1) Let Ω be a set. For any subsets of Ω, {Ai}, {Bi}, prove that

(∪i=1Ai)4 (∪∞
i=1Bi) ⊂ ∪∞

i=1(Ai4Bi).

Here A4B := (A ∩ Bc) ∪ (B ∩ Ac).

(2) Let (Ω,F , P ) be a probability space. Prove that for any A,B ∈ F ,

|P (A) − P (B)| ≤ P (A4B), |P (A) − P (A ∩ B)| ≤ P (A4B).

3. Let {Xn}∞n=1 be random variables. Let Bn = σ(Xn). Set

A =
{

ω | lim
n→∞

Xn(ω) exists
}

Ba =
{

ω | lim
n→∞

Xn(ω) = a
}

(a ∈ R)

C =

{
ω | lim

n→∞

n∑
i=1

Xi(ω) exists

}

D =

{
ω | lim

n→∞

1

n

n∑
i=1

Xi(ω) exists

}
.

Show that Ba, C,D are tail events of {Bn | n = 1, 2, · · · }.

4. Let X be a real-valued random variable. Let MX(θ) = log E[eθX ] and set IX(x) =

supθ∈R(xθ − M(θ)). We assume that MX(θ) < ∞ for all θ ∈ R.

(1) Assume that P (X = 1) = p, P (X = 0) = 1 − p, where 0 < p < 1. Prove that

I(x) = x log x
p

+ (1 − x) log 1−x
1−p

for 0 ≤ x ≤ 1 and I(x) = +∞ for x > 1 or x < 0.

(2) Let X be the random variable whose law is the uniform distribution on [0, 1]. Prove

that limx→1−0 IX(x) = limx→+0 IX(x) = +∞.
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5 Let X be a metric space. Let fλ = fλ(x) (x ∈ X,λ ∈ Λ) be a family of continuous

functions on X. Let f(x) = supλ∈Λ fλ(x). Show that f is a lower semi-continuous function

on X.

6 Let f be a funcion on X with values in [−∞,∞]. Prove that the following two statements

are equivalent.

(1) f is a lower semi-continuous function.

(2) For any K ∈ R, {x | f(x) ≤ K} is a closed set.

7. Let X = C([0, 1] → Rd) be the set of continuous paths x = x(t) (0 ≤ t ≤ 1) with

x(0) = 0. We define a norm on X by ‖x‖ = maxt |x(t)|. (Note: (X, ‖ ‖) is a separable

Banach space). Let

H =
{

h ∈ X
∣∣∣ h is an absolutely continuous function

and h′ ∈ L2([0, 1], dt)
}

.

Define

I(x) =

{
1
2

∫ 1

0
|x′(t)|2dt if x ∈ H

+∞ if x /∈ H

Prove that I satisfies the property of the rate function.

8 Let µ be a probability measure on a metric space (X, d), where d denotes the distance

function.

(1) Prove the existence of the largest open set Oµ of X such that µ(Oµ) = 0. (Note:

the empty set is an open set).

(2) Let us define supp µ := Oc
µ (supp µ is called the topological support (if there are

no confusion, support, in short) of the measure µ). Then prove that

supp µ = {x ∈ X | for any ε > 0, µ(Bε(x)) > 0 holds},

where Bε(x) = {y ∈ X | d(x, y) < ε}.
(3) It is trivial to see that suppµ is a closed set by the definition in (2). By the way,

prove that supp µ is a closed set, using the expression

supp µ = {x ∈ X | for any ε > 0, µ(Bε(x)) > 0 holds }.

9. Let X be a real-valued random variable. Let MX(θ) = log E[eθX ] and set IX(x) =

supθ∈R(xθ − M(θ)). We assume that MX(θ) < ∞ for all θ ∈ R and X 6= const a.s.. Let

m = E[X]. Prove that
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(1) Let x > m. Then I(x) ≤ − log P (X ≥ x)

(2) Let x < m. Then I(x) ≤ − log P (X ≤ x).

Remark This shows I(x) < ∞ for x ∈ (inf suppµX , sup suppµX), where µX is the law

of X. (In the class, we denote rµX
= sup suppµX). Actually, the above inequalities are

the same as for x ≥ m

P

(
Sn

n
≥ x

)
≤ exp (−nI(x)) ,

which we prove in the class and so on.

