Seminar information archive

Seminar information archive ~05/21Today's seminar 05/22 | Future seminars 05/23~

2008/06/12

Operator Algebra Seminars

16:30-18:00   Room #156 (Graduate School of Math. Sci. Bldg.)
見村万佐人 (東大数理)
On Lubotzky's property $(\\tau)$ and expander graphs

Seminar on Probability and Statistics

16:20-17:30   Room #126 (Graduate School of Math. Sci. Bldg.)
福水 健次 (統計数理研究所)
再生核による指数分布族の構成とその統計的推定への応用
[ Abstract ]
再生核ヒルベルト空間を用いて、ヒルベルト多様体として指数分布族を 構成する方法について述べる。無限次元指数分布族に関しては、Orlicz 空間を用いたPistone & Sempi (1995) の構成法が知られているが、 有限サンプルによる推定を考える場合、尤度関数が多様体上の連続汎関 数にならない点が問題となる。本講演の構成では、再生核ヒルベルト空 間を用いることにより尤度関数は連続となり、統計的推定の議論が容易 となる。再生核ヒルベルト空間が有限次元の場合は通常の有限次元指数 分布族の推定理論と一致し、無限次元の場合はその自然な拡張を与える。 本講演では、統計的推定への応用として、正則化最尤推定法と、特異点 を持つモデルの漸近理論に関して述べる。
[ Reference URL ]
http://www.ms.u-tokyo.ac.jp/~kengok/statseminar/2008/03.html

2008/06/09

Mathematical Biology Seminar

16:30-17:30   Room #126 (Graduate School of Math. Sci. Bldg.)
中岡 慎治 (東京大学大学院数理科学研究科)
幼生の行動変化が個体群動態に及ぼす影響の数理モデル
[ Abstract ]
動物の行動変化は個体群動態に影響を及ぼし得る。群生はもっとも良く知られた
動物行動の一つで、凝集することによって捕食者から狙われるリスクを回避する
ような効果(たとえば希釈効果)などがある。、たとえば幼生は成体に比べて一般に
捕食に会うリスクが高いため、個体の成長は行動を決める上で非常に重要な要因
である。
本研究では捕食者にステージ構造を考慮した捕食者被食者数理モデルを
構築し、動物の行動変化が個体群動態に及ぼす影響を調べた。もし種内で資源を
めぐる競争が激しい場合、上位の捕食者による捕食リスクが増えるにつれて
凝集して群生することは必ずしもメリットとはならず、Allee 効果による突然の
群生消滅が生じる可能性があることを数理モデルの解析・シミュレーションに
よって明らかにした。

Lectures

16:30-18:00   Room #470 (Graduate School of Math. Sci. Bldg.)
W. Rundell (Texas A&M Univ.)
Some Unsolved Inverse Spectral Problems
[ Abstract ]
Perhaps the first well-studied inverse problem
was the determination of the potential $q(x)$ in
$-u'' + q(x) u = \\lambda_n u$ given the eigenvalues
$\\{\\lambda_n\\}$. Despite its venerable age and
the fact that a considerable literature is still being published,
there are several major outstanding problems;
some are quite simple to state.
This seminar will outline some of these.
We will try to show why the problems are hard,
but leave it to the audience to attempt solutions.

Seminar on Geometric Complex Analysis

10:30-12:00   Room #128 (Graduate School of Math. Sci. Bldg.)
相原 義弘 (沼津高専)
Deficiencies of holomorphic curves in algebraic manifolds

2008/06/05

Operator Algebra Seminars

16:30-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
谷本溶 (東大数理)
Another analogue of the Borel-Weil theory on loop groups

Applied Analysis

16:00-17:30   Room #002 (Graduate School of Math. Sci. Bldg.)
齊藤 宣一 (東京大学大学院数理科学研究科)
Keller-Segel系に対する離散化手法
[ Abstract ]
細胞性粘菌の凝集現象を記述するモデルとして広く知られるKeller-Segel(KS)系に対して,講演者の提案した保存的上流差分法および有限要素法を紹介したい.これらスキームは,KS系の解の基本性質である正値性保存と質量保存を厳密に再現し,解が凝集による集中化を起こしても安定な計算が遂行可能である.さらに,離散$L^p$空間における離散的解析半群の理論を応用して,陽的な誤差評価が導出される.なお当日の講演では,誤差解析等の理論よりは,離散スキームの構成方法や条件の説明に焦点をおきたい.

