The Gauss-Bonnet type formulas for surfaces with singular points

Masaaki Umehara (Osaka University)

最近の筆者と

- 佐治健太郎氏(岐阜大),
- •山田光太郎氏(東工大)

との共同研究に関連した内容.

1. Gaussian curvature K

Figure 1. (Surfaces of $K<0\ {\rm and}\ K>0$)

 $L_p(r)$ = the length of the good. circle of radius r at p

$$K(p) = \lim_{r \to 0} \frac{3}{\pi} \left(\frac{2\pi r - L_p(r)}{r^3} \right).$$

2. The Gauss-Bonnet formula (local version)

 $\angle A + \angle B + \angle C < \pi \quad (\text{if } K < 0), \\ \angle A + \angle B + \angle C > \pi \quad (\text{if } K > 0).$

3. The Gauss-Bonnet formula (global version) Polygonal division of closed surfaces.

(The Gauss-Bonnet formula)

(3.1)
$$\int_{M^2} K dA = 2\pi \chi(M^2),$$

where

$$\chi(M^2) = V - E + F$$

is the Euler number of the surface M^2 .

4. PARALLEL SURFACES

An immersion

$$f = f(u, v) : (U; u, v) \to \mathbf{R}^3 \qquad (U \subset \mathbf{R}^2),$$

the unit normal vector $\nu(u, v) := \frac{f_u(u, v) \times f_v(u, v)}{|f_u(u, v) \times f_v(u, v)|}.$
For each real number t ,

$$f^t(u,v) = f(u,v) + t\nu(u,v)$$

is called a **parallel surface** of f.

p is a singular pt of $f^t \iff (f^t)_u(p) \times (f^t)_v(p) = 0.$

FIGURE 2. a cuspidal edge and a swallowtail

Cuspidal edges and **swallowtails** are generic singular points appeared on parallel surfaces.

$$f_C = (u^2, u^3, v), \quad f_S = (3u^4 + u^2v, 4u^3 + 2uv, v).$$

An ellipsoid:

Parallel surfaces of the ellipsoid are given as follows:

FIGURE 3. the cases of t = 0 and t = 1.2

FIGURE 4. the cases of t = 2 and t = 3.2

FIGURE 5. Surfaces of K < 0 and K > 0

The image of cuspidal edges consists of regular curves in \mathbb{R}^3 . We denote it by $\gamma(s)$, where s is the arclength parameter.

FIGURE 6. a (-)-cuspidal edge and a (+)-cuspidal edge

the singular curvature $\kappa_s(s) = \varepsilon(s)$ (geodesic curvature) = $\varepsilon(s) |\det(\nu(s), \gamma'(s), \gamma''(s))|$

where

$$\varepsilon(s) = \begin{cases} 1 & \text{(if the surface is bounded by a plane at } \gamma(s)), \\ -1 & \text{(otherwise).} \end{cases}$$

6. Generic cuspidal edges

A generic cuspidal edge:

the osculating plane \neq the tangent plane. In this case, $K \rightarrow \pm \infty$ at the same time. Saji-Yamada-U. [7]

 $K \ge 0 \implies \kappa_s \le 0.$

7. Gauss-Bonnet formula of surfaces with singularity

 M^2 ; a compact oriented 2-manifold $f: M^2 \to \mathbf{R}^3$; a C^{∞} -map

having only cuspidal edges and swalowtails $\nu: M^2 \to S^2$; the unit normal vector field . (U; u, v); a (+)-oriented local coordinate M^2 . the area density function $\lambda := \det(f_u, f_v, \nu)$ $\lambda(p) = 0 \iff p$ is a singular point area element $dA := |\lambda| du \wedge dv$, signed area element $d\hat{A} := \lambda du \wedge dv$. 8. Two Gauss-Bonnet formulas

