Seminar information archive

Seminar information archive ~02/17Today's seminar 02/18 | Future seminars 02/19~

2007/01/16

Tuesday Seminar on Topology

16:30-18:30   Room #056 (Graduate School of Math. Sci. Bldg.)
笹平 裕史 (東京大学大学院数理科学研究科) 16:30-17:30
An $SO(3)$-version of $2$-torsion instanton invariants
[ Abstract ]
We construct invariants for simply connected, non-spin $4$-manifolds using torsion cohomology classes of moduli spaces of ASD connections on $SO(3)$-bundles. The invariants are $SO(3)$-version of Fintushel-Stern's $2$-torsion instanton invariants. We show that this $SO(3)$-torsion invariant of $2CP^2 \\# -CP^2$ is non-trivial, while it is known that any invariants of $2CP^2 \\# - CP^2$ coming from the Seiberg-Witten theory are trivial
since $2CP^2 \\# -CP^2$ has a positive scalar curvature metric.
山口 祥司 (東京大学大学院数理科学研究科) 17:30-18:30
On the non-acyclic Reidemeister torsion for knots
[ Abstract ]
The Reidemeister torsion is an invariant of a CW-complex and a representation of its fundamental group. We consider the Reidemeister torsion for a knot exterior in a homology three sphere and a representation given by the composition of an SL(2, C)- (or SU(2)-) representation of the knot group and the adjoint action to the Lie algebra.
We will see that this invariant is expressed by the differential coefficient of the twisted Alexander invariant of the knot and investigate some properties of the invariant by using this relation.

Lectures

16:30-18:00   Room #122 (Graduate School of Math. Sci. Bldg.)
Mourad Bellassoued (Faculte des Sciences de Bizerte)
Recovering a potential from partial Cauchy data for the Schrödinger equation.

2007/01/15

Seminar on Geometric Complex Analysis

10:30-12:00   Room #128 (Graduate School of Math. Sci. Bldg.)
竹内 潔 (筑波大学数理物質科学研究科)
Lagragian constructions for various topological invariants of algebraic varieties (東大数理、松井優氏との共同研究)

Lectures

16:30-18:00   Room #122 (Graduate School of Math. Sci. Bldg.)
Mourad Bellassoued (Faculte des Sciences de Bizerte)
Recovering a potential from full Cauchy data for the Schrödinger equation.
[ Abstract ]
In this lectures we survey recent progress on the problem of determining a potential by measuring the Dirichlet to Neumann map
for the associated Schr\\"odinger equation or wave equation. We make emphasis on the new results obtained with M.Yamamoto which is concerned with the case that the measurements are made on a strict
subset of the boundary for the wave equation.

Lectures

16:00-17:30   Room #056 (Graduate School of Math. Sci. Bldg.)
Antonio DeSimone (SISSA (International School for Advanced Studies))
Analysis of physical systems involving multiple spatial scales: some case studies
[ Abstract ]
Variational methods have recently proved to be a powerful tool in deriving macroscopic models for phenomena whose physics is decided at the sub-miccron scale.
We will use two case studies to illustrate this point, namely, that of liquid crystal elastomers and that of superhydrophobic surfaces.

Liquid crystal elastomers are solids which combine the optical properties of liquid crystals with the mechanical properties of rubbery solids. They display phase transformations, material instabilities, and microstructures in a way simalr to shape-memory alloys.

The richness of the underlying material symmetries makes the mathematical analysis of this system particularly rewarding. Recent progress, ranging from analytical relaxation results to numerical simulations of the macroscopic mechanical response will be reviewed.

