数理談話会

日時: 2018年3月10(土) 13:00-14:00 
会場: 数理科学研究科棟(駒場) 大講義室号室

講演者

二木昭人 氏 (東京大学大学院数理科学研究科)


講演題目

K安定性と幾何学的非線形問題 (JAPANESE)



講演概要

K安定性は代数幾何における幾何学的不変式論(GIT)の安定性として定式化されたものであるが,アイデアの端緒は Kazdan-Warner が見出したある非線形偏微分方程式の可解性の障害にある.この非線形問題は微分幾何学的に表現すると,2次元単位球面に滑らかな関数 k を任意に与えたとき,計量 g に適当な正の関数 f をかけて得られる計量 fg が k をガウス曲率になるように,f を決めることができるか,という問題である.これは Nirenberg の問題と呼ばれ,現時点でも完全な答えは得られていない.2次元球面を1次元複素射影空間とみなし,更に Fano 多様体の特別な場合とみなして,Fano 多様体の GIT 安定性として定式化したのは Gang Tian であり(1997),さらに一般の偏極多様体に一般化したのは Simon K. Donaldson である(2002).GIT 安定性はモーメント写像を用いた描像があり,有限次元シンプレクティック幾何の形式的議論が,非線形偏微分方程式を解くにあたっての関数空間における無限次元シンプレクティック幾何的な議論の適切な方向を探る指針を与える.Fano 多様体においては,K安定性がモンジュ・アンペール方程式の可解性と同値であり,従ってケーラー・アインシュタイン計量の存在と同値であることが2012年頃,Chen-Donaldson-Sun と Tian によって証明された.モーメント写像を用いた描像を用いると,他の色々な非線形問題においても同じパターンで,K安定性と可解性の同値性を証明する問題として定式化される.