
STABILITY, INTEGRAL INVARIANTS AND
CANONICAL KÄHLER METRICS

AKITO FUTAKI

Abstract. In this expository article we will summarize recent results on sta-
bility and Kähler manifolds of constant scalar curvature. We will see among

other things that there is a family of integral invariants which includes ob-

structions to the existence of Kähler metrics of harmonic Chern forms and
obstructions to asymptotic Chow semistability.

1. Introduction

In this expository article we discuss on the relationship between the existence of
canonical Kähler metrics on compact Kähler manifolds and stability in the sense of
geometric invariant theory. Typical canonical Kähler metrics are Kähler-Einstein
metrics. As is well-known the existence of Kähler-Einstein metrics was proved by
Aubin [1] and Yau [31] in the negative first Chern class case and by Yau [31] in
the zero first Chern class case. On the other hand there are obstructions to the
existence of Kähler-Einstein metrics in the positive case which are described in
terms of the complex Lie algebra of all holomorphic vector fields ([23], [13]). These
results are extended to obstructions to the existence of Kähler metrics of constant
scalar curvature. More recently new types of obstructions, which are unrelated
to the Lie algebra of holomorphic vector fields, are proved to exist. Tian [30]
first introduced a notion called K-stability considering the degeneration of Fano
manifolds to normal varieties and using an integral invariant by Ding and Tian
[6] which generalizes the author’s invariant for non-singular Fano varieties to the
normal varieties. Then Donaldson proved in [8] that the existence of constant scalar
curvature metrics on a polarized manifold implies the asymptotic Chow stability of
the manifold when there are no nontrivial holomorphic vector fields.

In view of these two works of Tian and Donaldson it is reasonable to expect
that the stability would be the right answer to the problem of finding an intrinsic
condition for the existence of canonical Kähler metrics. In [9] Donaldson re-defines
the notion of K-stability by considering degenerations to non-normal varieties, and
conjectures that the existence of a constant scalar curvature Kähler metric on a
polarized manifold would be equivalent to the K-stability of the polarized mani-
fold. In this article we will see the relationship between the existence of constant
scalar curvature metrics and various notions of stability when the Lie algebra of
holomorphic vector fields is nontrivial. In fact in such a case there are aspects
where we can see clearly the relationship between the existence of constant scalar
curvature metrics and stability. This article consists of three parts. The first part
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(section 2) is written based on the author’s paper [15] in which we see that there
is a family of integral invariants which includes obstructions for a Kähler class to
contain a Kähler metric of harmonic Chern form and also obstructions for a polar-
ized manifold to be asymptotically Chow semistable. The second part (section 3) is
based on papers by Fujiki [12], Donaldson [7] and Wang [32] in which they set up a
moment map in an infinite dimensional setting and the zero set corresponds to the
set of Kähler metrics of constant scalar curvature. Recall that for a Hamiltonian
action of a compact group K on a compact Kähler manifold, having a zero of the
moment map along the orbit of the complexified group Kc-action is equivalent to
the stability of the orbit of the reductive group Kc (c.f. [11], section 6.5). We
see in this setting that the obstructions related to holomorphic vector fields can be
obtained by formally applying some simple results on finite dimensional moment
maps. The third part (section 4) is based on the papers of Ross and Thomas ([27],
[28]) in which they compare the K-stability, Chow stability and Hilbert stability,
and introduce a notion called slope stability.

2. Integral invariants and asymptotic Chow semistability

A Kähler metric g = (gij̄) is said to be an extremal Kähler metric if the (1,0)-part
of the gradient vector field

grad1,0σ =
m∑

i,j=1

gij̄ ∂σ

∂zj̄

∂

∂zi

of the scalar curvature σ is a holomorphic vector field. Such a metric is a critical
point of the functional

g 7→
∫

M

|σ|2dVg

on the space of metrics in a fixed Kähler class. If the scalar curvature σ is constant
then its gradient vector field is 0. Therefore a Kähler metric of constant scalar
curvature is an extremal Kähler metric. A Kähler-Einstein metric is a Kähler
metric whose Ricci curvature

Rij̄ = − ∂2

∂zi∂zj
log det g,

is proportional to g. Thus for some constant k

(1) Rij̄ = kgij̄ .

