## Seminar information archive

Seminar information archive ～08/18｜Today's seminar 08/19 | Future seminars 08/20～

#### Classical Analysis

10:40-11:40 Room #056 (Graduate School of Math. Sci. Bldg.)

Integral transformations on the Heun equation and its applications (JAPANESE)

**Kouichi Takemura**(Chuo University)Integral transformations on the Heun equation and its applications (JAPANESE)

#### Classical Analysis

13:00-14:00 Room #056 (Graduate School of Math. Sci. Bldg.)

Weyl group symmetries of double confluent Heun equations (JAPANESE)

**Kazuki Hiroe**(University of Tokyo)Weyl group symmetries of double confluent Heun equations (JAPANESE)

#### Classical Analysis

14:10-15:10 Room #056 (Graduate School of Math. Sci. Bldg.)

Affine root systems, monodromy preserving deformation, and hypergeometric functions (JAPANESE)

**Takao Suzuki**(Kobe University)Affine root systems, monodromy preserving deformation, and hypergeometric functions (JAPANESE)

#### Classical Analysis

15:30-16:30 Room #056 (Graduate School of Math. Sci. Bldg.)

On the uniformization equations which have singularities along discriminant of complex reflection groups of rank three (JAPANESE)

**Jiro Sekiguchi**(Tokyo University of Agriculture and Technology)On the uniformization equations which have singularities along discriminant of complex reflection groups of rank three (JAPANESE)

### 2010/12/03

#### GCOE Seminars

11:00-12:00 Room #270 (Graduate School of Math. Sci. Bldg.)

Discrete Integrability and Consistency-Around-the-Cube (CAC) (ENGLISH)

**Jarmo Hietarinta**(University of Turku)Discrete Integrability and Consistency-Around-the-Cube (CAC) (ENGLISH)

[ Abstract ]

For integrable lattice equations we can still apply many integrability criteria that are regularly used for continuous systems, but there are also some that are specific for discrete systems. One particularly successful discrete integrability criterion is the multidimensional consistency, or CAC. We review the classic results of Nijhoff and of Adler-Bobenko-Suris and then present some extensions.

For integrable lattice equations we can still apply many integrability criteria that are regularly used for continuous systems, but there are also some that are specific for discrete systems. One particularly successful discrete integrability criterion is the multidimensional consistency, or CAC. We review the classic results of Nijhoff and of Adler-Bobenko-Suris and then present some extensions.

#### GCOE Seminars

13:30-14:30 Room #370 (Graduate School of Math. Sci. Bldg.)

Geometric asymptotics of the first Painleve equation (ENGLISH)

**Nalini Joshi**(University of Sydney)Geometric asymptotics of the first Painleve equation (ENGLISH)

[ Abstract ]

I will report on my recent collaboration with Hans Duistermaat on the geometry of the space of initial values of the first Painleve equation, which was first constructed by Okamoto. We show that highly accurate information about solutions can be found by utilizing the regularized and compactified space of initial values in Boutroux's coordinates. I will also describe numerical explorations based on this work obtained in collaboration with Holger Dullin.

I will report on my recent collaboration with Hans Duistermaat on the geometry of the space of initial values of the first Painleve equation, which was first constructed by Okamoto. We show that highly accurate information about solutions can be found by utilizing the regularized and compactified space of initial values in Boutroux's coordinates. I will also describe numerical explorations based on this work obtained in collaboration with Holger Dullin.

#### Classical Analysis

16:30-18:00 Room #056 (Graduate School of Math. Sci. Bldg.)

The third Painlev¥'e equation and quiver varieties (JAPANESE)

**Daisuke Yamakawa**(Kobe University)The third Painlev¥'e equation and quiver varieties (JAPANESE)

### 2010/12/01

#### Number Theory Seminar

16:30-18:45 Room #056 (Graduate School of Math. Sci. Bldg.)