2008/06/04

Number Theory Seminar

16:30-17:30   Room #117 (Graduate School of Math. Sci. Bldg.)
坂内 健一 (慶應義塾大学理工学部 )
$p$-adic elliptic polylogarithm, $p$-adic Eisenstein series and Katz measure
(joint work with G. Kings)

[ Abstract ]
The Eisenstein classes are important elements in the motivic cohomology
of a modular curve, defined as the specializations of the motivic elliptic
polylogarithm by torsion sections. The syntomic Eisenstein classes are
defined as the image by the syntomic regulator of the motivic Eisenstein
classes. In this talk, we explain our result concerning the relation between
syntomic Eisenstein classes restricted to the ordinary locus and
p-adic Eisenstein series.

PDE Real Analysis Seminar

16:00-18:15   Room #056 (Graduate School of Math. Sci. Bldg.)
William Rundell (Department of Mathematics, Texas A&M University) 16:00-17:00
Inverse Obstacle Recovery when the boundary condition is also unknown
[ Abstract ]
We consider the inverse problem of recovering the shape, location
and surface properties of an object where the surrounding medium
is both conductive and homogeneous. It is assumed that the physical situation is modeled by either harmonic functions or solutions of the Helmholtz equation and that the boundary condition on the obstacle is one of impedance type. We measure either Cauchy data, on an accessible part of the exterior boundary or the far field pattern resulting from a plane wave. Given sets of Cauchy data pairs we wish to recover both the shape and location of the unknown obstacle together with its impedance.
It turns out this adds considerable complexity to the analysis. We give a local injectivity result and use two different algorithms
to investigate numerical reconstructions. The setting is in two space dimensions, but indications of possible extensions (and difficulties) to three dimensions are provided. We also look at the case of a nonlinear impedance function.
David Colton (Department of Mathematical Sciences, University of Delaware) 17:15-18:15
The Inverse Scattering Problem for an Isotropic Medium
[ Abstract ]
This talk is concerned with the inverse electromagnetic scattering problem for an isotropic inhomogeneous infinite cylinder. After formulating the direct scattering problem we proceed to the inverse scattering problem which is the main theme of this lecture. After discussing what is known about uniqueness for the inverse problem,we will proceed to the definition and properties of the far field operator. This leads to the study of a rather unusual spectral problem for partial differential equations called the interior transmission problem. We will state what is known about this problem including its role in determining lower bounds for the index of refraction from a knowledge of the far field pattern of the scattered wave, The talk is concluded by briefly considering the case of limited aperture data,in particular the use of the gap reciprocity method to determine the shape and location of buried objects. Numerical examples will be given as well as a number of open problems.

2008/06/03

Lie Groups and Representation Theory

16:30-18:00   Room #126 (Graduate School of Math. Sci. Bldg.)
示野 信一 (岡山理科大)
Matrix valued commuting differential operators with B2 symmetry
[ Abstract ]
B2 型のWeyl群の作用による対称性を持つ2次正方行列値の2階の可換な微分作用素を構成した。
作用素は Iida (Publ. Res. Inst. Math. Sci. Kyoto Univ. 32 (1996)) により計算された Sp(2,R)/U(2) の等質ベクトル束上の不変微分作用素の動径成分を特別な場合として含み、係数は楕円関数を用いて表される。
講演では、群の場合、可換な作用素の構成、spin Calogero-Sutherland 模型との関係について述べる。
[ Reference URL ]
http://akagi.ms.u-tokyo.ac.jp/seminar.html

Tuesday Seminar on Topology

16:30-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
山口 祥司 (東京大学大学院数理科学研究科)
On the geometry of certain slices of the character variety of a knot group
[ Abstract ]
joint work with Fumikazu Nagasato (Meijo University)
This talk is concerned with certain subsets in the character variety of a knot group.
These subsets are called '"slices", which are defined as a level set of a regular function associated to a meridian of a knot.
They are related to character varieties for branched covers along the knot.
Some investigations indicate that an equivariant theory for a knot is connected to a theory for branched covers via slices, for example, the equivariant signature of a knot and the equivariant Casson invariant.
In this talk, we will construct a map from slices into the character varieties for branched covers and investigate the properties.
In particular, we focus on slices called "trace-free", which are used to define the Casson-Lin invariant, and the relation to the character variety for two--fold branched cover.

