過去の記録 ~08/18本日 08/19 | 今後の予定 08/20~


16:40-17:40   数理科学研究科棟(駒場) 056号室
三井健太郎 氏 (東京大学数理科学研究科)
Simply connected elliptic surfaces (JAPANESE)
[ 講演概要 ]
We characterize simply connected elliptic surfaces by their singular fibers in any characteristic case. To this end, we study orbifolds of curves, local canonical bundle formula, and resolutions of multiple fibers. The result was known for the complex analytic case. Our method can be applied to the rigid analytic case.



16:30-18:00   数理科学研究科棟(駒場) 118号室
Norbert Pozar 氏 (Graduate School of Mathematical Sciences, The University of Tokyo)
Viscosity solutions for nonlinear elliptic-parabolic problems (ENGLISH)
[ 講演概要 ]
We introduce a notion of viscosity solutions for a general class of
elliptic-parabolic phase transition problems. These include the
Richards equation, which is a classical model in filtration theory.
Existence and uniqueness results are proved via the comparison
principle. In particular, we show existence and stability properties
of maximal and minimal viscosity solutions for a general class of
initial data. These results are new even in the linear case, where we
also show that viscosity solutions coincide with the regular weak
solutions introduced in [Alt&Luckhaus 1983]. This talk is based on a
recent work with Inwon Kim.


16:30-18:00   数理科学研究科棟(駒場) 002号室

小山大介 氏 (電気通信大学大学院情報理工学研究科)
多重散乱問題に対するDtN有限要素法とSchwarz法 (JAPANESE)
[ 講演概要 ]

Grote [J. Comput. Phys. 201, 630--650 (2004)]は,各散乱体を囲む複数の人工境界を導入し, その上で多重DtN(Dirichlet-to-Neumann)写像を定式化し,その写像を用いた境界条件を人工境界上で課し, 元の問題を人工境界で囲まれた複数の互いに素な有界領域における問題に帰着させ,有限要素法で解くという方法を見出した.

[ 講演参考URL ]


17:10-18:10   数理科学研究科棟(駒場) 056号室
Tea: 16:50 - 17:10 コモンルーム
入谷 寛 氏 (京都大学)
Gamma Integral Structure in Gromov-Witten theory (JAPANESE)
[ 講演概要 ]
The quantum cohomology of a symplectic
manifold undelies a certain integral local system
defined by the Gamma characteristic class.
This local system originates from the natural integral
local sysmem on the B-side under mirror symmetry.
In this talk, I will explain its relationships to the problem
of analytic continuation of Gromov-Witten theoy (potentials),
including crepant resolution conjecture, LG/CY correspondence,
modularity in higher genus theory.



15:30-17:00   数理科学研究科棟(駒場) 122号室
鈴木拓 氏 (早稲田理工)
Characterizations of projective spaces and hyperquadrics
[ 講演概要 ]
After Mori's works on Hartshorne's conjecture, many results to
characterize projective spaces and hyperquadrics in terms of
positivity properties of the tangent bundle have been provided.
Kov\\'acs' conjecture states that smooth complex projective
varieties are projective spaces or hyperquadrics if the $p$-th
exterior product of their tangent bundle contains the $p$-th
exterior product of an ample vector bundle. This conjecture is
the generalization of many preceding results. In this talk, I will
explain the idea of the proof of Kov\\'acs' conjecture for varieties
with Picard number one by using a method of slope-stabilities
of sheaves.