Such a metric has constant scalar curvature, and of course is a special case of
extremal Kähler metric. On the other hand, since the Ricci form

ρg =
i

2π

m∑

i=1

Rij̄dzi ∧ dz̄j

represents the first Chern class c1(M) as a de Rham class, according as the sign of
k in (1) is positive, zero or negative, c1(M) is represented by a positive definite,
zero or negative definite (1.1)-form. Such situations are expressed by saying that
c1(M) > 0, c1(M) = 0 or c1(M) < 0. Namely in order for M to admit a Kähler-
Einstein metric one of these three conditions has to hold. As is mentioned in the
introduction the remaining case to be solved is the positive case.

2



As is indicated in the variational formulation of extremal Kähler metrics we fix
a de Rham class [ω0] of a fixed Kähler form ω0. Choose any Kähler form ω ∈ [ω0].
Denote by h(M) the complex Lie algebra of all holomorphic vector fields, and put

h0(M) = {X ∈ h(M) |X has a zero}.
Then it is well-known that for X ∈ h0(M) there is a smooth complex valued function
uX uniquely up to a constant such that

i(X)ω = −∂uX .

In this sense h0(M) coincides with the set of all holomorphic Hamiltonian vector
fields. We may normalize uX so that

(2)
∫

M

uX ωm = 0.

Let PG → M be a holomorphic principal bundle where a complex Lie G acts
from the right as the structure group and a complex Lie group H acts from the left
as bundle maps commuting with the action of G. Therefore H also acts on M as
biholomorphic automorphisms.

Let θ be a type (1, 0)-connection of the principal bundle PG. This means that
the connection form in PG is type (1, 0). Typical examples of such connections
are those of the frame bundles of Hermitian holomorphic vector bundles, say of
rank m. Recall that for a holomorphic vector bundle with an Hermitian metric
there is a unique metric connection compatible with the holomorphic structure, i.e.
a connection whose (0, 1)-part is the canonical ∂-operator. The connection form
of such a canonical connection is expressed in terms of a holomorphic frame by a
type (1, 0)-form. In the associated frame bundle, which is a holomorphic principal
GL(m,C)-bundle, the connection form is expressed as Maurer-Cartan form of the
fiber plus the type (1, 0) connection form of the base, being a type (1, 0)-form on
the total space.

Returning to the general principal bundle PG, let Θ be its curvature form of θ.
An element X in the Lie algebra h of H defines a G-invariant vector field on PG.
By the abuse of notation we will denote it by the same letter X. Let Ip(G) be set
of all G-invariant polynomials on g of degree p. For any φ ∈ Ip(G) with p ≥ m we
define fφ by

fφ(X) =
∫

M

φ(θ(X) + Θ).

Then it is not difficult to see fφ is independent of the choice of type (1, 0)-connection
θ. From this one sees that fφ defines an element of Ip−m(H). This is one way of
expressing the equivariant cohomology.

Let us consider the special case where G = GL(m,C) and PG is a frame bundle
of the holomorphic tangent bundle of the complex manifold M , and where H is a
subgroup of the automorphism group of M . Then I∗(G) is generated by the i-th
elementary symmetric functions ci of eigenvalues.

Now we introduce a larger family of integral invariants, c.f. [15]. This is closely
related to the asymptotic Chow semistability. For φ ∈ Ik(G) we put

Fφ(X) = (m− k + 1)
∫

M

φ(Θ) ∧ uX ωm−k

+
∫

M

φ(θ(X) + Θ) ∧ ωm−k+1,(3)
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where θ is any type (1, 0)-connection of PG and Θ its curvature form.

Theorem 2.1 ([15]). Fφ(X) is independent of the choice of ω ∈ [ω0] and type
(1, 0)-connection θ.

This family of integral invariants includes obstruction to the existence of Kähler
metrics with harmonic Chern forms obtained by S. Bando [2]. Let M be a compact
Kähler manifold and [ω0] an arbitrary Kähler class. For any Kähler form ω ∈ [ω0]
let ck(ω) be its k-th Chern form, and Hck(ω) the harmonic part of ck(ω). Then
there is a (k − 1, k − 1)-form Fk such that

ck(ω)−Hck(ω) =
i

2π
∂∂Fk.

We define fk : h(M) → C by

fk(X) =
∫

M

LXFk ∧ ωm−k+1.

Then fk is independent of the choice of ω ∈ [ω0], and becomes a Lie algebra
character. If there exits an ω ∈ [ω0] such that ck(ω) is a harmonic (k, k)-form with
respect to ω, then we have a Kähler form with Fk = 0. Thence we have fk = 0.
Namely fk obstructs the existence of Kähler form in [ω0] with harmonic k-th Chern
form. In the case when k = 1, being a Kähler metric with harmonic first Chern
form is equivalent to being Kähler metric of constant scalar curvature (this follows
from the Biachi identity). Therefore f1 obstructs the existence of Kähler metrics
in [ω0] of constant scalar curvature.

