トポロジー火曜セミナー

過去の記録 ~10/22次回の予定今後の予定 10/23~

開催情報 火曜日 17:00~18:30 数理科学研究科棟(駒場) 056号室
担当者 河野 俊丈, 河澄 響矢, 北山 貴裕, 逆井卓也
セミナーURL http://faculty.ms.u-tokyo.ac.jp/~topology/index.html
備考 Tea: 16:30 - 17:00 コモンルーム

今後の予定

2018年10月23日(火)

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
François Fillastre 氏 (Université de Cergy-Pontoise)
Co-Minkowski space and hyperbolic surfaces (ENGLISH)
[ 講演概要 ]
There are many ways to parametrize two copies of Teichmueller space by constant curvature -1 Riemannian or Lorentzian 3d manifolds (for example the Bers double uniformization theorem). We present the co-Minkowski space (or half-pipe space), which is a constant curvature -1 degenerated 3d space, and which is related to the tangent space of Teichmueller space. As an illustration, we give a new proof of a theorem of Thurston saying that, once the space of measured geodesic laminations on a compact hyperbolic surface is identified with the tangent space of Teichmueller space via infinitesimal earthquake, then the length of laminations is an asymmetric norm. Joint work with Thierry Barbot (Avignon).

2018年10月30日(火)

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
志賀 啓成 氏 (東京工業大学)
The quasiconformal equivalence of Riemann surfaces and a universality of Schottky spaces (JAPANESE)
[ 講演概要 ]
In the theory of Teichmüller space of Riemann surfaces, we consider the set of Riemann surfaces which are quasiconformally equivalent. For topologically finite Riemann surfaces, it is quite easy to examine if they are quasiconformally equivalent or not. On the other hand, for Riemann surfaces of topologically infinite type, the situation is rather complicated.

In this talk, after constructing an example which shows the complexity of the problem, we give some geometric conditions for Riemann surfaces to be quasiconformally equivalent. Our argument enables us to see a universality of Schottky spaces.

2018年11月06日(火)

17:30-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 17:00-17:30
尾國 新一 氏 (愛媛大学)
Coarsely convex spaces and a coarse Cartan-Hadamard theorem (JAPANESE)
[ 講演概要 ]
A coarse version of negatively-curved spaces have been very well studied as Gromov hyperbolic spaces. Recently we introduced a coarse version of non-positively curved spaces, named them coarsely convex spaces and showed a coarse version of the Cartan-Hadamard theorem for such spaces in a joint-work with Tomohiro Fukaya (arXiv:1705.05588). Based on the work, I introduce coarsely convex spaces and explain a coarse Cartan-Hadamard theorem, ideas for proof and its applications to differential topology.

2018年11月08日(木)

10:30-12:00   数理科学研究科棟(駒場) 056号室
開催日,時刻にご注意下さい
Michael Heusener 氏 (Université Clermont Auvergne)
Deformations of diagonal representations of knot groups into $\mathrm{SL}(n,\mathbb{C})$ (ENGLISH)
[ 講演概要 ]
This is joint work with Leila Ben Abdelghani, Monastir (Tunisia).

Given a manifold $M$, the variety of representations of $\pi_1(M)$ into $\mathrm{SL}(2,\mathbb{C})$ and the variety of characters of such representations both contain information of the topology of $M$. Since the foundational work of W.P. Thurston and Culler & Shalen, the varieties of $\mathrm{SL}(2,\mathbb{C})$-characters have been extensively studied. This is specially interesting for $3$-dimensional manifolds, where the fundamental group and the geometrical properties of the manifold are strongly related.

However, much less is known of the character varieties for other groups, notably for $\mathrm{SL}(n,\mathbb{C})$ with $n\geq 3$. The $\mathrm{SL}(n,\mathbb{C})$-character varieties for free groups have been studied by S. Lawton and P. Will, and the $\mathrm{SL}(3,\mathbb{C})$-character variety of torus knot groups has been determined by V. Munoz and J. Porti.

In this talk I will present some results concerning the deformations of diagonal representations of knot groups in basic notations and some recent results concerning the representation and character varieties of $3$-manifold groups and in particular knot groups. In particular, we are interested in the local structure of the $\mathrm{SL}(n,\mathbb{C})$-representation variety at the diagonal representation.