過去の記録

過去の記録 ~02/23本日 02/24 | 今後の予定 02/25~

講演会

17:00-18:00   数理科学研究科棟(駒場) 470号室
Frank Lutz 氏 (ベルリン工科大学)
Discrete Topologgy of Cellular Microstructures
and Complicatedness Measurements for Cell Complexes (JAPANESE)
[ 講演概要 ]
Our first aim is to use methods from discrete and geometric topology
to recover structural information from the composition of
monocrystalline materials that have a periodic foam structure
(such as gas hydrates and transition metal alloys) and also of
polycrystalline materials (such as metals and certain ceramics).

For more general complexes, even with a billion of faces, homological
information can be obtained with computational homology packages
such as CHomP or RedHom. These packages extensively use discrete Morse
theory as a preprocessing step. Although it is NP-hard to find optimal
discrete Morse functions, most data appears to be easy and it is
in fact hard to construct ``complicated'' examples. As we will see,
random discrete Morse theory will allow us to measure the
``complicatedness'' of complexes.

2012年10月29日(月)

代数幾何学セミナー

15:30-17:00   数理科学研究科棟(駒場) 122号室
藤田 健人 氏 (京都大学数理解析研究所)
The Mukai conjecture for log Fano manifolds (JAPANESE)
[ 講演概要 ]
The concept of log Fano manifolds is one of the most natural generalization of the concept of Fano manifolds. We will give some structure theorems of log Fano manifolds. For example, we will show that the Mukai conjecture for Fano manifolds implies the `log Mukai conjecture' for log Fano manifolds.

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 126号室
厚地淳 氏 (慶応大学)
葉層構造を持つ多様体上の有理型関数の値分布, II (JAPANESE)

2012年10月26日(金)

統計数学セミナー

14:50-16:00   数理科学研究科棟(駒場) 006号室
参加をご希望される方は鎌谷 (阪大基礎工); kamatani at sigmath.es.osaka-u.ac.jpまでご連絡ください.
廣瀬 慧 氏 (大阪大学大学院基礎工学研究科)
Tuning parameter selection in sparse regression modeling (JAPANESE)
[ 講演概要 ]
In sparse regression modeling via regularization such as the lasso, it is important to select appropriate values of tuning parameters including regularization parameters. The choice of tuning parameters can be viewed as a model selection and evaluation problem. Mallows' Cp type criteria may be used as a tuning parameter selection tool in lasso type regularization methods, for which the concept of degrees of freedom plays a key role. In this talk, we propose an efficient algorithm that computes the degrees of freedom by extending the generalized path seeking algorithm. Our procedure allows us to construct model selection criteria for evaluating models estimated by regularization with a wide variety of convex and nonconvex penalties. The proposed methodology is investigated through the analysis of real data and Monte Carlo simulations. Numerical results show that Cp criterion based on our algorithm performs well in various situations.
[ 講演参考URL ]
http://www.sigmath.es.osaka-u.ac.jp/~kamatani/statseminar/2012/10.html

2012年10月23日(火)

解析学火曜セミナー

16:30-18:00   数理科学研究科棟(駒場) 002号室
Elliott Lieb 氏 (Princeton Univ.)
Topics in quantum entropy and entanglement (ENGLISH)
[ 講演概要 ]
Several recent results on quantum entropy and the uncertainty
principle will be discussed. This is partly joint work with Eric Carlen
on lower bounds for entanglement, which has no classical analog, in terms
of the negative of the conditional entropy, S1 - S12, whose negativity,
when it occurs, also has no classical analog. (see arXiv:1203.4719)
It is also partly joint work with Rupert Frank on the uncertaintly
principle for quantum entropy which compares the quantum von Neumann
entropy with the classical entropies with respect to two different
bases. We prove an extension to the product of two and three spaces, which
has applications in quantum information theory. (see arxiv:1204.0825)

トポロジー火曜セミナー

16:30-18:00   数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
河澄 響矢 氏 (東京大学大学院数理科学研究科)
A geometric approach to the Johnson homomorphisms (JAPANESE)
[ 講演概要 ]
ジョンソン準同型を、完備化されたゴールドマン・トゥラエフ・リー双代数への
トレリ群の
埋め込みとして捉え直す。その際、ジョンソン準同型像はトゥラエフ余括弧積の
核に含まれる。
境界成分が1の場合、このことから森田トレースの幾何的な意味が明らかになる。
時間が許せば、穴あき円板の場合についても議論する。