When PG is the frame bundle of the holomorphic tangent bundle of M and θ is
the Levi-Civita connection with respect to the Kähler form ω then we claim that

Fck
(X) = (m− k + 1)fk(X).

This is because the second term on the right hand side of (3) vanishes for φ = ck.
The first term of (3) coincides with fk(X) because Hck(ω)∧ωm−k is harmonic and
coincides with the volume form ωm/m! up to a constant multiple so that we can
use equation (2). The vanishing of the second term is somewhat nontrivial. The
proof can be done using the fact that θ(X) is conjugate to L(X) = LX −∇X which
is equal to ∇X = ∇grad1,0u for some smooth function u and then the fact that we
take determinant both for fiber indices and base indices in

∫

M

cp(θ(X),

p−1︷ ︸︸ ︷
Θ, · · · ,Θ) ∧ ωm−p+1

=
∫

M

cm(

m−p︷ ︸︸ ︷
ω ⊗ I, · · · , ω ⊗ I, ω ⊗ L(X),

p−1︷ ︸︸ ︷
Θ, · · · ,Θ),

so that we get from this symmetry

RHS =
∫

M

cm(ω ⊗ I, · · · , ω ⊗ I, i∂∂u⊗ I,Θ, · · · ,Θ)

= −
∫

M

∂cm(ω ⊗ I, · · · , ω ⊗ I, i∂u⊗ I,Θ, · · · ,Θ)

= 0.

Let us now see that FTd` with 1 ≤ ` ≤ m give obstructions to asymptotic Chow
semistability where Td` denotes the `-th Todd polynomial. Geometric invariant
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theory says that if one wishes to form a moduli space with good property such as
Hausdorff property and compactifiability one has to collect only semistable ones
([24]). The definitions of stability and semistability are as follows. Let V be a
vector space. (Typically the vector space of homogeneous polynomials of degree
d with n + 1 variables with coefficients in C. These describe the hypersurfaces of
degree d in Pn(C).) Let G be a subgroup of SL(V ). An element x ∈ V is said to be
stable if Gx is closed and the stabilizer of x is a finite subgroup of G. An element
x ∈ V is said to be semistable if the closure of Gx does not contain the origin o.

Let L → M be an ample line bundle. Put Vk := H0(M, Lk)∗ and let Φ|Lk| :
M → P(Vk) be the Kodaira embedding determined by Lk. Let d be the degree
of M in P(Vk). A point in the product P(V ∗

k ) × · · · × P(V ∗
k ) of m + 1 copies of

P(V ∗
k ) determines m + 1 hyperplanes H1, · · · ,Hm+1 in P(Vk). The set of all m + 1

hyperplanes H1, · · · ,Hm+1 such that H1 ∩ · · · ∩ Hm+1 ∩ M is not empty defines
a divisor in P(V ∗

k ) × · · · × P(V ∗
k ). But since the degree of M is d, this divisor is

defined by M̂k ∈ (Symd(Vk))⊗m+1. Of course M̂k is defined up to a constant. The
point [M̂k] ∈ P((Symd(Vk))⊗m+1) is called the Chow point of (M, Lk). M is said
to be Chow stable with respect to Lk if M̂k is stable under the action of SL(Vk)
on (Symd(Vk))⊗m+1. M is said to be asymptotically Chow stable with respect to
L if there exists a k0 > 0 such that M̂k is stable for all k ≥ k0. Asymptotic Chow
semistability is defined similarly. The stabilizer Ĝk ⊂ SL(Vk) of M̂k is a finite
covering of a subgroup Gk of the automorphism group Aut(M) of M . If we denote
by Aut(M, L) the subgroup of Aut(M) consisting of the elements which lift to an
action on L, then Gk is a subgroup of Aut(M, L).

Suppose that a holomorphic vector field X is so chosen that it generates a one-
parameter subgroup C∗ in Aut(M, L), and a lifting of the C∗-action on L is chosen.
This means that a normalization of the Hamiltonian function uX is given, with the
average not being necessarily zero. Note that the lifting of the C∗-action on L is
not unique, and a different choice of the lifting gives rise to a normalization of the
Hamiltonian function with an integer’s difference [16]. Put dk = dimH0(M, Lk),
let wk be the weight of the C∗-action on ∧dkH0(M, Lk). Then by the equivariant
Riemann-Roch theorem wk is equal to the degree 1 term in t of the integral of the
following (c.f. [9]):

ek(ω+tuX)Td(tL(X) + Θ) =
∞∑

p=0

kp

p!
(ω + tuX)p

∞∑
q=0

Td(q)(tL(X) + Θ).