FIGURE 7. a positive swallowtail

Formulas given by Kossowski(02) and Langevin-Levitt-Rosenberg(95)

$$\int_{M^2 \setminus \Sigma_f} K dA + 2 \int_{\Sigma_f} \kappa_s ds = 2\pi \chi(M^2),$$

$$2 \deg(\nu) = \frac{1}{2\pi} \int_{M^2 \setminus \Sigma_f} K d\hat{A}$$

= $\chi(M_+) - \chi(M_-) + \# SW_+ - \# SW_-,$

$$M_{+} := \{ p \in M^{2} ; \, dA_{p} = d\hat{A}_{p} \},\$$
$$M_{-} := \{ p \in M^{2} ; \, dA_{p} = -d\hat{A}_{p} \}.$$

9. SINGULAR POINTS OF A MAP BETWEEN 2-MANIFOLDS Maps between planes

$$\mathbf{R}^2 \ni (u, v) \mapsto f(u, v) = (x(u, v), y(u, v)) \in \mathbf{R}^2,$$

Singular points of $f \iff \det \begin{pmatrix} x_u(u, v) & x_v(u, v) \\ y_u(u, v) & y_v(u, v) \end{pmatrix} = 0.$

Generic singular points

a fold $\mathbf{R}^2 \ni (u, v) \longmapsto (u^2, v) \in \mathbf{R}^2$,

the singular set u = 0, f(0, v) = (0, v)

a cusp $\mathbf{R}^2 \ni (u, v) \longmapsto (uv + v^3, u) \in \mathbf{R}^2$,

the singular set $u = -3v^2$, $f(-3v^2, v) = (-2v^3, -3v^2)$

FIGURE 8. a fold and a cusp

14

FIGURE 10. a cusp and a swallowtail

10. Singularities of Gauss maps

 M^2 :an oriented compact manifold . $f: M^2 \to \mathbf{R}^3$, an immersion . Singular points of $\nu: M^2 \to S^2 \iff K_f = 0$. $f_t = \frac{1}{t}(f + t\nu), \quad t \in \mathbf{R}$.

Then

$$\lim_{t \to \infty} f_t = \nu,$$

$$2 \deg(\nu) = \chi(M_+^t) - \chi(M_-^t) + \#SW_+^t - \#SW_-^t.$$

In particular,

$$2\deg(\nu) = \chi(M^2) = \chi(M^t_+) + \chi(M^t_-).$$

Hence,

$$2\chi(M_{-}^{t}) = \#SW_{+}^{t} - \#SW_{-}^{t}.$$

Taking the limit $t \to \infty$, we have that

$$2\chi(M_{-}^{\infty}) = \#SW_{+}^{\infty} - \#SW_{-}^{\infty}.$$

The Gauss map ν satisfies

$$2\chi(M_{-}^{\infty}) = \#SW_{+}^{\infty} - \#SW_{-}^{\infty}.$$

If $t \to \infty$, then the cuspidal edge collapses to a fold, and a swallowtail collapses to a cusp. In particular,

$$#SW^{\infty}_{+} := #\{(+) \text{-cusps of } \nu\}, \\ #SW^{\infty}_{-} := #\{(-) \text{-cusps of } \nu\}.$$

Since $d\hat{A}_{\nu} = K_f dA_f$, $dA_{\nu} = |K_f| dA_f$, it holds that $M^{\infty}_{-} = \{ p \in M^2 ; K_f(p) < 0 \}.$

Thus (the Bleecker and Wilson formula [1])

 $2\chi(\{K_f < 0\}) = \#$ positive cusps - #negative cusps.