2012年10月22日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 126号室
千葉優作 氏 (東大数理)
ヒルベルトモジュラー曲面への整曲線に対する第2主要定理 (JAPANESE)

2012年10月19日(金)

統計数学セミナー

14:50-16:00   数理科学研究科棟(駒場) 006号室
参加をご希望される方は鎌谷 (阪大基礎工); kamatani at sigmath.es.osaka-u.ac.jpまでご連絡ください.
清水 泰隆 氏 (大阪大学大学院基礎工学研究科)
Asymptotic expansion of ruin probability under Lévy insurance risks (JAPANESE)
[ 講演概要 ]
An asymptotic expansion formula of the ultimate ruin probability under L\\'evy insurance risks
is given as the loading factor tends to zero. The formula is obtained via the Edgeworth type expansion of
the compound geometric random sum. We give higher-order expansions of the ruin probability with a certain validity.
This allows us to evaluate quantile of the ruin function, which is nicely applied to estimate the VaR-type risk measure due to ruin.
[ 講演参考URL ]
http://www.sigmath.es.osaka-u.ac.jp/~kamatani/statseminar/2012/09.html

2012年10月18日(木)

統計数学セミナー

15:15-16:25   数理科学研究科棟(駒場) 006号室
参加をご希望される方は鎌谷 (阪大基礎工); kamatani at sigmath.es.osaka-u.ac.jpまでご連絡ください.
加藤 賢悟 氏 (広島大学大学院理学研究科数学専攻)
Quasi-Bayesian analysis of nonparametric instrumental variables models (JAPANESE)
[ 講演概要 ]
This paper aims at developing a quasi-Bayesian analysis
of the nonparametric instrumental variables model, with a focus on the
asymptotic properties of quasi-posterior distributions. In this paper,
instead of assuming a distributional assumption on the data generating
process, we consider a quasi-likelihood induced from the conditional
moment restriction, and put priors on the function-valued parameter.
We call the resulting posterior quasi-posterior, which corresponds to
``Gibbs posterior'' in the literature. Here we shall focus on sieve
priors, which are priors that concentrate on finite dimensional sieve
spaces. The dimension of the sieve space should increase as the sample
size. We derive rates of contraction and a non-parametric Bernstein-von
Mises type result for the quasi-posterior distribution, and rates of
convergence for the quasi-Bayes estimator defined by the posterior
expectation. We show that, with priors suitably chosen, the
quasi-posterior distribution (the quasi-Bayes estimator) attains the
minimax optimal rate of contraction (convergence, respectively). These
results greatly sharpen the previous related work.
[ 講演参考URL ]
http://www.sigmath.es.osaka-u.ac.jp/~kamatani/statseminar/2012/08.html

講演会

16:00-17:00   数理科学研究科棟(駒場) 470号室
Anatoly Yagola 氏 (Lomonosov Moscow State University)
Multidimensional ill-posed problems (ENGLISH)
[ 講演概要 ]
It is very important now to develop methods of solving multidimensional ill-posed problems using regularization procedures and parallel computers. The main purpose of the talk is to show how 2D and 3D Fredholm integral equations of the 1st kind can be effectively solved.
We will consider ill-posed problems on compact sets of convex functions [1] and functions convex along lines parallel to coordinate axes [2].
Recovery of magnetic target parameters from magnetic sensor measurements has attracted wide interests and found many practical applications. However, difficulties present in identifying the permanent magnetization due to the complications of magnetization distributions over the ship body, and errors and noises of measurement data degrade the accuracy and quality of the parameter identification. In this paper, we use a two step sequential solutions to solve the inversion problem. In the first step, a numerical model is built and used to determine the induced magnetization of the ship. In the second step, we solve a type of continuous magnetization inversion problem by solving 2D and 3D Fredholm integral
equations of the 1st kind. We use parallel computing which allows solve the inverse problem with high accuracy. Tikhonov regularization has been applied in solving the inversion problems. The proposed methods have been validated using simulation data with added noises [4, 6].
2D and 3D inverse problems also could be found in tomography [3] and electron microscopy [5]. We will demonstrate examples of applied problems and discuss methods of numerical solving.
This paper was supported by the Visby program and RFBR grants 11-01-00040–а and 12-01-91153-NSFC-a.