Here Td(q) denotes the q-th Todd polynomial and L(X) = ∇X−LX . By expressing
this degree 1 term explicitly we get

(4) wk =
m+1∑
p=0

kp

p!

∫

M

(ωp ∧ Td(m−p+1)(L(X) + Θ) + pωp−1 ∧ uX Td(m−p+1)(Θ)).

First of all, from [17] one sees

(5)
∫

M

Td(m+1)(L(X) + Θ) = 0.

Hence the term p = 0 in (4) vanishes.
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Next, if (M, L) is asymptotically semistable then a suitable lift X̃ of X to L
induces a subgroup C∗ in SL(H0(M, Lk)) for all k at once, and moreover

(6) fcm+1
1

(X̃) = 0,

see [15] for the detail. This means that for a Kähler form ω ∈ c1(L) if we choose a
connection θ of the associated bundle PC∗ of L so that its Chern form is equal to
ω and put uX = θ(X̃) then we have

(7)
∫

M

uXωm = 0.

Namely (6) is equivalent to choosing the normalization of uX so that its average is
0. Thus the term with p = m + 1 in (4) also vanishes.

As we mentioned above the C∗-action induces a subgroup of SL(H0(M, Lk)),
which means wk = 0 for all k all at once. Combining (5) and (7) with this we get
the following.

Theorem 2.2 ([15]). If (M, L) is asymptotically Chow semistable, then for 1 ≤
` ≤ m we have

(8) FTd(`)(X) = 0.

The case ` = 1 implies the vanishing of f1.

Note in passing that under the assumption that Aut(M, L) is discrete, Donaldson
[8] obtained the following results. The Kähler form of the Fubini-Study metric of
P(Vk) is denoted by ωFS .

(a) Suppose that Aut(M, L) is discrete and that M is asymptotically Chow
stable. If the sequence of Kähler forms ωk := 2π

k Φ∗|Lk|(ωFS) belonging in
c1(L) converges in C∞ to ω∞, then ω∞ has constant scalar curvature.

(b) Suppose that Aut(M, L) is discrete and that ω∞ ∈ 2πc1(L) has constant
scalar curvature. Then M is asymptotically Chow stable with respect to L,
and ωk converges in C∞ to ω∞.

(c) Suppose that Aut(M, L) is discrete. Then a Kähler metric of constant scalar
curvature in 2πc1(L) is unique.

Donaldson quoted (and probably was inspired by) a result of Luo [18] who proved
that the balanced condition of the projective imbedding of the polarized manifold
implies the Hilbert stability, so Donaldson stated his results in terms of Hilbert
stability. However the balanced condition is equivalent to Chow stability when
there are no non-zero holomorphic vector fields as was indicated in Zhang [33] or
Phong-Sturm [26], and moreover Chow stability implies Hilbert stability as is seen
in section 4 below.

The case where Aut(M, L) is not discrete is treated by T. Mabuchi in [19], [20],
[21].

3. Symplectic geometry and scalar curvature

The results of this section are due to X. Wang [32], but some statements and
proofs are modified a bit to the author’s taste.

Let (Z, Ω) be a Kähler manifold and suppose a compact Lie group K acts on
Z as holomorphic isometries. Then the complexification Kc of K also acts on Z
as biholomorphisms. The actions of K and Kc induce homomorphisms of the Lie
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algebras k and kc to the real Lie algebra Γ(TZ) of all smooth vector fields on Z,
both of which we denote by ρ. If ξ + iη ∈ kc with ξ, η ∈ k, then

ρ(ξ + iη) = ρ(ξ) + Jρ(η),

where J is the complex structure of Z. Suppose [Ω] is an integral class and there is
a holomorphic line bundle L → Z with c1(L) = [Ω]. There is an Hermitian metric
h of L−1 such that its Hermitian connection θ satisfies

− 1
2π

dθ = Ω.