On a problem of Matsumoto and Tamagawa concerning monodromic fullness of hyperbolic curves (JAPANESE)

Galois theory for schemes (ENGLISH)

**Yuichiro Hoshi**(RIMS, Kyoto University) 16:30-17:30On a problem of Matsumoto and Tamagawa concerning monodromic fullness of hyperbolic curves (JAPANESE)

[ Abstract ]

In this talk, we will discuss the following problem posed by Makoto Matsumoto and Akio Tamagawa concerning monodromic fullness of hyperbolic curves.

For a hyperbolic curve X over a number field, are the following three conditions equivalent?

(A) For any prime number l, X is quasi-l-monodromically full.

(B) There exists a prime number l such that X is l-monodromically full.

(C) X is l-monodromically full for all but finitely many prime numbers l.

The property of being (quasi-)monodromically full may be regarded as an analogue for hyperbolic curves of the property of not admitting complex multiplication for elliptic curves, and the above equivalence may be regarded as an analogue for hyperbolic curves of the following result concerning the Galois representation on the Tate module of an elliptic curve over a number field proven by Jean-Pierre Serre.

For an elliptic curve E over a number field, the following four conditions are equivalent:

(0) E does not admit complex multiplication.

(1) For any prime number l, the image of the l-adic Galois representation associated to E is open.

(2) There exists a prime number l such that the l-adic Galois representation associated to E is surjective.

(3) The l-adic Galois representation associated to E is surjective for all but finitely many prime numbers l.

In this talk, I will present some results concerning the above problem in the case where the given hyperbolic curve is of genus zero. In particular, I will give an example of a hyperbolic curve of type (0,4) over a number field which satisfies condition (C) but does not satisfy condition (A).

In this talk, we will discuss the following problem posed by Makoto Matsumoto and Akio Tamagawa concerning monodromic fullness of hyperbolic curves.

For a hyperbolic curve X over a number field, are the following three conditions equivalent?

(A) For any prime number l, X is quasi-l-monodromically full.

(B) There exists a prime number l such that X is l-monodromically full.

(C) X is l-monodromically full for all but finitely many prime numbers l.

The property of being (quasi-)monodromically full may be regarded as an analogue for hyperbolic curves of the property of not admitting complex multiplication for elliptic curves, and the above equivalence may be regarded as an analogue for hyperbolic curves of the following result concerning the Galois representation on the Tate module of an elliptic curve over a number field proven by Jean-Pierre Serre.

For an elliptic curve E over a number field, the following four conditions are equivalent:

(0) E does not admit complex multiplication.

(1) For any prime number l, the image of the l-adic Galois representation associated to E is open.

(2) There exists a prime number l such that the l-adic Galois representation associated to E is surjective.

(3) The l-adic Galois representation associated to E is surjective for all but finitely many prime numbers l.

In this talk, I will present some results concerning the above problem in the case where the given hyperbolic curve is of genus zero. In particular, I will give an example of a hyperbolic curve of type (0,4) over a number field which satisfies condition (C) but does not satisfy condition (A).

**Marco Garuti**(University of Padova) 17:45-18:45Galois theory for schemes (ENGLISH)

[ Abstract ]

We discuss some aspects of finite group scheme actions: the Galois correspondence and the notion of Galois closure.

We discuss some aspects of finite group scheme actions: the Galois correspondence and the notion of Galois closure.

### 2010/11/30

#### Numerical Analysis Seminar

16:30-18:00 Room #002 (Graduate School of Math. Sci. Bldg.)

Finite volume element method for singular solutions of elliptic PDEs

(JAPANESE)

[ Reference URL ]

http://www.infsup.jp/utnas/

**Yasunori Aoki**(University of Waterloo/NII)Finite volume element method for singular solutions of elliptic PDEs

(JAPANESE)

[ Reference URL ]

http://www.infsup.jp/utnas/

#### Tuesday Seminar on Topology

16:30-18:00 Room #056 (Graduate School of Math. Sci. Bldg.)