2007/01/12

Colloquium

16:30-17:30   Room #123 (Graduate School of Math. Sci. Bldg.)
鳥海光弘 (東京大学・大学院新領域創成科学研究科)
地球変動にまつわるおかしな現象、2題
1、プレート境界で砂と泥に起こる雪だるま現象
2、プレート境界地震は確率共鳴か
[ Abstract ]
地球科学における興味ある現象2題‐巨大固液混合体はどのように振舞うか。
最近の固体地球科学の大きな関心はプレート境界付近における固体・流体混合物質の挙動と境界型地震破壊やすべり運動、火山活動などとの関係である。プレート境界は地球上でもっとも活動的な部分であり、地球表層部分と地球内部とのエネルギー交換や物質交換が最も多く行われる部分でもある。とくに日本海溝や伊豆マリアナ海溝、南海トラフ、琉球海溝などの沈み込み境界部付近の地震波探査、電磁気探査、ボーリング掘削、などの研究がんたくさんの新しい事実を描き出している。
今回興味ある話として紹介するのは、プレート沈み込み境界では、海溝底で堆積した砂泥層が海洋プレートに乗ってプレート境界に引きずり込まれ、排水する過程で砂と泥に分離し、巨大な砂の塊が泥の層の中に分散する現象である。この現象の数理は砂が水を保持して流動化する過程と、プレート境界に持ち込まれた含水地質体が長期にわたりせん断変形を受ける過程で、砂の部分が次第に雪だるま状に衝突・合体する過程で示され、歪により巨大化する砂の塊は数キロに達することもありえる。こうして出来るプレート境界の構造は、大きさ分布がべき的になる砂の塊が境界に沿って拡がった泥の層内にクラスター上に分布するパターンを形成するだう。こうした構造形成はプレート境界部の力学特性を決めているだろう。
第2の話題はプレート境界における破壊の確率共鳴というテーマである、最近の研究ではプレート境界において発生する中小規模の地震はrepeating earthquakesまたはsimilar earthquakesとも呼ばれ、同一場所で繰り返しおこるせん断クラックである。そのサイズは0.01‐1km程度である。一方、巨大地震はこれに比べて大きく100kmx10km以上の破壊面をもつ。しかしこの巨大さにもかかわらず、やはり同一箇所が繰り返し破壊し、これをアスペリティと呼んでいる。一方、こうしたアスペリティの周囲は非アスペリティとよばれ、ゆっくりと滑っていて、流体を保持した岩石が分布し、低密度となっている。問題は大小の規模の破壊がどのような関係にあるのかという古典的なテーマである。プレート境界面上のいろいろな大きさのアスペリティが互いに重ならないであり続けているのか、もしくは互いに重なっているのかは重大である。観測的には巨大地震の破壊面は他の小さい破壊面と重なっている。つまり、境界面では、中小の多数のアスペリティが確率的に活動していて、巨大破壊の時にはそれらのアスペリティが一斉に動き出すということであろう。今回の話題提供ではこうした現象を確率共鳴として考えてみよう。

2007/01/11

Lectures

16:00-17:30   Room #123 (Graduate School of Math. Sci. Bldg.)
Oleg Yu. Emanouilov (Colorado State University)
Some Problems of Global Controllability of Burgers Equation and Navier-Stokes system.

2007/01/10

Lectures

16:00-17:30   Room #118 (Graduate School of Math. Sci. Bldg.)
Oleg Yu. Emanouilov (Colorado State University)
Some Problems of Global Controllability of Burgers Equation and Navier-Stokes system.

2007/01/09

Lectures

16:00-17:30   Room #118 (Graduate School of Math. Sci. Bldg.)
Oleg Yu. Emanouilov (Colorado State University)
Some Problems of Global Controllability of Burgers Equation and Navier-Stokes system.
[ Abstract ]
We show that 1-D Burgers equation is globally uncontrollable with control acting at two endpoints. Then we establish the global controllability of the 2-D Burgers equation. Finally we show that for 2-D Navier-Stokes system the problem of global exact controllability is solvable for the dense set of the initial data with a control acting on part of the boundary.