2008/06/02

Seminar on Geometric Complex Analysis

10:30-12:00   Room #128 (Graduate School of Math. Sci. Bldg.)
本多 宣博 (東工大理工)
A new series of compact minitwistor spaces and Moishezon twistor spaces over them

Kavli IPMU Komaba Seminar

17:00-18:30   Room #002 (Graduate School of Math. Sci. Bldg.)
Shinobu Hikami (The University of Tokyo)
Intersection theory from duality and replica
[ Abstract ]
Kontsevich's work on Airy matrix integrals has led to explicit results for the
intersection numbers of the moduli space of curves. In this article we show that a duality between k-point functions on N by N matrices and N-point functions of k by k matrices, plus the replica method, familiar in the theory of disordered systems, allows one to recover Kontsevich's results on the intersection numbers, and to generalize them to other models. This provides an alternative and simple way to compute intersection numbers with one marked point, and leads also to some new results. This is a joint work with E. Brezin (Comm.Math. Phys. in press, arXiv:0708.2210).

2008/05/29

Operator Algebra Seminars

16:30-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
Rolf Dyre Svegstrup (東大数理)
2D models in AQFT from wedge algebras

2008/05/27

Lie Groups and Representation Theory

16:30-18:00   Room #126 (Graduate School of Math. Sci. Bldg.)
笹木集夢 (早稲田大学)
Visible actions on multiplicity-free spaces
[ Abstract ]
The holomorphic action of a Lie group G on a complex manifold D is called strongly visible if there exist a real submanifold S such that D':=G・S is open in D and an anti-holomorphic diffeomorphism σ which is an identity map on S and preserves each G-orbit in D'.
In this talk, we treat the case where D is a multiplicity-free space V of a connected complex reductive Lie group G(C), and show that the action of a compact real form of G(C) on V is strongly visible.
[ Reference URL ]
http://akagi.ms.u-tokyo.ac.jp/seminar.html

2008/05/26

Seminar on Geometric Complex Analysis

10:30-12:00   Room #128 (Graduate School of Math. Sci. Bldg.)
下村 俊 (慶大理工)
角領域における値分布論とその応用

2008/05/24

Monthly Seminar on Arithmetic of Automorphic Forms

13:30-16:00   Room #123 (Graduate School of Math. Sci. Bldg.)
Raimandus Vidunas
(神戸大学理学部
) 13:30-14:30
Identities between Appell's and univariate hyeprgeometric functions

[ Abstract ]
We look for univariate specializations of Appell'd bivariante hypergeometric functions that can be expressed in terms of univaraite ${}_{i+1} F_{i} ~(i=1,2,3)$ HGF's. The method is identifying cases when the partial differential equations for Appell's functions imply hypegeometric ordinary differential equations for their univariate specializations. In general, ordinary differential equations for univariate specializations of Apell's functions have order at moast 4.
示野 信一 (岡山理科大学理学部) 14:45-15:45
Whittaker functions with one-dimensional $K$-type on a semisimple Lie group of Hermitian type
[ Abstract ]
橋爪(Hiroshima J. Math. 12(1982))が与えたクラス1 Whittaker関数の表示式のHermitian対称空間上の1次元$K$-typeに付随したWhittaker関数への拡張を与える。またHeckeman-Opdamの超幾何関数の極限として、クラス1または1次元$K$-type を持つWhittaker関数が得られることを調べる。後者は石井-織田-平野(Math. Proc. Cambridge Philos. Soc. 41 (2006))の類似であり、一部は大島利雄氏との共同研究である。

2008/05/23

Colloquium

16:30-17:30   Room #123 (Graduate School of Math. Sci. Bldg.)
Jean-Michel Bismut (Univ. Paris-Sud, Orsay)
Functional integration and index theory

[ Abstract ]
The heat equation proof of the Atiyah-Singer index theorem involves a local `fantastic cancellation' mechanism, which has long been unexplained conceptually.