Pin^-(2)-monopole equations and intersection forms with local coefficients of 4-manifolds (JAPANESE)

**Nobuhiro Nakamura**(The University of Tokyo)Pin^-(2)-monopole equations and intersection forms with local coefficients of 4-manifolds (JAPANESE)

[ Abstract ]

We introduce a variant of the Seiberg-Witten equations, Pin^-(2)-monopole equations, and explain its applications to intersection forms with local coefficients of 4-manifolds.

The first application is an analogue of Froyshov's results on 4-manifolds which have definite forms with local coefficients.

The second one is a local coefficient version of Furuta's 10/8-inequality.

As a corollary, we construct nonsmoothable spin 4-manifolds satisfying Rohlin's theorem and the 10/8-inequality.

We introduce a variant of the Seiberg-Witten equations, Pin^-(2)-monopole equations, and explain its applications to intersection forms with local coefficients of 4-manifolds.

The first application is an analogue of Froyshov's results on 4-manifolds which have definite forms with local coefficients.

The second one is a local coefficient version of Furuta's 10/8-inequality.

As a corollary, we construct nonsmoothable spin 4-manifolds satisfying Rohlin's theorem and the 10/8-inequality.

#### Operator Algebra Seminars

16:30-18:00 Room #122 (Graduate School of Math. Sci. Bldg.)

Noncommutative geometry and Rankin-Cohen brackets (ENGLISH)

**Yi-Jun Yao**(Fudan Univ.)Noncommutative geometry and Rankin-Cohen brackets (ENGLISH)

### 2010/11/29

#### Kavli IPMU Komaba Seminar

16:30-18:00 Room #002 (Graduate School of Math. Sci. Bldg.)

Borcherds products in monstrous moonshine. (ENGLISH)

**Scott Carnahan**(IPMU)Borcherds products in monstrous moonshine. (ENGLISH)

[ Abstract ]

During the 1980s, Koike, Norton, and Zagier independently found an

infinite product expansion for the difference of two modular j-functions

on a product of half planes. Borcherds showed that this product identity

is the Weyl denominator formula for an infinite dimensional Lie algebra

that has an action of the monster simple group by automorphisms, and used

this action to prove the monstrous moonshine conjectures.

I will describe a more general construction that yields an infinite

product identity and an infinite dimensional Lie algebra for each element

of the monster group. The above objects then arise as the special cases

assigned to the identity element. Time permitting, I will attempt to

describe a connection to conformal field theory.

During the 1980s, Koike, Norton, and Zagier independently found an

infinite product expansion for the difference of two modular j-functions

on a product of half planes. Borcherds showed that this product identity

is the Weyl denominator formula for an infinite dimensional Lie algebra

that has an action of the monster simple group by automorphisms, and used

this action to prove the monstrous moonshine conjectures.

I will describe a more general construction that yields an infinite

product identity and an infinite dimensional Lie algebra for each element

of the monster group. The above objects then arise as the special cases

assigned to the identity element. Time permitting, I will attempt to

describe a connection to conformal field theory.

#### Algebraic Geometry Seminar

16:40-18:10 Room #126 (Graduate School of Math. Sci. Bldg.)

K3 surfaces and log del Pezzo surfaces of index three (JAPANESE)

**Hisanori Ohashi**(Nagoya Univ. )K3 surfaces and log del Pezzo surfaces of index three (JAPANESE)

[ Abstract ]

Alexeev and Nikulin have classified log del Pezzo surfaces of index 1 and 2 by using the classification of non-symplectic involutions on K3 surfaces. We want to discuss the generalization of this result to the index 3 cases. In this case we are also able to construct log del Pezzos $Z$ from K3 surfaces $X$, but the converse is not necessarily true. The condition on $Z$ is exactly the "multiple smooth divisor property", which we will define. Our theorem is the classification of log del Pezzo surfaces of index 3 with this property.