2006/12/28

Operator Algebra Seminars

16:30-18:00   Room #126 (Graduate School of Math. Sci. Bldg.)
Roberto Longo (University of Rome)
Operator Algebras and Conformal Field Theory II

2006/12/25

Monthly Seminar on Arithmetic of Automorphic Forms

13:30-16:00   Room #123 (Graduate School of Math. Sci. Bldg.)
研究集会の情報 (なし)
なし
[ Abstract ]
秋から、少しお休みしていますので、替わりにまとめて集会をします。
12月25日午後から27日午後3時くらいまでです。詳細はURL:
http://www.ms.u-tokyo.ac.jp/activity/meeting061225.htm
をご覧下さい。織田孝幸

2006/12/21

Seminar for Mathematical Past of Asia

17:00-18:30   Room #123 (Graduate School of Math. Sci. Bldg.)
楠葉隆徳 (大阪経済大学人間科学部)
インド数学における証明
[ Reference URL ]
http://www.ms.u-tokyo.ac.jp/~kawazumi/asia.html

Applied Analysis

16:00-17:30   Room #056 (Graduate School of Math. Sci. Bldg.)
Susan Friedlander (University of Illinois-Chicago)
An Inviscid Dyadic Model For Turbulence
[ Abstract ]
We discuss properties of a GOY type model for the inviscid fluid equations. We prove that the forced system has a unique equilibrium which a an exponential global attractor. Every solution blows up in H^5/6 in finite time . After this time, all solutions stay in H^s, s<5/6, and "turbulent" dissipation occurs. Onsager's conjecture is confirmed for the model system.

This is joint work with Alexey Cheskidov and Natasa Pavlovic.

Operator Algebra Seminars

14:45-18:00   Room #126 (Graduate School of Math. Sci. Bldg.)
Benoit Collins (Univ. Claude Bernard Lyon 1) 14:45-16:15
Convergence of unitary matrix integrals and free probability
Roberto Longo (University of Rome) 16:30-18:00
Operator Algebras and Conformal Field Theory

2006/12/20

Number Theory Seminar

16:30-18:45   Room #117 (Graduate School of Math. Sci. Bldg.)
Anna Cadoret (RIMS/JSPS) 16:30-17:30
On the profinite regular inverse Galois problem
[ Abstract ]
Given a field $k$ and a (pro)finite group $G$, consider the
following weak version of the regular inverse Galois problem:
(WRIGP/$G$/$k$) \\textit{there exists a smooth geometrically
irreducible curve $X_{G}/k$ and a Galois extension $E/k(X_{G})$
regular over $k$ with group $G$.} (the regular inverse Galois
problem (RIGP/$G$/$k$) corresponding to the case
$X_{G}=\\mathbb{P}^{1}_{k}$). A standard descent argument shows that
for a finite group $G$ the (WRIGP/$G$/$k$) can be deduced from the
(RIGP/$G$/$k((T))$). For
profinite groups $G$, the (WRIGP/$G$/$k((T))$) has been proved for
lots of fields (including the cyclotomic closure of characteristic $0$
fields) but the descent argument no longer works.\\\\
\\indent Let $p\\geq 2$ be a prime, then a profinite group
$G$ is said to be \\textit{$p$-obstructed} if it fits in a profinite group extension
$$1\\rightarrow K\\rightarrow G\\rightarrow G_{0}\\rightarrow 1$$
with $G_{0}$ a finite group and $K\\twoheadrightarrow
\\mathbb{Z}_{p}$. Typical examples of such profinite groups $G$ are
universal $p$-Frattini covers of finite $p$-perfect groups or
pronilpotent projective groups.\\\\
\\indent I will show that the (WRIGP/$G$/$k$) - even under
its weaker formulation: (WWRIGP/$G$/$k$) \\textit{there exists a
smooth geometrically irreducible curve $X_{G}/k$ and a Galois
extension $E/k(X_{G}).\\overline{k}$ with group $G$ and field of
moduli $k$.} - fails for the whole class of $p$-obstructed profinite
groups $G$ and any field $k$ which is either a finitely generated
field of characteristic $0$ or a finite field of characteristic
$\\not= p$.\\\\
\\indent The proof uses a profinite generalization of the cohomological obstruction
for a G-cover to be defined over its field of moduli and an analysis of the constrainsts
imposed on a smooth geometrically irreducible curve $X$ by a degree $p^{n}$
cyclic G-cover $X_{n}\\rightarrow X$, constrainsts which are too rigid to allow the
existence of projective systems $(X_{n}\\rightarrow
X_{G})_{n\\geq 0}$ of degree $p^{n}$ cyclic G-covers
defined over $k$. I will also discuss other implicsations of these constrainsts
for the (RIGP).
Eric Friedlander (Northwestern) 17:45-18:45
An elementary perspective on modular representation theory