2012年10月17日(水)

幾何コロキウム

10:30-12:00   数理科学研究科棟(駒場) 128号室
見村万佐人 氏 (東北大学)
p-カジュダン定数と非エクスパンダー族 (JAPANESE)
[ 講演概要 ]
グラフや有限生成群(ケーリーグラフと思う)に道距離を入れて距離空間と思って研究をするとき,基本的な指針の一つが"線型化"することである.より正確には,性質の良いバナッハ空間への良い埋め込みを考えることである.特にヒルベルト空間や一般のl^p空間への埋め込みは大変研究されている.有名な結果として,"エクスパンダー族"がヒルベルト空間やl^p空間に一様埋め込みをもたない,ことが挙げられる.ここで,エクスパンダー族とは,次数が一様有限な有限グラフの族であって,各グラフのスペクトルギャップが下から一様におさえられているようなものである(この条件は,各グラフのチーガー定数が下から一様におさえられていることと同値である).
今回の講演では,有限生成群の族のケーリーグラフから作られるような,"非"エクスパンダー族についての研究をお話しする.有限生成群に対してヒルベルト空間上の表現からカジュダン定数や性質tauに関する定数というものが定義され,ケーリーグラフのスペクトルギャップと関連する.本講演ではl^p空間での一般化を定義し,それらを用いて,上記の設定でのグラフの族のp-スペクトルギャップの減衰の状況を記述する.これにより,上記のグラフの族の距離幾何的な情報を取り出す.主な例は,3以上の整数で番号付けされた群の族(SL_n(Z/k_nZ))_nのケーリーグラフたちである.ここで(k_n)はk_n>2なる整数たちの列であり,ケーリーグラフは各nに対して,標準的な4元からなる生成集合から構成する.この講演は,"ケーリーグラフ"・"エクスパンダー族"・"カジュダン定数"のような基本的な定義から始める予定である.

講演会

15:00-16:00   数理科学研究科棟(駒場) 370号室
Vjacheslav Yurko 氏 (Saratov University)
Inverse problems for differential operators on spatial networks (ENGLISH)

2012年10月16日(火)

トポロジー火曜セミナー

17:10-18:10   数理科学研究科棟(駒場) 056号室
Tea: 16:50 - 17:10 コモンルーム
吉川 謙一 氏 (京都大学大学院理学研究科)
Analytic torsion of log-Enriques surfaces (JAPANESE)
[ 講演概要 ]
Log-Enriques surfaces are rational surfaces with nowhere vanishing
pluri-canonical forms. We report the recent progress on the computation
of analytic torsion of log-Enriques surfaces.

2012年10月15日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 126号室
大沢 健夫 氏 (名古屋大学)
領域上のあるL^2評価式とLevi平坦面への応用 (JAPANESE)

代数幾何学セミナー

15:30-17:00   数理科学研究科棟(駒場) 122号室
權業善範 氏 (東京大学数理科学研究科)
On the moduli b-divisors of lc-trivial fibrations (JAPANESE)
[ 講演概要 ]
Roughly speaking, by using the semi-stable minimal model program, we prove that the moduli part of an lc-trivial fibration coincides with that of a klt-trivial fibration induced by adjunction after taking a suitable generically finite cover. As an application, we obtain that the moduli part of an lc-trivial fibration is b-nef and abundant by Ambro's result on klt-trivial fibrations. Moreover I may explain some applications of canonical bundle formulas. These are joint works with Osamu Fujino.

2012年10月12日(金)

談話会・数理科学講演会

16:30-17:30   数理科学研究科棟(駒場) 123号室
旧記録は、上記セミナーURLにあります。
お茶&Coffee&お菓子: 16:00~16:30 (コモンルーム)。

Antonio Siconolfi 氏 (La Sapienza - University of Rome)
Homogenization on arbitrary manifolds (ENGLISH)
[ 講演概要 ]
We show that results on periodic homogenization for Hamilton-Jacobi equations can be generalized replacing the torus by an arbitrary compact manifold. This allows to reach a deeper understanding of the matter and unveils phenomena somehow hidden in the periodic case, for instance the fact that the ambient spaces of oscillating equations and that of the limit problem are different, and possess even different dimensions. Repetition structure for the base manifold, changes of scale in it and asymptotic analysis, which are the basic ingredients of homogenization, need substantial modification to work in the new frame, and this task is partially accomplished using tools from algebraic topology. An adapted notion of convergence allowing approximating entities and limit to lie in different spaces is also provided.

