レポート問題

1．Let $\left\{X_{i}\right\}_{i=1}^{\infty}$ be the i．i．d．such that $P\left(X_{i}=1\right)=p, P\left(X_{i}=0\right)=1-p$ ，where $0<p<1$ ． Let $S_{n}=\sum_{i=1}^{n} X_{i}$ ．Using the Stirling formula，prove that for any $p<a<b<1$ ，

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log P\left(\frac{S_{n}}{n} \in[a, b]\right)=-\inf _{x \in[a, b]} I(x)
$$

where

$$
I(x)=x \log \frac{x}{p}+(1-x) \log \frac{1-x}{1-p} .
$$

2．（1）Let Ω be a set．For any subsets of $\Omega,\left\{A_{i}\right\},\left\{B_{i}\right\}$ ，prove that

$$
\left(\cup_{i=1} A_{i}\right) \triangle\left(\cup_{i=1}^{\infty} B_{i}\right) \subset \cup_{i=1}^{\infty}\left(A_{i} \triangle B_{i}\right) .
$$

Here $A \triangle B:=\left(A \cap B^{c}\right) \cup\left(B \cap A^{c}\right)$ ．
（2）Let (Ω, \mathcal{F}, P) be a probability space．Prove that for any $A, B \in \mathcal{F}$ ，

$$
|P(A)-P(B)| \leq P(A \triangle B), \quad|P(A)-P(A \cap B)| \leq P(A \triangle B)
$$

3．Let $\left\{X_{n}\right\}_{n=1}^{\infty}$ be random variables．Let $\mathcal{B}_{n}=\sigma\left(X_{n}\right)$ ．Set

$$
\begin{aligned}
A & =\left\{\omega \mid \lim _{n \rightarrow \infty} X_{n}(\omega) \text { exists }\right\} \\
B_{a} & =\left\{\omega \mid \lim _{n \rightarrow \infty} X_{n}(\omega)=a\right\} \quad(a \in \mathbb{R}) \\
C & =\left\{\omega \mid \lim _{n \rightarrow \infty} \sum_{i=1}^{n} X_{i}(\omega) \text { exists }\right\} \\
D & =\left\{\omega \left\lvert\, \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i}(\omega)\right. \text { exists }\right\} .
\end{aligned}
$$

Show that B_{a}, C, D are tail events of $\left\{\mathcal{B}_{n} \mid n=1,2, \cdots\right\}$ ．
4．Let X be a real－valued random variable．Let $M_{X}(\theta)=\log E\left[e^{\theta X}\right]$ and set $I_{X}(x)=$ $\sup _{\theta \in \mathbb{R}}(x \theta-M(\theta))$ ．We assume that $M_{X}(\theta)<\infty$ for all $\theta \in \mathbb{R}$ ．
（1）Assume that $P(X=1)=p, P(X=0)=1-p$ ，where $0<p<1$ ．Prove that $I(x)=x \log \frac{x}{p}+(1-x) \log \frac{1-x}{1-p}$ for $0 \leq x \leq 1$ and $I(x)=+\infty$ for $x>1$ or $x<0$ ．
（2）Let X be the random variable whose law is the uniform distribution on $[0,1]$ ．Prove that $\lim _{x \rightarrow 1-0} I_{X}(x)=\lim _{x \rightarrow+0} I_{X}(x)=+\infty$ ．

5 Let X be a metric space. Let $f_{\lambda}=f_{\lambda}(x)(x \in X, \lambda \in \Lambda)$ be a family of continuous functions on X. Let $f(x)=\sup _{\lambda \in \Lambda} f_{\lambda}(x)$. Show that f is a lower semi-continuous function on X.