2006/12/19

Tuesday Seminar on Topology

16:30-18:30   Room #056 (Graduate School of Math. Sci. Bldg.)
境 圭一 (東京大学大学院数理科学研究科) 16:30-17:30
Poisson structures on the homology of the spaces of knots
[ Abstract ]
We study the homological properties of the space $K$ of (framed) long knots in $\\R^n$, $n>3$, in particular its Poisson algebra structures.
We had known two kinds of Poisson structures, both of which are based on the action of little disks operad. One definition is via the action on the space $K$. Another comes from the action of chains of little disks on the Hochschild complex of an operad, which appears as $E^1$-term of certain spectral sequence converging to $H_* (K)$. The main result is that these two Poisson structures are the same.
We compute the first non-trivial example of the Poisson bracket. We show that this gives a first example of the homology class of $K$ which does not directly correspond to any chord diagrams.
吉田 享平 (東京大学大学院数理科学研究科) 17:30-18:30
On projections of pseudo-ribbon sphere-links
[ Abstract ]
Suppose $F$ is an embedded closed surface in $R^4$.
We call $F$ a pseudo-ribbon surface link
if its projection is an immersion of $F$ into $R^3$
whose self-intersection set $\\Gamma(F)$ consists of disjointly embedded circles.
H. Aiso classified pseudo-ribbon sphere-knots ($F$ is a sphere.)
when $\\Gamma(F)$ consists of less than 6 circles.
We classify pseudo-ribbon sphere-links
when $F$ is two spheres and $\\Gamma(F)$ consists of less than 7 circles.

2006/12/18

Seminar on Geometric Complex Analysis

10:30-12:00   Room #128 (Graduate School of Math. Sci. Bldg.)
川口 周 (京都大学大学院理学研究科)
Height functions and affine space regular automorphisms

2006/12/14

Applied Analysis

16:00-17:30   Room #056 (Graduate School of Math. Sci. Bldg.)
山田 澄生 (東北大・大学院理学研究科・理学部
数学専攻)
特異点を持つ極小部分多様体の変分原理
[ Abstract ]
与えられた境界を持つ極小部分集合に特異点が必然的に現れることは
今までによく知られている現象である。幾何学的測度論は、それらの特異点
を許容する存在定理の枠組みを提供する為に発展してきた。こうして
現れる部分集合の幾何学的特徴付けを、写像の持つエネルギー関数の最小化というJ.Douglas
の方法論を発展させることによって試みる。また特異点周辺の面積密度の
単調性公式についても言及したい。

Operator Algebra Seminars

16:30-18:00   Room #126 (Graduate School of Math. Sci. Bldg.)
Chongying Dong (UC Santa Cruz)
On uniqueness of the moonshine vertex operator algebra

Applied Analysis

16:00-17:30   Room #056 (Graduate School of Math. Sci. Bldg.)
山田 澄生
(東北大学・大学院理学研究科)
特異点を持つ極小部分多様体の変分原理
[ Abstract ]
与えられた境界を持つ極小部分集合に特異点が必然的に現れることは今までによく知られている現象である.幾何学的測度論は,それらの特異点を許容する存在定理の枠組みを提供する為に発展してきた.こうして現れる部分集合の幾何学的特徴付けを,写像の持つエネルギー関数の最小化というJ.Douglas の方法論を発展させることによって試みる.また特異点周辺の面積密度の単調性公式についても言及したい.