10:30-12:00   数理科学研究科棟(駒場) 126号室
田島 慎一 氏 (筑波大学)
Local cohomology and hypersurface isolated singularities I (JAPANESE)
[ 講演概要 ]
多変数留数に関するGrothendieck local duality と局所コホモロジーに基づくことで, 孤立特異点を持つ超曲面の複素解析的性質を解析することが出来る。本講演では, まず, 局所コホモロジー類の計算法を紹介する。次に, これら局所コホモロジーの応用として, イデアルメンバーシップ判定, スタンダード基底計算, イデアル商計算等が平易にできることを紹介する。数式処理システムRisa/Asirへの実装結果についても報告する。

Kavli IPMU Komaba Seminar

17:00-18:30   数理科学研究科棟(駒場) 002号室
Emanuel Scheidegger 氏 (The University of Freiburg)
Topological Strings on Elliptic Fibrations (ENGLISH)
[ 講演概要 ]
We will explain a conjecture that expresses the BPS invariants
(Gopakumar-Vafa invariants) for elliptically fibered Calabi-Yau
threefolds in terms of modular forms. In particular, there is a
recursion relation which governs these modular forms. Evidence comes
from the polynomial formulation of the higher genus topological string
amplitudes with insertions.



13:30-16:00   数理科学研究科棟(駒場) 123号室
谷口隆 氏 (神戸大学) 13:30-14:30
算術級数中の3次体の判別式 (JAPANESE)
[ 講演概要 ]
3次体の判別式を数える関数は2つ主要項があるが,判別式を算術級数中で数えると,第2主要項に偏りが現れることがある.この必要十分条件を与え,また主要項の公式を与える.証明には,2元3次形式の概均質ベクトル空間のL関数を用いる.(Frank Thorne 氏との共同研究)
都築正男 氏 (上智大学) 15:00-16:00
Asai L関数の中心値の平均とレベルアスペクト劣凸評価 (JAPANESE)



14:50-16:00   数理科学研究科棟(駒場) 006号室
参加をご希望される方は鎌谷 (阪大基礎工); kamatani at sigmath.es.osaka-u.ac.jpまでご連絡ください.
鈴木 大慈 氏 (東京大学)
PAC-Bayesian Bound for Gaussian Process Regression and Multiple Kernel Additive Model (JAPANESE)
[ 講演概要 ]
スパース加法モデルの推定法として,マルチプルカーネル学習(MKL)が提案されているが, 本発表ではそのベイズ的な変種について考察し,PAC-Bayesの手法を用いてその性能解析 を行う.標準的なMKLの解析では,restricted eigenvalue conditionのような強い仮定をデザ インに課するが,我々はPAC-Bayesの技法を用いてベイズ的なMKLがそのような仮定を設け ないで最適レートを達成することを示す.我々の結果は,近年発展しているガウシアンプロ セス回帰に関する理論を包含しており,PAC-Bayesを使ったより単純な証明を与える.我々 の考える推定量はガウシアンプロセスのスケール混合であり,スケール混合を取ることに よって適応的に最適レートを達成することが示される.また,有限次元のグループラッソに 対応する状況も考え,その収束レートを与える.
[ 講演参考URL ]



16:40-17:40   数理科学研究科棟(駒場) 002号室
梅崎直也 氏 (東京大学数理科学研究科)
On uniform bound of the maximal subgroup of the inertia group acting unipotently on $¥ell$-adic cohomology (JAPANESE)
[ 講演概要 ]
For a smooth projective variety over a local field,
the action of the inertia group on the $¥ell$-adic cohomology group is
unipotent if it is restricted to some open subgroup.
In this talk, we give a uniform bound of the index of the maximal open
subgroup satisfying this property.
This bound depends only on the Betti numbers of $X$ and certain Chern
numbers depending on a projective embedding of $X$.



16:30-18:00   数理科学研究科棟(駒場) 128号室
水谷 治哉 氏 (京都大学・数理解析研究所)
Strichartz estimates for Schr\\"odinger equations with variable coefficients and unbounded electromagnetic potentials (JAPANESE)
[ 講演概要 ]
In this talk we consider the Cauchy problem for Schr\\"odinger equations with variable coefficients and unbounded potentials. Under the assumption that the Hamiltonian is a long-range perturbation of the free Schr\\"odinger operator, we construct an outgoing parametrix for the propagator near infinity, and give applications to sharp Strichartz estimates. The basic idea is to combine the standard approximation by using a time dependent modifier, which is not in the semiclassical regime, with the semiclassical approximation of Isozaki-Kitada type. We also show near sharp Strichartz estimates without asymptotic conditions by using local smoothing effects.



