レポート問題

1. Let $\{X_i\}_{i=1}^{\infty}$ be the i.i.d. such that $P(X_i = 1) = p, P(X_i = 0) = 1 - p$, where 0 . $Let <math>S_n = \sum_{i=1}^n X_i$. Using the Stirling formula, prove that for any p < a < b < 1,

$$\lim_{n \to \infty} \frac{1}{n} \log P\left(\frac{S_n}{n} \in [a, b]\right) = -\inf_{x \in [a, b]} I(x),$$

where

$$I(x) = x \log \frac{x}{p} + (1 - x) \log \frac{1 - x}{1 - p}.$$

2. (1) Let Ω be a set. For any subsets of Ω , $\{A_i\}$, $\{B_i\}$, prove that

$$(\cup_{i=1}A_i) \bigtriangleup (\cup_{i=1}^{\infty}B_i) \subset \cup_{i=1}^{\infty}(A_i \bigtriangleup B_i).$$

Here $A \triangle B := (A \cap B^c) \cup (B \cap A^c)$.

(2) Let (Ω, \mathcal{F}, P) be a probability space. Prove that for any $A, B \in \mathcal{F}$,

$$|P(A) - P(B)| \le P(A \triangle B), \quad |P(A) - P(A \cap B)| \le P(A \triangle B).$$

3. Let $\{X_n\}_{n=1}^{\infty}$ be random variables. Let $\mathcal{B}_n = \sigma(X_n)$. Set

$$A = \left\{ \omega \mid \lim_{n \to \infty} X_n(\omega) \text{ exists} \right\}$$

$$B_a = \left\{ \omega \mid \lim_{n \to \infty} X_n(\omega) = a \right\} \quad (a \in \mathbb{R})$$

$$C = \left\{ \omega \mid \lim_{n \to \infty} \sum_{i=1}^n X_i(\omega) \text{ exists} \right\}$$

$$D = \left\{ \omega \mid \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n X_i(\omega) \text{ exists} \right\}.$$

Show that B_a, C, D are tail events of $\{\mathcal{B}_n \mid n = 1, 2, \cdots\}$.

4. Let X be a real-valued random variable. Let $M_X(\theta) = \log E[e^{\theta X}]$ and set $I_X(x) = \sup_{\theta \in \mathbb{R}} (x\theta - M(\theta))$. We assume that $M_X(\theta) < \infty$ for all $\theta \in \mathbb{R}$.

(1) Assume that P(X = 1) = p, P(X = 0) = 1 - p, where $0 . Prove that <math>I(x) = x \log \frac{x}{p} + (1 - x) \log \frac{1 - x}{1 - p}$ for $0 \le x \le 1$ and $I(x) = +\infty$ for x > 1 or x < 0.

(2) Let X be the random variable whose law is the uniform distribution on [0, 1]. Prove that $\lim_{x\to 1-0} I_X(x) = \lim_{x\to +0} I_X(x) = +\infty$.

5 Let X be a metric space. Let $f_{\lambda} = f_{\lambda}(x)$ $(x \in X, \lambda \in \Lambda)$ be a family of continuous functions on X. Let $f(x) = \sup_{\lambda \in \Lambda} f_{\lambda}(x)$. Show that f is a lower semi-continuous function on X.

6 Let f be a function on X with values in $[-\infty, \infty]$. Prove that the following two statements are equivalent.

- (1) f is a lower semi-continuous function.
- (2) For any $K \in \mathbb{R}$, $\{x \mid f(x) \leq K\}$ is a closed set.

7. Let $X = C([0,1] \to \mathbb{R}^d)$ be the set of continuous paths x = x(t) $(0 \le t \le 1)$ with x(0) = 0. We define a norm on X by $||x|| = \max_t |x(t)|$. (Note: (X, || ||) is a separable Banach space). Let

$$H = \left\{ h \in X \mid h \text{ is an absolutely continuous function} \right.$$

and $h' \in L^2([0, 1], dt) \right\}.$

Define

$$I(x) = \begin{cases} \frac{1}{2} \int_0^1 |x'(t)|^2 dt & \text{if } x \in H \\ +\infty & \text{if } x \notin H \end{cases}$$

Prove that I satisfies the property of the rate function.

8 Let μ be a probability measure on a metric space (X, d), where d denotes the distance function.

(1) Prove the existence of the largest open set O_{μ} of X such that $\mu(O_{\mu}) = 0$. (Note: the empty set is an open set).

(2) Let us define supp $\mu := O^c_{\mu}$ (supp μ is called the topological support (if there are no confusion, support, in short) of the measure μ). Then prove that

supp
$$\mu = \{x \in X \mid \text{for any } \varepsilon > 0, \ \mu(B_{\varepsilon}(x)) > 0 \text{ holds}\},\$$

where $B_{\varepsilon}(x) = \{y \in X \mid d(x, y) < \varepsilon\}.$

(3) It is trivial to see that $\operatorname{supp}\mu$ is a closed set by the definition in (2). By the way, prove that $\operatorname{supp}\mu$ is a closed set, using the expression

supp
$$\mu = \{x \in X \mid \text{for any } \varepsilon > 0, \ \mu(B_{\varepsilon}(x)) > 0 \text{ holds } \}.$$

9. Let X be a real-valued random variable. Let $M_X(\theta) = \log E[e^{\theta X}]$ and set $I_X(x) = \sup_{\theta \in \mathbb{R}} (x\theta - M(\theta))$. We assume that $M_X(\theta) < \infty$ for all $\theta \in \mathbb{R}$ and $X \neq \text{const } a.s.$. Let m = E[X]. Prove that

- (1) Let x > m. Then $I(x) \le -\log P(X \ge x)$
- (2) Let x < m. Then $I(x) \leq -\log P(X \leq x)$.