FIGURE 11. a symmetric torus and its perturbation

A deformation of the rotationally symmetric torus

$$f^{a}(u,v) = (\cos v(2 + \varepsilon(v) \cos u), \\ \sin v(2 + \varepsilon(v) \cos u), \ \varepsilon(v) \sin u),$$

where

$$\varepsilon(v) := 1 + a\cos v.$$

a=0 : the original torus $a=4/5 \mbox{:} \quad \chi(\{K<0\})=1 \mbox{ .}$

FIGURE 12. A parallel surface of $f^{4/5}$

11. A SIMILAR APPLICATION

The following identity holds for $f_t:M^2\to {\bf R}^3$.

$$\int_{M^2 \setminus \Sigma_{f_t}} K_t dA_t + 2 \int_{\Sigma_{f_t}} \kappa_s ds = 2\pi \chi(M^2).$$

Taking $t \to \infty$, we have that (Saji-Yamada-U. [10])

$$\frac{1}{2\pi} \int_{\{K<0\}} K_f dA_f = \int_{\Sigma_{\nu}} \kappa_s ds,$$

where

$$\kappa_s := \text{the singular curvature of } \nu$$
$$= \pm \text{the geodesic curvature of } \nu$$
$$\begin{cases}> 0 \quad \text{if } \nu'' \text{ points Im}(\nu), \\< 0 \quad \text{otherwise.} \end{cases}$$

To prove the formula, we apply

$$K_{\nu}d\hat{A}_{\nu} = KdA_{\nu}, \qquad K_{\nu}A_{\nu} = |K_f|dA_f.$$

The intrinsic formulation of wave fronts (Saji-Yamada-U. [10]) The definition $(E, \langle , \rangle, D, \varphi)$ of coherent tangent bundle on M^n :

- (1) E is a vector bundle of rank n over M^n ,
- (2) E has a inner product \langle , \rangle ,
- (3) D is a metric connection of (E, \langle , \rangle) ,
- (4) $\varphi \colon TM^n \to E$ is a bundle homomorphism s.t.

$$D_X\varphi(Y)-D_Y\varphi(X)=\varphi([X,Y]),$$

where X, Y are vector fields on M^n .

The pull-back of the metric $\langle \ , \ \rangle$

$$ds^2_{\varphi} := \varphi^* \left< \;,\; \right>$$

is called the **first fundamental form** of φ .

 $p \in M^n; \varphi$ -singular point $\iff \operatorname{Ker}(\varphi_p: T_p M^n \to E_p) \neq \{0\}.$

coherent tangent bundle = generalized Riemannian manifold

When (M^n, g) is a Riemannian manifold, then

$$E = TM^n$$
, $\langle, \rangle := g$, $D = \nabla^g$, $\varphi = id$.

If $f: M^2 \to \mathbf{R}^3$ is a wave front, then

 $E = \nu^{\perp}, \ \langle, \rangle := g_{\mathbf{R}^3}, \ D = \nabla^T, \ \varphi = df, \ (\psi = d\nu).$

 M^2 ; a compact oriented 2-manifold,

 $(E,\langle,\rangle\,,D,\varphi);$ an orientable coherent tangent bundle,

$$\exists \mu \in Sec(E^* \wedge E^* \setminus \{0\})$$

such that $\mu(e_1, e_2) = 1$ for (+)-frame $\{e_1, e_2\}$.

The intrinsic definition of the singular curvature

$$\kappa_s := \operatorname{sgn}(d\lambda(\eta(t))) \frac{\mu(D_{\gamma'} n(t), \varphi(\gamma'))}{|\varphi(\gamma')|^3},$$

where $n(t) \in E_{\gamma(t)}$ is the unit vector perpendicular to $\varphi(\gamma')$ on E. (u, v); a (+)-local coordinate on M^2

$$d\hat{A} = \lambda du \wedge dv, \qquad dA = |\lambda| du \wedge dv,$$
$$\lambda := \mu \left(\varphi(\frac{\partial}{\partial u}), \varphi(\frac{\partial}{\partial v}) \right).$$

$$(\chi_E =) \frac{1}{2\pi} \int_{M^2} K d\hat{A} = \chi(M_+) - \chi(M_-) + SW_+ - SW_-,$$
$$\int_{M^2} K dA + 2 \int_{\Sigma_{\varphi}} \kappa_s d\tau = 2\pi \chi(M^2).$$

where

 $\Sigma_{\varphi}; \varphi$ -singular set,

 $p \in \Sigma_{\varphi}$ is non-degenerate $\Leftrightarrow d\lambda(p) \neq 0$,

 $p \in \Sigma_{\varphi}; A_2$ -pt (intrinsic cuspidal edge) $\Leftrightarrow \eta \pitchfork \gamma'(0)$ at p,