10:30-12:00   数理科学研究科棟(駒場) 126号室
金子 宏 氏 (東京理科大)
単位円周とp進整数環の双対的関係とvan der Corput 列 (JAPANESE)



16:30-17:30   数理科学研究科棟(駒場) 002号室
お茶&Coffee&お菓子: 16:00~16:30 (コモンルーム)。

逆井卓也 氏 (東京大学・大学院数理科学研究科)
Moduli spaces and symplectic derivation Lie algebras (JAPANESE)
[ 講演概要 ]
First we overview Kontsevich's theorem describing a deep connection between homology of certain infinite dimensional Lie algebras (symplectic derivation Lie algebras) and cohomology of various moduli spaces. Then we discuss some computational results on the Lie algebras together with their applications (joint work with Shigeyuki Morita and Masaaki Suzuki).


14:50-16:00   数理科学研究科棟(駒場) 006号室
参加をご希望される方は鎌谷 (阪大基礎工); kamatani at sigmath.es.osaka-u.ac.jpまでご連絡ください.
深澤 正彰 氏 (大阪大学大学院理学研究科数学教室)
Efficient Discretization of Stochastic Integrals (JAPANESE)
[ 講演概要 ]
Sharp asymptotic lower bounds of the expected quadratic variation of discretization error in stochastic integration are given. The theory relies on inequalities for the kurtosis and skewness of a general random variable which are themselves seemingly new. Asymptotically efficient schemes which attain the lower bounds are constructed explicitly. The result is directly applicable to practical hedging problem in mathematical finance; it gives an asymptotically optimal way to choose rebalancing dates and portofolios with respect to transaction costs. The asymptotically efficient strategies in fact reflect the structure of transaction costs. In particular a specific biased rebalancing scheme is shown to be superior to unbiased schemes if transaction costs follow a convex model. The problem is discussed also in terms of the exponential utility maximization.
[ 講演参考URL ]



16:30-18:00   数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
石部 正 氏 (東京大学大学院数理科学研究科, 日本学術振興会)
Infinite examples of non-Garside monoids having fundamental elements (JAPANESE)
[ 講演概要 ]
The Garside group, as a generalization of Artin groups,
is defined as the group of fractions of a Garside monoid.
To understand the elliptic Artin groups, which are the fundamental
groups of the complement of discriminant divisors of the semi-versal
deformation of the simply elliptic singularities E_6~, E_7~ and E_8~,
we need to consider another generalization of Artin groups.
In this talk, we will study the presentations of fundamental groups
of the complement of complexified real affine line arrangements
and consider the associated monoids.
It turns out that, in some cases, they are not Garside monoids.
Nevertheless, we will show that they satisfy the cancellation condition
and carry certain particular elements similar to the fundamental elements
in Artin monoids.
As a result, we will show that the word problem can be solved
and the center of them are determined.


16:30-18:00   数理科学研究科棟(駒場) 002号室

服部元史 氏 (神奈川工科大学情報メディア学科)
非圧縮性 Navier-Stokes方程式を 粒子法の時間発展スキームで数値解析した時に圧力の計算結果が振動する理由 (JAPANESE)
[ 講演概要 ]
飛び散る飛沫(しぶき)や砕ける波など複雑に変形する液体の運動をシミュレーションするべく、Lagrange 物質座標で表わされた Navier-Stokes 方程式を (その自由境界を捕捉する事なく) 数値解析する手法が、Moving Particle Semi-implicit (MPS) 法や Smoothed Particle Hydrodynamics (SPH) 法など粒子法という枠組みで研究されている。Navier-Stokes方程式の解を一意に定めるべく 非圧縮性を連立させて数値解析シミュレーションするにあたり、MPS法で空間離散化しようと SPH法で空間離散化しようと、時間発展スキームとしては、