In this lecture, I will show how the supersymmetric formalism introduced by physicists has ultimately led to a new understanding of this cancellation mechanism. Ideas of Witten and Atiyah relating the index theorem to the localization formulas of Duistermaat-Heckman in equivariant cohomology have ultimately led to a renewed understanding of the cancellation mechanism as being of geometric nature (albeit in infinite dimensions). The key fact is that when interpreting the heat equation method for the proof of the index theorem, integrals of measures on the loop space of the given manifold, which one obtains via Ito stochastic calculus, should be properly interpreted as integrals of differential forms on the loop space.

I will then explain how this new understanding of the local index theorem has naturally led to a better understanding of spectral invariants, and often to the proof of certain key properties.

2008/05/22

Applied Analysis

16:00-17:30   Room #002 (Graduate School of Math. Sci. Bldg.)
森 洋一朗 (University of British Columbia)
細胞生理学における数理研究のいくつかの話題について
[ Abstract ]
数理生理学は広汎な分野であり,用いられる手法も近年ますます多様化している.本講演では,数理生理学の中でも古典的な分野である電気生理学の数理モデルに関する最近の研究を紹介する.

電気生理学が対象とするのは細胞および組織レベルでの電気活動であり,これは神経・心・内分泌機能の根幹をなすものである.Hodgkin とHuxley の有名な仕事を契機として,この方面の研究は数理生理学に格好の題材を提供し続けてきた.本講演では,まず電気生理の基礎概念を紹介した後,イオン動態と細胞膜の3次元形状の効果を取り入れたモデルについて解説し,その心臓生理学への応用について語る.さらに時間が許せば,私が今興味を持っている細胞極性の生成,細胞の動きなどの話題についても紹介したい.

Seminar on Probability and Statistics

16:20-17:30   Room #126 (Graduate School of Math. Sci. Bldg.)
逸見 昌之 (統計数理研究所)
信頼区間やP-値の最悪評価による感度解析法について-メタアナリシスにおける出版バイアスの問題に対する1つのアプローチ-
[ Abstract ]
メタアナリシスとは、目的を同じくする複数の研究から得られる統計的結果を統合し、より強い統計的 エビデンスを得るための統計解析のことで、近年特に、医学・健康科学の分野において盛んに行われて いる。しかしながら、メタアナリシスのために行われる研究結果の選択過程は、必ずしも無作為(ランダ ム)であるとは限らない。例えば、統計的に有意でない結果は有意である結果に比べて公表(出版)されに くいので、公表されている結果だけでメタアナリシスを行うと統合結果も有意になる、ということがしば しば起こる。研究結果を選択する過程で入り込むバイアスの原因はこの他にもいろいろあり得るが、この 問題は一般に「出版バイアス(publication bias)」の問題と呼ばれている。出版バイアスを調整するた めによく使われる一つの方法は、研究結果の選択のされ方を統計的にモデリングすることであるが、そ のためには研究の選択過程に対して、データそのものからは検証できない強い仮定が必要である。その ため、その仮定がデータ以外の背景情報から強く支持されないと、間違った結論を導く可能性がある。 そこで本講演では、できるだけ多くの場合に許容されるような弱い仮定の下で、(メタアナリシスの結 果としての)信頼区間やP-値の最悪評価を行い、それらにもとづいて最終的な統計的有意性の判断を行 う方法を提案する。この信頼区間やP-値の最悪評価は、選択されなかった研究の数という未知数にも 依存しているので一意には決まらないが、この値を現実的に可能性のある範囲で振らせることによって、 どの辺で統計的有意性に関する結論が変化するかを知ることができる。その意味で、提案する方法は感 度解析法となっている。この方法論は、選択関数の作るある関数空間上の最適化問題の結果にもとづい ているが、今回はその数理的部分についてもできる限り詳しくお話しする予定である。
[ Reference URL ]
http://www.ms.u-tokyo.ac.jp/~kengok/statseminar/2008/02.html