 $p \in \Sigma_{\varphi}; A_3$ -pt (intrinsic swallowtail) $\Leftrightarrow \det(\eta, \gamma') = 0$ and $\det(\eta, \gamma')' = 0$ at p.

Examples of coherent tangent bundle:

(1) Wave fronts as a hypersurface of Riem. manifold, (2) Smooth maps between n-manifolds.

 M^n ; an orientable manifold , (N^n, g) ; an orientable Riemannian manifold , $f: M^n \to (N^n, g)$; C^{∞} -map, $E_f := f^*TN^n$, $\langle , \rangle := g|_{E_f}$, D; induced connection.

$$\varphi := df : TM^n \longrightarrow E_f := f^*TN^n,$$

FIGURE 13. a fold and a cuspidal edge

FIGURE 14. a cusp and a swallowtail

An application of the intrinsic G-B formula $f: M^2 \to \mathbf{R}^3$; a strictly convex surface, $\xi: M^2 \to \mathbf{R}^3$; the affine normal map. $\nabla_X Y = D_X Y + h(X, Y)\xi,$ $D_X \xi = -\alpha(X),$ where $\alpha: TM^2 \to TM^2$. We set $M_-^2 := \{p \in M^2; \det(\alpha_p) < 0\},$ then (Saji-Yamada-U. [9]) $2\chi(M_-^2) = \#SW_+(\xi) - \#SW_-(\xi).$

References

- [1] D. Bleecker and L. Wilson, Stability of Gauss maps, Illinois J. of Math. 22 (1978) 279–289.
- [2] M. Kossowski, The Boy-Gauss-Bonnet theorems for C[∞]-singular surfaces with limiting tangent bundle, Annals of Global Analysis and Geometry 21 (2002), 19–29.
- [3] M. Kokubu, W. Rossman, K. Saji, M. Umehara and K. Yamada, Singularities of flat fronts in hyperbolic 3-space, Pacific J. Math. 221 (2005), 303–351.
- [4] R. Langevin, G. Levitt and H. Rosenberg, Classes d'homotopie de surfaces avec rebroussements et queues d'aronde dans ℝ³, Canad. J. Math. 47 (1995), 544–572.
- [5] K. Saji, Criteria for singularities of smooth maps from the plane into the plane and their applications, preprint.
- [6] K. Saji, M. Umehara and K. Yamada, Behavior of corank one singular points on wave fronts, Kyushu Journal of Mathematics 62 (2008), 259–280.
- [7] K. Saji, M. Umehara and K. Yamada, Geometry of fronts, Ann. of Math. 169 (2009), 491-529.
- [8] K. Saji, M. Umehara and K. Yamada, A_k singularities of wave fronts, Mathematical Proceedings of the Cambridge Philosophical Society, 146 (2009), 731-746.
- [9] K. Saji, M. Umehara and K. Yamada, Singularities of Blaschke normal maps of convex surfaces, C.R. Acad. Sxi. Paris. Ser. I 348 (2010), 665-668.
- [10] K. Saji, M. Umehara and K. Yamada, The intrinsic duality on wave fronts, preprint, arXiv:0910.3456.
- [11] 梅原雅顕, 特異点をもつ曲線と曲面の幾何学, 慶應大学数理科学セミナー・ノート 38 (2009). (書店マテマティカ Tel 03-3816-3724, fax: 03-3816-3717) から直接購入可.)
- [12] 梅原雅顕・山田光太郎, 曲線と曲面, 一微分幾何的アプローチ—, 裳華房 (2002).