2012年10月09日(火)

トポロジー火曜セミナー

16:30-18:00   数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
藤井 道彦 氏 (京都大学大学院理学研究科)
The growth series of pure Artin groups of dihedral type (JAPANESE)
[ 講演概要 ]
In this talk, I consider the kernel of the natural projection from
the Artin group of dihedral type to the corresponding Coxeter group,
that we call a pure Artin group of dihedral type,
and present rational function expressions for both the spherical and
geodesic growth series
of the pure Artin group of dihedral type with respect to a natural
generating set.
Also, I show that their growth rates are Pisot numbers.
This talk is partially based on a joint work with Takao Satoh.

数値解析セミナー

16:30-18:00   数理科学研究科棟(駒場) 002号室
本セミナーは、グローバルCOE事業「数学新展開の研究教育拠点」(東京大学)の援助を受け、GCOEセミナーして行われています。
http://www.ms.u-tokyo.ac.jp/gcoe/index.html

木村拓馬 氏 (早稲田大学理工学術院)
放物型初期値境界値問題に対する精度保証付き数値計算 (JAPANESE)
[ 講演概要 ]
本講演では,中尾充宏校長(佐世保工業高等専門学校),木下武彦研究員(京都大学RIMS)と講演者による,放物型初期値境界値問題に関する共同研究の成果を発表する.特に,熱方程式に対する時間方向に補間を用いた近似の誤差評価, その応用による線形放物型問題に解を与える作用素のノルム評価, 及びこれらの応用による非線形問題の解の存在に対する計算機援用証明について述べる.
[ 講演参考URL ]
http://www.infsup.jp/utnas/

2012年10月06日(土)

調和解析駒場セミナー

13:30-17:00   数理科学研究科棟(駒場) 128号室
佐藤秀一 氏 (金沢大学) 13:30-15:00
Method of rotations with weight for nonisotropic dilations (JAPANESE)
[ 講演概要 ]
n 次元 Euclid 空間における one parameter nonisotropic dilation の軌道に沿った directional (Hardy-Littlewood 型)maximalfunction,directional Hilbert 変換, directional maximal Hilbert 変換 に対するweighted mixed norm 評価. これは, Calderon-Zygmund の方法により,variable kernel から定義される特異積分の理論に応用される.
背景には isotropic dilation の場合の Christ-Duoandikoetxea-Rubio de Franciaの結果(1986), そこで使われた X-ray 変換に対する Drury, Christ の評価を一般化したP. Gressman の結果(2006)の応用を含む N. Bez の結果(2008)がある.
( ) 15:30-17:00
未定 (JAPANESE)
[ 講演概要 ]

2012年10月05日(金)

統計数学セミナー

14:50-16:00   数理科学研究科棟(駒場) 006号室
参加をご希望される方は鎌谷 (阪大基礎工); kamatani at sigmath.es.osaka-u.ac.jpまでご連絡ください.
荻原 哲平 氏 (大阪大学 金融・保険教育研究センター)
Quasi-likelihood analysis for stochastic regression models from nonsynchronous observations (JAPANESE)
[ 講演概要 ]
高頻度金融時系列データの解析時に, 二資産価格データの共変動を解析する上での問題として
"観測の非同期性"がある. データの線形補完や直前データを用いた補完などによるシンプルな
"同期化"を行ったデータに対する共分散推定量は深刻なバイアスが存在することが知られている.
Hayashi and Yoshida (2005)では, 非同期観測下での共分散のノンパラメトリックな不偏推定量を提案し,
推定量の一致性, 漸近(混合)正規性などを示している.
本発表ではパラメータ付2次元拡散過程の非同期観測の問題に対する, 尤度解析を用いたアプローチを紹介し,
最尤型推定量, ベイズ型推定量の構築とその一致性, 漸近混合正規性に関する結果を紹介する.
[ 講演参考URL ]
http://www.sigmath.es.osaka-u.ac.jp/~kamatani/statseminar/2012/07.html

2012年10月02日(火)

トポロジー火曜セミナー

16:30-18:00   数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
二木 昭人 氏 (東京大学大学院数理科学研究科)
Geometric flows and their self-similar solutions
(JAPANESE)
[ 講演概要 ]
In the first half of this expository talk we consider the Ricci flow and its self-similar solutions,
namely the Ricci solitons. We then specialize in the K\\"ahler case and discuss on the K\\"ahler-Einstein
problem. In the second half of this talk we consider the mean curvature flow and its self-similar
solutions, and see common aspects of the two geometric flows.