2008/05/21

Mathematical Finance

17:30-19:00   Room #128 (Graduate School of Math. Sci. Bldg.)
尾張 圭太 (一橋大)
Robust Exponential Hedging and Indifference Valuation

2008/05/20

Tuesday Seminar of Analysis

16:30-18:00   Room #128 (Graduate School of Math. Sci. Bldg.)
Vania Sordoni (ボローニャ大学)
Wave operators for diatomic molecules

Tuesday Seminar on Topology

17:00-18:30   Room #056 (Graduate School of Math. Sci. Bldg.)
Jer\^ome Petit (東京工業大学, JSPS)
Turaev-Viro TQFT splitting.
[ Abstract ]
The Turaev-Viro invariant is a 3-manifolds invariant. It is obtained in this way :
1) we use a combinatorial description of 3-manifolds, in this case it is : triangulation / Pachner moves
2) we define a scalar thanks to a categorical data (spherical category) and a topological data (triangulation)
3)we verify that the scalar is invariant under Pachner moves, then we obtain a 3-manifolds invariant.

The Turaev-Viro invariant can also be extended to a TQFT. Roughly speaking a TQFT is a data which assigns a finite dimensional vector space to every closed surface and a linear application to every 3-manifold with boundary.

In this talk, we will give a decomposition of the Turaev-Viro TQFT. More precisely, we decompose it into blocks. These blocks are given by a group associated to the spherical category which was used to construct the Turaev-Viro invariant. We will show that these blocks define a HQFT (roughly speaking a TQFT with an "homotopical data"). This HQFT is obtained from an homotopical invariant, which is the homotopical version of the Turaev-Viro invariant. Moreover this invariant can be used to obtain the homological Turaev-Viro invariant defined by Yetter.

Lie Groups and Representation Theory

16:45-18:15   Room #126 (Graduate School of Math. Sci. Bldg.)
吉野太郎 (東京工業大学)
Lipsman予想の反例と代数多様体の特異点について
[ Abstract ]
リー群$G$が多様体$M$に作用しているとき, その商空間$G\\backspace M$のハウスドルフ性は, 不連続群論の研究において重要である. 特に, ベキ零リー群が線型空間にアファインかつ自由に作用するとき, 商位相は常にハウスドルフであるとLipsmanは予想した.
しかし, この予想には反例があり, 商位相は必ずしもハウスドルフでない.
この講演では, この非ハウスドルフ性を`可視化'したい. より正確には, $M$への$G$作用から, 自然に代数多様体$V$が定義され, $V$の特異点が商位相の非ハウスドルフ性に対応することを見る.
[ Reference URL ]
http://akagi.ms.u-tokyo.ac.jp/seminar.html

2008/05/19

Kavli IPMU Komaba Seminar

17:00-18:30   Room #002 (Graduate School of Math. Sci. Bldg.)
Jean-Michel Bismut (Univ. Paris-Sud, Orsay)
A survey of Quillen metrics

[ Abstract ]
In this lecture, I will survey basic results
on Quillen metrics.

Indeed let $X$ be a complex K\\"ahler manifold, and let $E$ be a
holomorphic Hermitian vector bundle on $X$. Let $\\lambda$ be the complex line
which is the determinant of the cohomology of $E$. The Quillen metric
is a metric on the line $\\lambda$, which one obtains using a spectral
invariant of the Hodge Laplacian, the Ray-Singer analytic torsion.

The Quillen metrics have a number of remarkable properties. Among them
the curvature theorem says that when one considers a family of such
$X$, the curvature of the holomorphic Hermitian connection on
$\\lambda$ is given by a formula of Riemann-Roch-Grothendieck type.

I will explain some of the ideas which go into the proof of these
properties, which includes Quillen's superconnections.

< Previous 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 Next >