「 Step 1 : 流体粒子の仮の位置を計算する陽解法 Step 」と

「 Step 2 : 陽解法で計算された粒子配置に基づいて Poisson 方程式から圧力分布を計算し粒子の位置を更新する半陰解法 Step 」

と、2つの Step を交互に繰り返すアルゴリズムが広く採用されている。ところが、この時間発展スキームで計算される圧力は時間的にも空間的にも振動してしまうという欠点が、幾つかの研究で報告されている。 この圧力振動問題の理由を、上記の時間発展スキームを 数学的に定式化し直すプロセスを通じて明らかにしながら、粒子法の今後の改善に関して考察を行う。なお本講演は、神奈川工科大学における服部元史(情報メディア学科)、藤井みゆき(情報教育研究センター)、田辺誠(機械工学科)の共同研究の成果である。
[ 講演参考URL ]


14:40-16:10   数理科学研究科棟(駒場) 470号室
境 圭一 氏 (信州大学理学部)
埋め込みの空間とストリング・トポロジー (JAPANESE)
[ 講演概要 ]



10:30-12:00   数理科学研究科棟(駒場) 126号室
松本佳彦 氏 (東大数理)
The second metric variation of the total $Q$-curvature in conformal geometry (JAPANESE)
[ 講演概要 ]
Branson's $Q$-curvature of even-dimensional compact conformal manifolds integrates to a global conformal invariant called the total $Q$-curvature. While it is topological in two dimensions and is essentially the Weyl action in four dimensions, in the higher dimensional cases its geometric meaning remains mysterious. Graham and Hirachi have shown that the first metric variation of the total $Q$-curvature coincides with the Fefferman-Graham obstruction tensor. In this talk, the second variational formula will be presented, and it will be made explicit especially for conformally Einstein manifolds. The positivity of the second variation will be discussed in connection with the smallest eigenvalue of the Lichnerowicz Laplacian.


15:30-17:00   数理科学研究科棟(駒場) 122号室
伊藤 敦 氏 (東京大学大学院数理科学研究科)
Algebro-geometric characterization of Cayley polytopes (JAPANESE)
[ 講演概要 ]
A lattice polytope is called a Cayley polytope if it is "small" in some
In this talk, I will explain an algebro-geometric characterization of
Cayley polytopes
by considering whether or not the corresponding polarized toric
varieties are covered by lines, planes, etc.

We can apply this characterization to the study of Seshadri constants,
which are invariants measuring the positivity of ample line bundles.
That is, we can obtain an explicit description of a polarized toric
variety whose Seshadri constant is one.


14:30-16:00   数理科学研究科棟(駒場) 370号室
秋元琢磨 氏 (慶應義塾大学、環境リーディングプログラム)
Distributional behaviors of time-averaged observables in anomalous diffusions (subdiffusion and superdiffusion) (ENGLISH)
[ 講演概要 ]
In anomalous diffusions attributed to a power-law distribution,
time-averaged observables such as diffusion coefficient and velocity of drift are intrinsically random. Anomalous diffusion is ubiquitous phenomenon not only in material science but also in biological transports, which is characterized by a non-linear growth of the mean square displacement (MSD).
(subdiffusion: sublinear growth, super diffusion: superlinear growth).
It has been known that there are three different mechanisms generating subdiffusion. One of them is a power-law distribution in the trapping-time distribution. Such anomalous diffusion is modeled by the continuous time random walk (CTRW). In CTRW, the time-averaged MSD grows linearly with time whereas the ensemble-averaged MSD does not. Using renewal theory, I show that diffusion coefficients obtained by single trajectories converge in distribution. The distribution is the Mittag-Leffler (or inverse Levy) distribution [1,2].
In superdiffusion, there are three different mechanisms. One stems from positive correlations in random walks; the second from persistent motions in random walks, called Levy walk; the third from very long jumps in random walks, called Levy flight.
If the persistent time distribution obeys a power law with divergent mean in Levy walks, the MSD grows as t^2 whereas the mean of positions is zero. When an external bias is added in Levy walks, the response to bias (velocity of drift) appears in the distribution, which is what we term a distributional response [3]. The distribution is the generalized arcsine distribution.
These distributional behaviors open a new window to dealing with the average (ensemble or time average) in single particle tracking experiments.