The idea of the proof is similar to that of Alexeev and Nikulin, but the methods are different because of the existence of singularities: although the singularity is mild, the description of nef cone by reflection groups cannot be used. Instead

we construct and analyze good elliptic fibrations on K3 surfaces $X$ and use it to obtain the classification. It includes a partial but geometric generalization of the classification of non-symplectic automorphisms of order three, recently done by Artebani, Sarti and Taki.

Alexeev and Nikulin have classified log del Pezzo surfaces of index 1 and 2 by using the classification of non-symplectic involutions on K3 surfaces. We want to discuss the generalization of this result to the index 3 cases. In this case we are also able to construct log del Pezzos $Z$ from K3 surfaces $X$, but the converse is not necessarily true. The condition on $Z$ is exactly the "multiple smooth divisor property", which we will define. Our theorem is the classification of log del Pezzo surfaces of index 3 with this property.

The idea of the proof is similar to that of Alexeev and Nikulin, but the methods are different because of the existence of singularities: although the singularity is mild, the description of nef cone by reflection groups cannot be used. Instead

we construct and analyze good elliptic fibrations on K3 surfaces $X$ and use it to obtain the classification. It includes a partial but geometric generalization of the classification of non-symplectic automorphisms of order three, recently done by Artebani, Sarti and Taki.

### 2010/11/26

#### Kavli IPMU Komaba Seminar

14:40-16:10 Room #002 (Graduate School of Math. Sci. Bldg.)

Hamiltonian torus actions on orbifolds and orbifold-GKM theorem (joint

work with T. Holm) (JAPANESE)

**Tomoo Matsumura**(Cornell University)Hamiltonian torus actions on orbifolds and orbifold-GKM theorem (joint

work with T. Holm) (JAPANESE)

[ Abstract ]

When a symplectic manifold M carries a Hamiltonian torus R action, the

injectivity theorem states that the R-equivariant cohomology of M is a

subring of the one of the fixed points and the GKM theorem allows us

to compute this subring by only using the data of 1-dimensional

orbits. The results in the first part of this talk are a

generalization of this technique to Hamiltonian R actions on orbifolds

and an application to the computation of the equivariant cohomology of

toric orbifolds. In the second part, we will introduce the equivariant

Chen-Ruan cohomology ring which is a symplectic invariant of the

action on the orbifold and explain the injectivity/GKM theorem for this ring.

When a symplectic manifold M carries a Hamiltonian torus R action, the

injectivity theorem states that the R-equivariant cohomology of M is a

subring of the one of the fixed points and the GKM theorem allows us

to compute this subring by only using the data of 1-dimensional

orbits. The results in the first part of this talk are a

generalization of this technique to Hamiltonian R actions on orbifolds

and an application to the computation of the equivariant cohomology of

toric orbifolds. In the second part, we will introduce the equivariant

Chen-Ruan cohomology ring which is a symplectic invariant of the

action on the orbifold and explain the injectivity/GKM theorem for this ring.

### 2010/11/25

#### Operator Algebra Seminars

16:30-18:00 Room #122 (Graduate School of Math. Sci. Bldg.)

Classification of actions of Kac algebras (JAPANESE)

**Reiji Tomatsu**(Tokyo Univ. Science)Classification of actions of Kac algebras (JAPANESE)

### 2010/11/18

#### Operator Algebra Seminars

16:30-18:00 Room #122 (Graduate School of Math. Sci. Bldg.)

Perturbation of dual operator algebras and similarity (ENGLISH)

**Jean Roydor**(Univ. Tokyo)Perturbation of dual operator algebras and similarity (ENGLISH)

### 2010/11/17

#### Number Theory Seminar

16:30-17:30 Room #056 (Graduate School of Math. Sci. Bldg.)

Fast lattice reduction for F_2-linear pseudorandom number generators (JAPANESE)

**Shin Harase**(University of Tokyo)Fast lattice reduction for F_2-linear pseudorandom number generators (JAPANESE)

### 2010/11/16

#### Numerical Analysis Seminar

16:30-18:00 Room #002 (Graduate School of Math. Sci. Bldg.)

