K-STABILITY AND CM-STABILITY FOR FANO MANIFOLDS

YASUHIRO NAKAGAWA

ABSTRACT

In [3], Tian introduced two concepts of “stability” for Fano manifolds, i.e., K-stability and CM-stability, and proved the following fact:

Fact 1. If a Fano manifold X admits an Einstein-Kähler metric and the holomorphic automorphism group of X is finite, then X is both K-stable and CM-stable.

Inspired by Hilbert-Mumford’s numerical criterion for the stability in the geometric invariant theory ([2]), Tian conjectured that the K-stability and the CM-stability are equivalent. For Fano hypersurfaces in $\mathbb{P}^{n+1}(\mathbb{C})$, this equivalence was proved by Bauer ([1]).

In this talk, we will report on the equivalence of the K-stability and the CM-stability for the general Fano manifolds, that is, if we change slightly the definitions of the K-stability and the CM-stability, then we can prove the following theorem under some assumption.

Theorem 1. Let X be a Fano manifold. Then:

(i) X is K-semistable if and only if X is CM-semistable.
(ii) X is K-stable if and only if X is CM-stable.

REFERENCES

Mathematical Institute, Tohoku University, Sendai 980-8578, Japan
E-mail address: nakagawa@math.tohoku.ac.jp