Suppose we have a lifting of Kc to L−1, so that we have a moment map µ : Z → k∗

because the lifting of K-action to L is equivalent to defining a moment map (see
[11], section 6.5). Let π : L−1 → Z be the projection and π(p) = x with p ∈
L−1 − zero section, x ∈ Z. Denote by Γ = Kc · x the Kc-orbit of x in Z, and
Γ̃ = Kc ·p be the Kc-orbit of p in L−1. We say that x ∈ Z is polystable with respect
to the Kc-action if the orbit Γ̃ is closed in L−1. Consider the function h : Γ̃ → R
defined by

h(γ) = log |γ|2.
Fundamental facts are

• h has a critical point if and only if the moment map µ : Z → k∗ has a zero
along Γ:

• h is a convex function.
For these facts refer again to [11], section 6.5. These imply the following two
propositions.

Proposition 3.1. A point x ∈ Z is polystable with respect to the action of Kc if
and only if the moment map µ has a zero along Γ.

Proposition 3.2. The set {x ∈ Γ | µ(x) = 0} has only one component, and the
orbit Stab(x)c ·x of the complexification of the stabilizer at x through x is connected
even if Stab(x)c is not connected.

For a given x ∈ Z we extend µ(x) : k → R complex linearly to µ(x) : kc → C. For
notational convenience we denote by Kx (resp. (Kc)x) the stabilizer of x in K (resp.
Kc), and by kx and (kc)x the Lie algebra of Kx and (Kc)x. Define fx : (kc)x → C
to be the restriction of µ(x) : kc → C to (kc)x. Note that (Kc)gx = g(Kc)xg−1.

Proposition 3.3 (Wang [32]). Fix x0 ∈ Z. Then for x ∈ Kc · x0, fx is Kc-
equivariant in that fgx(Y ) = fx(Ad(g−1)Y ). In particular if fx vanishes at some
x ∈ Kc · x0 it vanishes at all x ∈ Kc · x0. Moreover fx : (kc)x → C is a Lie algebra
character.

Proof. The point of the first statement is that, although µ is just K-equivariant but
not Kc-equivariant, µ is Kc-equivariant when restricted to the stabilizer subalgebras
along the orbit. Write Y ∈ (kc)x as Y = ξ1 + iξ2. Then ρ(ξ1)x + Jρ(ξ2)x = 0. It is
sufficient to show at x

(ρ(η1) + Jρ(η2)) < µ, ξ1 + iξ2 >=< µ,−[η1 + iη2, ξ1 + iξ2] > .

Using the K-equivariance of µ, J-invariance of ω and ρ(ξ1)x +Jρ(ξ2)x = 0 one sees
that the left hand side is

LHS = ω(ρ(ξ1), ρ(η1)) + ω(ρ(ξ1), Jρ(η2)) + iω(ρ(ξ2), ρ(η1)) + iω(ρ(ξ2), Jρ(η2))
= ω(ρ(ξ1), ρ(η1))− ω(ρ(ξ2), ρ(η2)) + iω(ρ(ξ2), ρ(η1)) + iω(ρ(ξ1), ρ(η2)).
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On the other hand the right hand side is

RHS = < µ,−[η1, ξ1] + [η2, ξ2]− i[η1, ξ2]− i[η2, ξ1] >

= ω(ρ(ξ1), ρ(η1))− ω(ρ(ξ2), ρ(η2)) + iω(ρ(ξ2), ρ(η1)) + iω(ρ(ξ1), ρ(η2)).

This completes the proof of Kc-equivariance. This in particular implies that fx is
(Kc)x-invariant, and that fx is a character of (kc)x. ¤

Suppose we are given a K-invariant inner product on k. Then we can identify
k ∼= k∗, and k∗ has a K-invariant inner product. Consider the function φ : Kc ·x0 →
R defined by φ(x) = |µ(x)|2. We say that x ∈ Kc · x0 is an extremal point if x is a
critical point of φ.

Proposition 3.4 (Wang [32]). Let x ∈ Kc ·x0 be an extremal point. Then we have
a decoposition

(kc)x = (kx)c ⊕
∑

λ>0

kc
λ

where kc
λ is λ-eigenspace of ad(iµ(x)), and iµ(x) lies in the center of (kx)c. In

particular (kx)c = (kc)x if and only if µ(x) = 0.

Proof. First of all if x is an extremal point and {xt} is a curve in Kc · x0 with
x(0) = x then

0 =
d

dt
φ(xt)|t=0 = < ẋtµ, µ > (x)

= ω(ρ(µ(x)), ẋ) = g(Jρ(µ(x)), ẋ).