6 Let f be a funcion on X with values in $[-\infty, \infty]$. Prove that the following two statements are equivalent.
(1) f is a lower semi-continuous function.
(2) For any $K \in \mathbb{R},\{x \mid f(x) \leq K\}$ is a closed set.
7. Let $X=C\left([0,1] \rightarrow \mathbb{R}^{d}\right)$ be the set of continuous paths $x=x(t)(0 \leq t \leq 1)$ with $x(0)=0$. We define a norm on X by $\|x\|=\max _{t}|x(t)|$. (Note: $(X,\| \|)$ is a separable Banach space). Let

$$
\begin{gathered}
H=\{h \in X \mid h \text { is an absolutely continuous function } \\
\text { and } \left.h^{\prime} \in L^{2}([0,1], d t)\right\} .
\end{gathered}
$$

Define

$$
I(x)= \begin{cases}\frac{1}{2} \int_{0}^{1}\left|x^{\prime}(t)\right|^{2} d t & \text { if } x \in H \\ +\infty & \text { if } x \notin H\end{cases}
$$

Prove that I satisfies the property of the rate function.
8 Let μ be a probability measure on a metric space (X, d), where d denotes the distance function.
(1) Prove the existence of the largest open set O_{μ} of X such that $\mu\left(O_{\mu}\right)=0$. (Note: the empty set is an open set).
(2) Let us define supp $\mu:=O_{\mu}^{c}$ (supp μ is called the topological support (if there are no confusion, support, in short) of the measure μ). Then prove that

$$
\text { supp } \mu=\left\{x \in X \mid \text { for any } \varepsilon>0, \mu\left(B_{\varepsilon}(x)\right)>0 \text { holds }\right\}
$$

where $B_{\varepsilon}(x)=\{y \in X \mid d(x, y)<\varepsilon\}$.
(3) It is trivial to see that $\operatorname{supp} \mu$ is a closed set by the definition in (2). By the way, prove that $\operatorname{supp} \mu$ is a closed set, using the expression

$$
\operatorname{supp} \mu=\left\{x \in X \mid \text { for any } \varepsilon>0, \mu\left(B_{\varepsilon}(x)\right)>0 \text { holds }\right\} .
$$

9. Let X be a real-valued random variable. Let $M_{X}(\theta)=\log E\left[e^{\theta X}\right]$ and set $I_{X}(x)=$ $\sup _{\theta \in \mathbb{R}}(x \theta-M(\theta))$. We assume that $M_{X}(\theta)<\infty$ for all $\theta \in \mathbb{R}$ and $X \neq$ const a.s.. Let $m=E[X]$. Prove that
(1) Let $x>m$. Then $I(x) \leq-\log P(X \geq x)$
(2) Let $x<m$. Then $I(x) \leq-\log P(X \leq x)$.

Remark This shows $I(x)<\infty$ for $x \in\left(\inf \operatorname{supp} \mu_{X}\right.$, sup $\left.\operatorname{supp} \mu_{X}\right)$, where μ_{X} is the law of X. (In the class, we denote $r_{\mu_{X}}=\sup \operatorname{supp} \mu_{X}$). Actually, the above inequalities are the same as for $x \geq m$

$$
P\left(\frac{S_{n}}{n} \geq x\right) \leq \exp (-n I(x))
$$

which we prove in the class and so on.
10. Let $\left\{X_{i}\right\}_{i=1}^{\infty}$ be independent integer-valued random variables. We assume that X_{i} and $-X_{i}$ have the same law. Let

$$
S_{0}=0, \quad S_{n}=\sum_{i=1}^{n} X_{i} \quad(n \geq 1)
$$

Then for any positive integers k and N, we have

$$
\begin{equation*}
P\left(\max _{0 \leq n \leq N} S_{n} \geq k\right)=2 P\left(S_{N}>k\right)+P\left(S_{N}=k\right) \tag{*}
\end{equation*}
$$

Prove ($*$) following the next argument.
(1) Let $A_{n}=\left\{\omega \in \Omega \mid S_{1}(\omega)<k, \ldots, S_{n-1}(\omega)<k, S_{n}(\omega)=k\right\}(1 \leq n \leq N)$. Show that $P\left(\left\{S_{N}-S_{n}>0\right\} \cap A_{n}\right)=P\left(\left\{S_{N}-S_{n}<0\right\} \cap A_{n}\right)$ for all $1 \leq n \leq N$. Summing both sides in this identity, show that

$$
P\left(\left\{S_{N}>k\right\} \cap\left\{\max _{1 \leq n \leq N} S_{n} \geq k\right\}\right)=P\left(\left\{S_{N}<k\right\} \cap\left\{\max _{1 \leq n \leq N} S_{n} \geq k\right\}\right)
$$