[1] Y. He, S. Burov, R. Metzler, and E. Barkai, Phys. Rev. Lett. 101, 058101 (2008).
[2] T. Miyaguchi and T. Akimoto, Phys. Rev. E 83, 031926 (2011).
[3] T. Akimoto, Phys. Rev. Lett. 108, 164101 (2012)



16:30-18:00   数理科学研究科棟(駒場) 128号室
鈴木悠平 氏 (東大数理)
A measurable group theoretic solution to von Neumann's Problem (after Gaboriau and Lyons) (JAPANESE)



16:30-18:00   数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
糟谷 久矢 氏 (東京大学大学院数理科学研究科)
Minimal models, formality and hard Lefschetz property of
solvmanifolds with local systems (JAPANESE)
[ 講演概要 ]
For a simply connected solvable Lie group G with a
cocompact discrete subgroup {\\Gamma}, we consider the space of
differential forms on the solvmanifold G/{\\Gamma} with values in certain
flat bundle so that this space has a structure of a differential graded
algebra(DGA). We construct Sullivan's minimal model of this DGA. This
result is an extension of Nomizu's theorem for ordinary coefficients in
the nilpotent case. By using this result, we refine Hasegawa's result of
formality of nilmanifolds and Benson-Gordon's result of hard Lefschetz
properties of nilmanifolds.



15:00-16:10   数理科学研究科棟(駒場) 006号室
参加をご希望される方は鎌谷 (阪大基礎工); kamatani at sigmath.es.osaka-u.ac.jpまでご連絡ください.
野村 亮介 氏 (東京大学大学院数理科学研究科 )
時間的差分法のステップサイズに関する収束条件について (JAPANESE)
[ 講演概要 ]
強化学習では、状態・行動・報酬という三種類のデータを観測 するモデルに対し、状態が与えられたときの累積報酬の期待値である価値関数を 最大化するように行動を決定する問題を扱う。いくつかの手法の中で最も研究さ れているのが時間的差分法である。 本発表では、独立同分布なデータに対して、目的関数を最小化するという意味で 最適なステップサイズを導出し、その収束を示す。さらに、ステップサイズが定 数である場合の収束条件を示す。また、マルコフ過程に従うデータに対して、ア ルゴリズムのステップサイズの収束条件について議論する。
[ 講演参考URL ]



16:30-18:00   数理科学研究科棟(駒場) 128号室
武石拓也 氏 (東大数理)
Bost-Connes system and class field theory (JAPANESE)



16:30-18:00   数理科学研究科棟(駒場) 002号室

石川英明 氏 (半導体先端テクノロジーズ)
量子力学と数値解析 (JAPANESE)
[ 講演概要 ]
る粒子はde Broglie波長$\\lambda=h/p$($h$はPlanck定数、$p$は運動量)
を持ち、その運動は確率 振幅に対するSchr{\\" o}dinger方程式に従う。
粒子の波動性は、粒子のde Broglie波長と同程度のサイズを持つ系
ミクロな階 層で理解し、利用するための基礎を与える。
Schr{\\" o}dinger方程式の解法には、特殊関数を使って解析的に解く方
えてSchr{\\" o}dinger方程式の固有値と固有関数を計算するための高精
Schr{\\" o}dinger方程式に平均場近似 (Hartree近似等)を導入して得
[ 講演参考URL ]

< 前へ 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 次へ >