2006/12/13

Seminar on Mathematics for various disciplines

10:30-11:30   Room #056 (Graduate School of Math. Sci. Bldg.)
C. M. Elliott (University of Sussex)
Computational Methods for Geometric PDEs
[ Abstract ]
Computational approaches to evolutionary geometric partial differential equations such as anisotropic motion by mean curvature and surface diffusion are reviewed. We consider methods based on graph, parametric , level set and phase field descriptions of the surface. We also discuss the approximation of partial differential equations which hold on the evolving surfaces. Numerical results will be presented along with some approximation results.
[ Reference URL ]
http://coe.math.sci.hokudai.ac.jp/sympo/various/index.html

Mathematical Finance

17:30-19:00   Room #118 (Graduate School of Math. Sci. Bldg.)
関根 順 (京都大)
動的なファンドプロテクションと最適化について

2006/12/12

Tuesday Seminar on Topology

16:30-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
Maxim Kazarian (Steklov Math. Institute)
Thom polynomials for maps of curves with isolated singularities
(joint with S. Lando)
[ Abstract ]
Thom (residual) polynomials in characteristic classes are used in
the analysis of geometry of functional spaces. They serve as a
tool in description of classes Poincar\\'e dual to subvarieties of
functions of prescribed types. We give explicit universal
expressions for residual polynomials in spaces of functions on
complex curves having isolated singularities and
multisingularities, in terms of few characteristic classes. These
expressions lead to a partial explicit description of a
stratification of Hurwitz spaces.

2006/12/11

Seminar on Geometric Complex Analysis

10:30-12:00   Room #128 (Graduate School of Math. Sci. Bldg.)
相原義弘 (沼津高専)
Modified deficiencies of holomorphic curves and defect relation

2006/12/08

Lectures

10:30-12:00   Room #056 (Graduate School of Math. Sci. Bldg.)
Charles M. Elliott (University of Sussex)
Computational Methods for Surface Partial Differential Equations
[ Abstract ]
In these lectures we discuss the formulation, approximation and applications of partial differential equations on stationary and evolving surfaces. Partial differential equations on surfaces occur in many applications. For example, traditionally they arise naturally in fluid dynamics, materials science, pattern formation on biological organisms and more recently in the mathematics of images. We will derive the conservation law on evolving surfaces and formulate a number of equations.

We propose a surface finite element method (SFEM) for the numerical solution of parabolic partial differential equations on hypersurfaces $\\Gamma$ in $\\mathbb R^{n+1}$. The key idea is based on the approximation of $\\Gamma$ by a polyhedral surface $\\Gamma_h$ consisting of a union of simplices (triangles for $n=2$, intervals for $n=1$) with vertices on $\\Gamma$. A finite element space of functions is then defined by taking the continuous functions on $\\Gamma_h$ which are linear affine on each simplex of the polygonal surface. We use surface gradients to define weak forms of elliptic operators and naturally generate weak formulations of elliptic and parabolic equations on $\\Gamma$. Our finite element method is applied to weak forms of the equations. The computation of the mass and element stiffness matrices are simple and straightforward. We give an example of error bounds in the case of semi-discretization in space for a fourth order linear problem. We extend this approach to pdes on evolving surfaces. We define an Eulerian level set method for partial differential equations on surfaces. The key idea is based on formulating the partial differential equation on all level set surfaces of a prescribed function $\\Phi$ whose zero level set is $\\Gamma$. We use Eulerian surface gradients to define weak forms
of elliptic operators which naturally generate weak formulations
of Eulerian elliptic and parabolic equations. This results in a degenerate equation formulated in anisotropic Sobolev spaces based on the level set function $\\Phi$. The resulting equation is then solved in one space dimension higher but can be solved on a fixed finite element grid.

Numerical experiments are described for several linear and Nonlinear partial differential equations. In particular the power of the method is demonstrated by employing it to solve highly nonlinear second and fourth order problems such as surface Allen-Cahn and Cahn-Hilliard equations and surface level set equations for geodesic mean curvature flow. In particular we show how surface level set and phase field models can be used to compute the motion of curves on surfaces. This is joint work with G. Dziuk(Freiburg).

< Previous 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 Next >