Taking ẋ(0) = ρ(iµ(x)) shows that µ(x) ∈ kx. Thus ad(iµ(x)) : kc → kc preserves
the subspace (kc)x. Since kc has a K- invariant Hermitian inner product, ad(iµ(x)) :
kc → kc and its restriction to (kc)x are self-adjoint. Hence all the eigenvalues
of ad(iµ(x)) are real numbers. Let X = ξ + iη ∈ (kc)x be an eigenvector with
eigenvalue λ. We claim that

λ‖X‖ = 2‖ρ(η)x‖.
To see this let < ·, · > be the Hermitian inner product anti-C-linear in the first
factor and C-linear in the second factor. Then

λ < X, X > = < ad(iµ(x))X, X >=< ad(µ(x)),−iX >

= < µ(x),−[X, iX] >

= ((ρ(ξ)− iρ(η)) < µ, iX >)(x)
= g(iJρ(ξ)− Jρ(η), ρ(ξ)− iρ(η))x.(9)

But since X ∈ (kc)x we have ρ(X)x = ρ(ξ)x + Jρ(η)x = 0. Thus

(9) = g(iρ(η)− Jρ(η),−Jρ(η)− iρ(η))x

= 2g(ρ(η), ρ(η))x.

This shows that λ ≥ 0. Equality holds if and only if the real and the imaginary
parts of X are in kx. Thus the zero eigenspace is the complexification (kx)c of kx.
This completes the proof of Proposition 3.4.

¤
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Let (M, ω0, J0) be a compact Kähler manifold with a fixed Kähler form ω0. De-
note by Z the set of all ω-compatible integral complex structures J with respect to
which (M, ω0, J) is a Kähler manifold. Then the tangent space of Z at J is the space
of smooth symmetric (2, 0)-tensors Sym2(T ∗1,0), and the natural L2-inner product
gives a Kähler structure on Z. Let k be the Lie algebra consisting of all smooth
functions with average 0 with respect to the measure ωm/m! endowed with the
Poisson bracket with respect to ω. Let K be the corresponding Lie group, namely
the group of symplectomorphisms generated by Hamiltonian diffeomorphisms.

Theorem 3.5 (Fujiki [12], Donaldson [7]). The map µ : Z → k∗ given by

< µ(J), f >=
∫

M

SJfωm

with SJ the scalar curvature of (M, ω, J) is a moment map for the action of K.

In this infinite dimensional setting there is no action of the complexification Kc.
But there is an action of the complexification at the Lie algebra level. This gives a
foliation in Z. The leaves consist of (ω0, J)’s which correspond by Moser’s theorem
to (ω, J0)’s with [ω] = [ω0].

Now we apply Proposition 3.2, 3.3 and 3.4 to Z formally. Then Proposition
3.2 gives the uniqueness of Kähler metrics of constant scalar curvature modulo the
action of the automorphism group and the fact that K-energy is bounded from below
and is attained on the space of Kähler forms of constant scalar curvature, since h
corresponds to the K-energy (c.f. [29]). Detailed analysis has been carried out by
[3], [21, 22], [10], [5]. Proposition 3.3 gives the character f1 above. Proposition 3.4
gives Calabi-Lichnerowicz-Matsushima theorem ([4]). Thus the standard results
on Kähler metrics of constant scalar curvature can be seen in the framework of
stability in the infinite dimensional moment map picture. These observations are
due to Wang [32] (and also indicated implicitly by Donaldson [7]).

4. K stability

In [30] Tian defined the notion of K-stability for Fano manifolds and proved that
if a Fano manifold carries a Kähler-Einstein metric then M is weakly K-stable.
Tian’s K-stability considers the degenerations of M to normal varieties and uses a
generalized version of the invariant f1 defined by Ding and Tian ([6]). Note that
this generalized invariant is only defined for normal varieties.

Further Donaldson re-defined in [9] the invariant f1 for general polarized vari-
eties (or even projective schemes) and also re-defined the notion of K-stability for
(M, L). The new definition does not require M to be Fano nor the central fibers
of degenerations to be normal. We now briefly review Donaldson’s definition of K
stability.

Let Λ → N be an ample line bundle over an n-dimensional projective scheme.
We assume that a C∗-action as bundle isomorphisms of Λ covering the C∗-action
on N .