On verified evaluation of eigenvalues for elliptic operator over arbitrary polygonal domain (JAPANESE)

[ Reference URL ]

http://www.infsup.jp/utnas/

**Xuefeng Liu**(Waseda University/CREST, JST)On verified evaluation of eigenvalues for elliptic operator over arbitrary polygonal domain (JAPANESE)

[ Reference URL ]

http://www.infsup.jp/utnas/

#### Tuesday Seminar on Topology

16:30-18:00 Room #056 (Graduate School of Math. Sci. Bldg.)

On a colored Khovanov bicomplex (JAPANESE)

**Noboru Ito**(Waseda University)On a colored Khovanov bicomplex (JAPANESE)

[ Abstract ]

We discuss the existence of a bicomplex which is a Khovanov-type

complex associated with categorification of a colored Jones polynomial.

This is an answer to the question proposed by A. Beliakova and S. Wehrli.

Then the second term of the spectral sequence of the bicomplex corresponds

to the Khovanov-type homology group. In this talk, we explain how to define

the bicomplex. If time permits, we also define a colored Rasmussen invariant

by using another spectral sequence of the colored Jones polynomial.

We discuss the existence of a bicomplex which is a Khovanov-type

complex associated with categorification of a colored Jones polynomial.

This is an answer to the question proposed by A. Beliakova and S. Wehrli.

Then the second term of the spectral sequence of the bicomplex corresponds

to the Khovanov-type homology group. In this talk, we explain how to define

the bicomplex. If time permits, we also define a colored Rasmussen invariant

by using another spectral sequence of the colored Jones polynomial.

#### Algebraic Geometry Seminar

16:30-18:00 Room #122 (Graduate School of Math. Sci. Bldg.)

Self-corresponences of K3 surfaces via moduli of sheaves (ENGLISH)

**Viacheslav Nikulin**(Univ Liverpool and Steklov Moscow)Self-corresponences of K3 surfaces via moduli of sheaves (ENGLISH)

[ Abstract ]

In series of our papers with Carlo Madonna (2002--2008) we described self-correspondences via moduli of sheaves with primitive isotropic Mukai vectors for K3 surfaces with Picard number one or two. Here, we give a natural and functorial answer to the same problem for arbitrary Picard number of K3 surfaces. As an application, we characterize in terms of self-correspondences via moduli of sheaves K3 surfaces with reflective Picard lattices, that is when the automorphism group of the lattice is generated by reflections up to finite index. See some details in arXiv:0810.2945.

In series of our papers with Carlo Madonna (2002--2008) we described self-correspondences via moduli of sheaves with primitive isotropic Mukai vectors for K3 surfaces with Picard number one or two. Here, we give a natural and functorial answer to the same problem for arbitrary Picard number of K3 surfaces. As an application, we characterize in terms of self-correspondences via moduli of sheaves K3 surfaces with reflective Picard lattices, that is when the automorphism group of the lattice is generated by reflections up to finite index. See some details in arXiv:0810.2945.

#### Algebraic Geometry Seminar

16:30-18:00 Room #122 (Graduate School of Math. Sci. Bldg.)

Self-corresponences of K3 surfaces via moduli of sheaves (ENGLISH)

**Viacheslav Nikulin**(Univ Liverpool and Steklov Moscow)Self-corresponences of K3 surfaces via moduli of sheaves (ENGLISH)

[ Abstract ]

In series of our papers with Carlo Madonna (2002--2008) we described self-correspondences via moduli of sheaves with primitive isotropic Mukai vectors for K3 surfaces with Picard number one or two. Here, we give a natural and functorial answer to the same problem for arbitrary Picard number of K3 surfaces. As an application, we characterize in terms of self-correspondences via moduli of sheaves K3 surfaces with reflective Picard lattices, that is when the automorphism group of the lattice is generated by reflections up to finite index. See some details in arXiv:0810.2945.