(2) Prove the identity ($*$).
11. Let $\left\{a_{\alpha}\right\}_{\alpha \in A} \subset \mathbb{R}^{d}$ and $\left\{b_{\alpha}\right\}_{\alpha \in A} \subset \mathbb{R}$. Define

$$
\varphi(x)=\sup _{\alpha \in A}\left\{\left(a_{\alpha}, x\right)+b_{\alpha}\right\}, \quad x \in \mathbb{R}^{d}
$$

where (\cdot, \cdot) is the inner product in \mathbb{R}^{d}. Suppose that $\varphi(x)<\infty$ for all x. Prove that $\varphi(x)$ is a lower semi-continuous convex function.
12. Let μ be a probability measure on \mathbb{R}^{d}. Let F be the support of μ. Assume the following (i), (ii):
(i) $\int_{\mathbb{R}^{d}}\|x\| d \mu(x)<\infty$,
(ii) The smallest affine subspace including F is \mathbb{R}^{d}.

Let $m:=\int_{\mathbb{R}^{d}} x d \mu(x)$ be the mean value of the probability distribution μ. Let Conv F be the smallest convex set containing F. Prove that m is an interior point of Conv F.
13. Let $\left\{X_{i}\right\}$ be \mathbb{R}^{d}-valued i.i.d. We write $S_{n}=\sum_{i=1}^{n} X_{i}$. Assume that $E\left[\exp \left(\left\|X_{i}\right\|\right)\right]<$ ∞, where $\|\|$ denotes the Euclidean norm. Using the Chebyshev inequality, prove that for any $L>0$, there exists $R_{L}>0$ such that

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log P\left(\left\|\frac{S_{n}}{n}\right\| \geq R_{L}\right) \leq-L
$$

14. Let $f=f(x)(a \leq x \leq b)$ be a non-negative bounded Borel measurable function. Prove that

$$
\lim _{p \rightarrow \infty}\left(\int_{a}^{b} f(x)^{p} d x\right)^{1 / p}=\|f\|_{\infty}
$$

where $\|f\|_{\infty}=\inf \{\alpha \mid f(x) \leq \alpha d x$ - a.s.on $[a, b]\}$ and $d x$ denotes the Lebesgue measure.
15. Let $I=I(x)$ be a rate function on a separable metric space X. Let Φ be a bounded continuous function on X and set $\Psi(x)=I(x)+\Phi(x)$. Prove that there exists $x_{0} \in X$ such that

$$
\Psi\left(x_{0}\right)=\inf _{x \in X} \Psi(x)
$$

16. Let $f: \mathbb{N} \rightarrow[0,+\infty]$ be a subadditive function. That is, f satisfies

$$
f(n+m) \leq f(n)+f(m) \quad \text { for any } n, m \in \mathbb{N} .
$$

Assume that there exists $N \in \mathbb{N}$ such that $f(n)<\infty$ for all $n \geq N$.
Under these assumptions, prove

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{n}=\inf _{n \geq 1} \frac{f(n)}{n}<\infty
$$

17. Let X_{i} be i.i.d. with values in \mathbb{R}^{d}. Assume that $E\left[e^{\left(\theta, X_{i}\right)}\right]<\infty$ for all $\theta \in \mathbb{R}^{d}$. Let $S_{n}=\sum_{i=1}^{n} X_{i}$. Let $x \in \mathbb{R}^{d}$ and $B_{\varepsilon}(x)=\left\{y \in \mathbb{R}^{d} \mid\|x-y\|<\varepsilon\right\}$. Define

$$
l\left(B_{\varepsilon}(x)\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \log P\left(\frac{S_{n}}{n} \in B_{\varepsilon}(x)\right)
$$

and set $\lambda(x)=\lim _{\varepsilon \rightarrow 0}\left(-l\left(B_{\varepsilon}(x)\right)\right)$. Prove that $\lambda: \mathbb{R}^{d} \rightarrow[0,+\infty]$ is a convex function. Hint: First prove that $\lambda\left(\frac{x+y}{2}\right) \leq \frac{1}{2}(\lambda(x)+\lambda(y))$. Next, using the lower semi-continuity of λ, prove that

$$
\lambda(t x+(1-t) y) \leq t \lambda(x)+(1-t) \lambda(y) \quad \text { for all } 0<t<1
$$