For any positive integer k, there is an induced C∗ action on Wk = H0(N, Λk).
Put dk = dim Wk and let wk be the weight of C∗-action on ∧dkWk. By the Riemann-
Roch and the equivariant Riemann-Roch theorems dk and wk are polynomials in k
of degree n and n + 1 respectively. Therefore wk/kdk is bounded from above as k
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tends to infinity. For sufficiently large k we expand
wk

kdk
= F0 + F1k

−1 + F2k
−2 + · · · .

For an ample line bundle L over a projective variety M , a test configuration of
degree r consists of the following.
(1) A family of schemes π : M→ C:
(2) C∗-action on M covering the usual C∗-action on C:
(3) C∗-equivariant line bundle L →M such that

• for t 6= 0 one has Mt = π−1(t) ∼= M and (Mt,L|Mt
) ∼= (M.Lr),

• the Hilbert polynomial
∑n

p=0(−1)p dimHp(Mt, L
r
t ) does not depend on t,

in particular for r sufficiently large dimH0(Mt, Lt) = dimH0(M, L) for all
t ∈ C.

C∗-action induces a C∗-action on the central fiber L0 → M0 = π−1(0). Moreover
if (M, L) admits a C∗-action, then one obtains a test configuration by taking the
direct product M × C. This is called a product configuration.

Definition 4.1. (M, L) is said to be K-stable if the F1 of the central fiber (M0, L0)
is greater than or equal to 0 for all test configurations, and the equality occurs only
if the test configuration is product.

Conjecture([9]) : A Kähler metric of constant scalar curvature will exist in the
Kähler class c1(L) if and only if (M, L) is K stable.

Now we come back to the property of F1. The motivation for the Conjecture
is the following lemma. Recall that Λ was an ample line bundle with C∗-action
over a projective scheme N and that F1 was defined for (N, Λ). Suppose that N
is nonsingular algebraic variety and take any Kähler form ω in c1(Λ). Denote by ρ
and σ the Ricci form and the scalar curvature of ω respectively.

Lemma 4.2 ([9]). If N is a nonsingular projective variety then

F1 =
−1

2vol(N, ω)
f1(X)

where X is the infinitesimal generator of the C∗-action and f1 is the integral in-
variant defined in section 2.

Proof. Let us denote by n the complex dimension of N . Expand h0(Λk) and w(k)
as

h0(Λk) = a0k
n + a1k

n−1 + · · · ,

w(k) = b0k
n+1 + b1k

n + · · · .

Then by the Riemann-Roch and the equivariant Riemann-Roch formulae

a0 =
1
n!

∫

N

c1(Λ)n = vol(N),

a1 =
1

2(n− 1)!

∫

N

ρ ∧ c1(Λ)n−1 =
1

2n!

∫

N

σωn,

b0 =
1

(n + 1)!

∫

N

(n + 1)uXωn,

b1 =
1
n!

∫

N

nuXωn−1 ∧ 1
2
c1(N) +

1
n!

∫

N

div X ωn.
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The last term of the previous integral is zero because of the divergence formula.
Thus

w(k)
kh0(k)

=
b0

a0
(1 + (

b1

b0
− a1

a0
)k−1 + · · · )

from which we have

F1 =
b0

a0
(
b1

b0
− a1

a0
) =

1
a2
0

(a0b1 − a1b0)

=
1

2vol(N)

∫

N

uX(σ − 1
vol(N)

∫

N

σ
ωn

n!
)
ωn

n!

=
1

2vol(N)

∫

N

uX∆F
ωn

n!
=

−1
2vol(N)

∫

N

XF
ωn

n!

=
−1

2vol(N)
f1(X)

¤

Let V be a vector space over C and ρ a one parameter subgroup of SL(V ). Let
[v] ∈ P(V ) and λ ∈ C∗. Suppose [ρ(λ)v] → [v0] ∈ P(V ) as λ → 0. Then we
have an endomorphism ρ(λ) : Cv0 → Cv0. The weight of this endomorphism is
called Mumford weight of (v, ρ) and is denoted by µ(v, ρ). We say that [v] ∈ P(V )
is semistable (resp. stable) with respect to ρ iff µ(v, ρ) ≤ 0 (resp. µ(v, ρ) < 0).
We also say that [v] ∈ P(V ) is polystable iff µ(v, ρ) < 0 or ρ(C∗) is contained in
Stab(v). The Hilbert-Mumford criterion says that [v] ∈ P(V ) is semistable (resp.
polystable) with respect to a subgroup G of SL(V ) iff [v] ∈ P(V ) is semistable
(resp. polystable) with respect to arbitrary one parameter subgroup of G.