In series of our papers with Carlo Madonna (2002--2008) we described self-correspondences via moduli of sheaves with primitive isotropic Mukai vectors for K3 surfaces with Picard number one or two. Here, we give a natural and functorial answer to the same problem for arbitrary Picard number of K3 surfaces. As an application, we characterize in terms of self-correspondences via moduli of sheaves K3 surfaces with reflective Picard lattices, that is when the automorphism group of the lattice is generated by reflections up to finite index. See some details in arXiv:0810.2945.

#### Tuesday Seminar of Analysis

16:00-18:30 Room #123 (Graduate School of Math. Sci. Bldg.)

Hyperfunctions and vortex sheets (ENGLISH)

Residual trace and equivariant asymptotic trace of Toeplitz operators (ENGLISH)

**Keisuke Uchikoshi**(National Defense Academy of Japan) 16:00-16:45Hyperfunctions and vortex sheets (ENGLISH)

**L. Boutet de Monvel**(University of Paris 6) 17:00-18:30Residual trace and equivariant asymptotic trace of Toeplitz operators (ENGLISH)

### 2010/11/15

#### Seminar on Geometric Complex Analysis

10:30-12:00 Room #128 (Graduate School of Math. Sci. Bldg.)

Excess intersections and residues in improper dimension (JAPANESE)

**Tatsuo Suwa**(Hokkaido Univ*)Excess intersections and residues in improper dimension (JAPANESE)

[ Abstract ]

This talk concerns localization of characteristic classes and associated residues, in the context of intersection theory and residue theory of singular holomorphic foliations. The localization comes from the vanishing of certain characteristic forms, usually caused by the existence of some geometric object, away from the "singular set" of the object. This gives rise to residues in the homology of the singular set and residue theorems relating local and global invariants. In the generic situation, i.e., if the dimension of the singular set is "proper", we have a reasonable understanding of the residues. We indicate how to cope with the problem when the dimension is "excessive" (partly a joint work with F. Bracci).

This talk concerns localization of characteristic classes and associated residues, in the context of intersection theory and residue theory of singular holomorphic foliations. The localization comes from the vanishing of certain characteristic forms, usually caused by the existence of some geometric object, away from the "singular set" of the object. This gives rise to residues in the homology of the singular set and residue theorems relating local and global invariants. In the generic situation, i.e., if the dimension of the singular set is "proper", we have a reasonable understanding of the residues. We indicate how to cope with the problem when the dimension is "excessive" (partly a joint work with F. Bracci).

#### Algebraic Geometry Seminar

16:40-18:10 Room #126 (Graduate School of Math. Sci. Bldg.)

Generators of tropical modules (JAPANESE)

**Shuhei Yoshitomi**(Univ. of Tokyo)Generators of tropical modules (JAPANESE)

### 2010/11/09

#### Tuesday Seminar on Topology

17:00-18:00 Room #056 (Graduate School of Math. Sci. Bldg.)

Characterising bumping points on deformation spaces of Kleinian groups (JAPANESE)

**Ken'ichi Ohshika**(Osaka University)Characterising bumping points on deformation spaces of Kleinian groups (JAPANESE)

[ Abstract ]

It is known that components of the interior of a deformation space of a Kleinian group can bump, and a component of the interior can bump itself, on the boundary of the deformation space.

Anderson-Canary-McCullogh gave a necessary and sufficient condition for two components to bump.

In this talk, I shall give a criterion for points on the boundary to be bumping points.

It is known that components of the interior of a deformation space of a Kleinian group can bump, and a component of the interior can bump itself, on the boundary of the deformation space.

Anderson-Canary-McCullogh gave a necessary and sufficient condition for two components to bump.

In this talk, I shall give a criterion for points on the boundary to be bumping points.

< Previous 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 Next >