2012年10月01日(月)

代数幾何学セミナー

13:30-15:00   数理科学研究科棟(駒場) 122号室
Robert Laterveer 氏 (CNRS, IRMA, Université de Strasbourg)
Weak Lefschetz for divisors (ENGLISH)
[ 講演概要 ]
Let $X$ be a complex projective variety (possibly singular), and $Y\\subset X$ a generic hyperplane section. We prove several weak Lefschetz results concerning the restriction $A^1(X)_{\\qq}\\to A^1(Y)_{\\qq}$, where $A^1$ denotes Fulton--MacPherson's operational Chow cohomology group. In addition, we reprove (and slightly extend) a weak Lefschetz result concerning the Chow group of Weil divisors first proven by Ravindra and Srinivas. As an application of these weak Lefschetz results, we can say something about when the natural map from the Picard group to $A^1$ is an isomorphism.

代数幾何学セミナー

15:30-17:00   数理科学研究科棟(駒場) 122号室
大川 領 氏 (京都大学数理解析研究所)
Frobenius morphisms and derived categories on two dimensional toric Deligne--Mumford stacks (JAPANESE)
[ 講演概要 ]
For a toric Deligne-Mumford (DM) stack over the complex number field, we can consider a certain generalization of the Frobenius endomorphism. For such an endomorphism of a two-dimensional toric DM stack, we show that the push-forward of the structure sheaf generates the bounded derived category of coherent sheaves on the stack. This is joint work with Hokuto Uehara.

2012年09月20日(木)

応用解析セミナー

16:00-17:30   数理科学研究科棟(駒場) 128号室
Bernold Fiedler 氏 (Free University of Berlin)
Fusco-Rocha meanders: from Temperley-Lieb algebras to black holes
(ENGLISH)
[ 講演概要 ]
Fusco and Rocha studied Neumann boundary value problems for ODEs of second order via a shooting approach. They introduced the notion of what we now call Sturm permutation. These permutation relate, on the one hand, to a special class of meandering curves as introduced by Arnol'd in a singularity context. On the other hand, their special class became central in the study of global attractors of parabolic PDEs of Sturm type.

We discuss relations of Fusco-Rocha meanders with further areas: the multiplicative and trace structure in Temperley-Lieb algebras, discrete versions of Cartesian billiards, and the problem of constructing initial conditions for black hole dynamics which satisfy the Einstein constraints. We also risk a brief glimpse at the long and meandric history of meander patterns themselves.

This is joint work with Juliette Hell, Brian Smith, Carlos Rocha, Pablo Castaneda, and Matthias Wolfrum.

2012年09月15日(土)

保型形式の整数論月例セミナー

13:30-16:00   数理科学研究科棟(駒場) 123号室
宮崎 直 氏 (北里大学) 13:30-14:30
SU(2,1)とSU(3,1)の大きい離散系列表現の行列係数 (JAPANESE)
[ 講演概要 ]
この講演では,$SU(2,1)$と$SU(3,1)$の大きい離散系列表現の行列係数の動径成分に対して,(一般化)超幾何級数を用いた表示を与える.また,この表示に対してVidunas氏の結果を適用する事で得られる行列係数の漸近挙動に関する結果についても紹介する.(織田孝幸氏,古関春隆氏,早田孝博氏との共同研究)
成田宏秋 氏 (熊本大学) 15:00-16:00
GSp(1,1)のRankin型のL関数の中心値の正値性と超幾何級数の特殊値 (JAPANESE)
[ 講演概要 ]
We discuss the strict positivity of the central values of
certain convolution type L-functions for several theta lifts to GSp(1,1). Such strict positivity is closely related to special values of some hypergeometric functions.

< 前へ 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 次へ >