10. Let {Xi}∞i=1 be independent integer-valued random variables. We assume that Xi and

−Xi have the same law. Let

S0 = 0, Sn =
n∑

i=1

Xi (n ≥ 1).

Then for any positive integers k and N , we have

P

(
max

0≤n≤N
Sn ≥ k

)
= 2P (SN > k) + P (SN = k) (∗)

Prove (∗) following the next argument.

(1) Let An = {ω ∈ Ω | S1(ω) < k, . . . , Sn−1(ω) < k, Sn(ω) = k} (1 ≤ n ≤ N). Show

that P ({SN − Sn > 0} ∩ An) = P ({SN − Sn < 0} ∩ An) for all 1 ≤ n ≤ N . Summing

both sides in this identity, show that

P

(
{SN > k} ∩ { max

1≤n≤N
Sn ≥ k}

)
= P

(
{SN < k} ∩ { max

1≤n≤N
Sn ≥ k}

)
.

(2) Prove the identity (∗).

11. Let {aα}α∈A ⊂ Rd and {bα}α∈A ⊂ R. Define

ϕ(x) = sup
α∈A

{(aα, x) + bα} , x ∈ Rd

where (·, ·) is the inner product in Rd. Suppose that ϕ(x) < ∞ for all x. Prove that ϕ(x)

is a lower semi-continuous convex function.

12. Let µ be a probability measure on Rd. Let F be the support of µ. Assume the

following (i), (ii):

(i)
∫

Rd ‖x‖dµ(x) < ∞,

(ii) The smallest affine subspace including F is Rd.
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Let m :=
∫

Rd xdµ(x) be the mean value of the probability distribution µ. Let Conv F

be the smallest convex set containing F . Prove that m is an interior point of Conv F .

13. Let {Xi} be Rd-valued i.i.d. We write Sn =
∑n

i=1 Xi. Assume that E[exp (‖Xi‖)] <

∞, where ‖ ‖ denotes the Euclidean norm. Using the Chebyshev inequality, prove that

for any L > 0, there exists RL > 0 such that

lim sup
n→∞

1

n
log P

(∥∥∥Sn

n

∥∥∥ ≥ RL

)
≤ −L.

14. Let f = f(x) (a ≤ x ≤ b) be a non-negative bounded Borel measurable function.

Prove that

lim
p→∞

(∫ b

a

f(x)pdx

)1/p

= ‖f‖∞,

where ‖f‖∞ = inf{α | f(x) ≤ α dx− a.s.on [a, b]} and dx denotes the Lebesgue measure.

15. Let I = I(x) be a rate function on a separable metric space X. Let Φ be a bounded

continuous function on X and set Ψ(x) = I(x) + Φ(x). Prove that there exists x0 ∈ X

such that

Ψ(x0) = inf
x∈X

Ψ(x).

16. Let f : N → [0, +∞] be a subadditive function. That is, f satisfies

f(n + m) ≤ f(n) + f(m) for any n,m ∈ N.

Assume that there exists N ∈ N such that f(n) < ∞ for all n ≥ N .

Under these assumptions, prove

lim
n→∞

f(n)

n
= inf

n≥1

f(n)

n
< ∞.

17. Let Xi be i.i.d. with values in Rd. Assume that E[e(θ,Xi)] < ∞ for all θ ∈ Rd. Let

Sn =
∑n

i=1 Xi. Let x ∈ Rd and Bε(x) = {y ∈ Rd | ‖x − y‖ < ε}. Define

l (Bε(x)) = lim
n→∞

1

n
log P

(
Sn

n
∈ Bε(x)

)
and set λ(x) = limε→0 (−l (Bε(x))). Prove that λ : Rd → [0, +∞] is a convex function.

Hint: First prove that λ
(

x+y
2

)
≤ 1

2
(λ(x) + λ(y)). Next, using the lower semi-continuity

of λ, prove that

λ(tx + (1 − t)y) ≤ tλ(x) + (1 − t)λ(y) for all 0 < t < 1.
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