Remark This shows $I(x) < \infty$ for $x \in (\inf \operatorname{supp}\mu_X, \sup \operatorname{supp}\mu_X)$, where μ_X is the law of X. (In the class, we denote $r_{\mu_X} = \operatorname{supsupp}\mu_X$). Actually, the above inequalities are the same as for $x \ge m$

$$P\left(\frac{S_n}{n} \ge x\right) \le \exp\left(-nI(x)\right),$$

which we prove in the class and so on.

10. Let $\{X_i\}_{i=1}^{\infty}$ be independent integer-valued random variables. We assume that X_i and $-X_i$ have the same law. Let

$$S_0 = 0,$$
 $S_n = \sum_{i=1}^n X_i$ $(n \ge 1).$

Then for any positive integers k and N, we have

$$P\left(\max_{0 \le n \le N} S_n \ge k\right) = 2P(S_N > k) + P(S_N = k) \tag{*}$$

Prove (*) following the next argument.

(1) Let $A_n = \{\omega \in \Omega \mid S_1(\omega) < k, \dots, S_{n-1}(\omega) < k, S_n(\omega) = k\}$ $(1 \le n \le N)$. Show that $P(\{S_N - S_n > 0\} \cap A_n) = P(\{S_N - S_n < 0\} \cap A_n)$ for all $1 \le n \le N$. Summing both sides in this identity, show that

$$P\left(\{S_N > k\} \cap \{\max_{1 \le n \le N} S_n \ge k\}\right) = P\left(\{S_N < k\} \cap \{\max_{1 \le n \le N} S_n \ge k\}\right)$$

(2) Prove the identity (*).

11. Let $\{a_{\alpha}\}_{\alpha \in A} \subset \mathbb{R}^d$ and $\{b_{\alpha}\}_{\alpha \in A} \subset \mathbb{R}$. Define

$$\varphi(x) = \sup_{\alpha \in A} \{(a_{\alpha}, x) + b_{\alpha}\}, \qquad x \in \mathbb{R}^d$$

where (\cdot, \cdot) is the inner product in \mathbb{R}^d . Suppose that $\varphi(x) < \infty$ for all x. Prove that $\varphi(x)$ is a lower semi-continuous convex function.

12. Let μ be a probability measure on \mathbb{R}^d . Let F be the support of μ . Assume the following (i), (ii):

- (i) $\int_{\mathbb{R}^d} \|x\| d\mu(x) < \infty$,
- (ii) The smallest affine subspace including F is \mathbb{R}^d .

Let $m := \int_{\mathbb{R}^d} x d\mu(x)$ be the mean value of the probability distribution μ . Let Conv F be the smallest convex set containing F. Prove that m is an interior point of Conv F.

13. Let $\{X_i\}$ be \mathbb{R}^d -valued i.i.d. We write $S_n = \sum_{i=1}^n X_i$. Assume that $E[\exp(||X_i||)] < \infty$, where || || denotes the Euclidean norm. Using the Chebyshev inequality, prove that for any L > 0, there exists $R_L > 0$ such that

$$\limsup_{n \to \infty} \frac{1}{n} \log P\left(\left\|\frac{S_n}{n}\right\| \ge R_L\right) \le -L.$$

14. Let f = f(x) $(a \le x \le b)$ be a non-negative bounded Borel measurable function. Prove that

$$\lim_{p \to \infty} \left(\int_a^b f(x)^p dx \right)^{1/p} = \|f\|_{\infty},$$

where $||f||_{\infty} = \inf\{\alpha \mid f(x) \le \alpha \ dx - a.s.on \ [a, b]\}$ and dx denotes the Lebesgue measure.

15. Let I = I(x) be a rate function on a separable metric space X. Let Φ be a bounded continuous function on X and set $\Psi(x) = I(x) + \Phi(x)$. Prove that there exists $x_0 \in X$ such that

$$\Psi(x_0) = \inf_{x \in X} \Psi(x).$$

16. Let $f: \mathbb{N} \to [0, +\infty]$ be a subadditive function. That is, f satisfies

$$f(n+m) \le f(n) + f(m)$$
 for any $n, m \in \mathbb{N}$.

Assume that there exists $N \in \mathbb{N}$ such that $f(n) < \infty$ for all $n \ge N$.

Under these assumptions, prove

$$\lim_{n \to \infty} \frac{f(n)}{n} = \inf_{n \ge 1} \frac{f(n)}{n} < \infty.$$

17. Let X_i be i.i.d. with values in \mathbb{R}^d . Assume that $E[e^{(\theta, X_i)}] < \infty$ for all $\theta \in \mathbb{R}^d$. Let $S_n = \sum_{i=1}^n X_i$. Let $x \in \mathbb{R}^d$ and $B_{\varepsilon}(x) = \{y \in \mathbb{R}^d \mid ||x - y|| < \varepsilon\}$. Define

$$l(B_{\varepsilon}(x)) = \lim_{n \to \infty} \frac{1}{n} \log P\left(\frac{S_n}{n} \in B_{\varepsilon}(x)\right)$$

and set $\lambda(x) = \lim_{\varepsilon \to 0} (-l(B_{\varepsilon}(x)))$. Prove that $\lambda : \mathbb{R}^d \to [0, +\infty]$ is a convex function. Hint: First prove that $\lambda\left(\frac{x+y}{2}\right) \leq \frac{1}{2}(\lambda(x) + \lambda(y))$. Next, using the lower semi-continuity of λ , prove that

$$\lambda(tx + (1-t)y) \le t\lambda(x) + (1-t)\lambda(y) \quad \text{for all } 0 < t < 1.$$