Let us define Hilbert stability of a polarized variety (M, L). Suppose Lr is a very
ample line bundle with hi(Lr) = 0 for i > 0. Then h(r) := h0(Lr) can be computed
by Riemann-Roch theorem. If we fix an isomorphism H0(Lr) ∼= Ch(r) this gives
an embedding Φ|Lr| : M → Ph(r)−1. A different choice of the isomorphism gives a
transformation by an element of SL(h(r)). When k is sufficiently large we have an
exact sequence

0 → Ik → SkH0
M (Lr) → H0

M (Lkr) → 0,

where Ik denotes the set of all polynomials of degree k vanishing along the image
of M . The k-th Hilbert point of (M, Lr) is the point in the Grassmannian

xk,r ∈ G = G(SkCh(r)∗;h(rk))

determined by the identification H0
M (Lr) ∼= Ch(r).

We say that (M.L) is Hilbert (semi)stable with respect to r iff the image of

xr,k ∈ G of the Plücker embedding G → P(h(r)+k−1
h(rk) ) is (semi)stable for all large k.

Fact 4.3 (c.f. [24], Proposition 2.1). Let L be a very ample line bundle with
hi(L) = 0 for i > 0, and ρ a one parameter subgroup of SL(h0(L)). Let w̃ be the
Mumford weight of the Hilbert point xk ∈ G(SkCh0(L)∗;h(k)) with respect to ρ, and
e be the Mumford weight of the Chow point of (M, L) with respect to ρ. Then we
have

w̃(k) = Cekm+1 + O(km)

with positive constant C.
11



This says if e < 0 then w̃(k) < 0 for large k, namely Chow stability implies
Hilbert stability. If w̃(k) ≤ 0 for all k, then e ≤ 0, namely Hilbert semistable
implies Chow semistable.

Now let w̃(r, k) be the Mumford weight of xr,k. We wish to express this in
terms of w(r) which was the weight for H0(Lr) of the one parameter group ρ in
SL(h0(L)). As ρ lies in SL(h0(L)) we have to renormalize the one parameter group
so that in lies in SL(h0(Lr)). After this renormalization we find by putting s = rk

w̃(r, k) = −w(s) +
w(r)
rh(r)

sh(s)

= sh(s)(
w(r)
rh(r)

− w(s)
rh(s)

)

= sh(s)(F1(r−1 − s−1) + O(r−2 − s−2)).

Theorem 4.4 ([27], [28]). If we put w̃(r, k) = 1
rh(r)

∑m+1
i,j=0 ai,jr

i+jkj then

(a) am+1,m+1 = 0:
(b) The Chow weight er of (M, Lr) is given by er = Crm

h(r)

∑m
i=0 ai,m+1r

i with a
positive constant C:

(c) am,m+1 and F1 have the same sign.

This result says that if er ≤ 0 for all large r then F1 ≤ 0, namely that asymptotic
Chow semistability implies K-semistability.

Next we turn to the slope stability. Let Y be a closed subscheme of M . Let M
be the blow-up of M ×C along Y ×{0}, and P be the exceptional divisor. Denote
by π : M → M × C → M the composition of the projections. Consider the line
bundle Lc = π∗L− cP . Suppose Lc is ample. In fact this is the case if c is less than
the Seshadri constant of Y , see Proposition 6.7, [27]. Consider the action C∗-action
on M ×C sending (x, t) to (x, zt) by z ∈ C∗. This action naturally lifts to Lc. We
may consider this test configuration. It turns out that the condition of K-stability
can be written in terms of Y , L and c. To express this let x be a positive rational
number with 0 < x < c and take large k with kx ∈ Z. Let Ixk

Y Lk be the sheaf of
sections L vanishing along Y to order xk. Expand h0(Ixk

Y Lk) as

h0(Ixk
Y Lk) = a0(x)kn + a1(x)kn−1 + O(kn−2).

Define the slope of Y by

µ(IY ) = µ(IY , L, c) =

∫ c

0
(a1(x) + a′0(x)

2 )dx∫ c

0
a0(x)dx

.

We also put

µ(M) =
a1

a0
.

This corresponds to the slope for the empty scheme. The K-stability for the above
test configuration is equivalent to

µ(IY ) < µ(M).

(M, L) is said to be slope stable iff µ(IY ) < µ(M) for every subscheme Y . In
conclusion, the K-stability implies the slope stability. It might be possible to find
a connection to the multiplier ideal sheaves invented by Nadel [25].
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