過去の記録

過去の記録 ~05/21本日 05/22 | 今後の予定 05/23~

代数学コロキウム

16:40-17:40   数理科学研究科棟(駒場) 056号室
滝口 正彦 氏 (東京大学数理科学研究科)
Periods of some two dimensional reducible p-adic representations and non-de Rham B-pairs (JAPANESE)

2014年06月24日(火)

PDE実解析研究会

10:30-11:30   数理科学研究科棟(駒場) 056号室
北海道大学のHPには、第1回(2004年9月29日)~第38回(2008年10月15日)の情報が掲載されております。
Piotr Rybka 氏 (University of Warsaw)
Sudden directional diffusion: counting and watching facets (ENGLISH)
[ 講演概要 ]
We study two examples of singular parabolic equations such that the diffusion is so strong that is leads to creation of facets. By facets we mean flat parts of the graphs of solutions with singular slopes. In one of the equations we study there are two singular slopes. The other equation has just one singular slope and the isotropic diffusion term. For both problems we watch and count facet.

For the system with two singular slopes a natural question arises if any solution may have an infinite number of oscillations. We also show that the solutions we constructed are viscosity solutions. This in turn gives estimates on the extinction time based on the comparison principle.

トポロジー火曜セミナー

17:10-18:10   数理科学研究科棟(駒場) 056号室
Tea: 16:50 - 17:10 コモンルーム
野坂 武史 氏 (九州大学数理学研究院)
On third homologies of quandles and of groups via Inoue-Kabaya map (JAPANESE)
[ 講演概要 ]
In this talk, we demonstrate certain quandles, which are defined from a
group $G$ and an isomorphism $¥rho:G - G$, and introduce the following
results: First, "Inoue-Kabaya chain map" is formulated as a map from
quandle homology to group homology. For example, with respect to every
Alexander quandle over F_q, the all of Mochizuki 3-cocycle is derived
from some group 3-cocycle, and mostly interpreted by a Massey products.
In addition, for universal centrally extended quandles, the chain map
induces an isomorphism between the 3-rd homologies (up to certain
torsion parts).

古典解析セミナー

16:00-17:30   数理科学研究科棟(駒場) 122号室
西岡斉治 氏 (山形大学)
D7型離散パンルヴェ方程式の既約性
(JAPANESE)
[ 講演概要 ]
離散パンルヴェ方程式は2階代数的差分方程式で、パンルヴェ方程式と呼ばれる2階代数的微分方程式の差分方程式における対応物である。ここでは特にD7型を扱う。登場当初からパンルヴェ方程式が線形微分方程式に帰着されるか、という問題が議論された。結論は否定的であり、さらに楕円関数・アーベル関数を用いても解を表示できないとされる。この性質は既約性や還元不能性と呼ばれている。一方、離散パンルヴェ方程式に対しても同様の議論ができる。今回はD7型離散パンルヴェ方程式の既約性の証明を紹介する。なお、D7型はq差分方程式ではない。

2014年06月23日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 126号室
野口潤次郎 氏 (東京大学)
岡の第1連接定理の証明に於ける割り算法についての一注意 (JAPANESE)
[ 講演概要 ]
The problem is the local finite generation of a relation sheaf $R(f_1, \ldots, f_q)$ in $\mathcal{O}_n=\mathcal{O}_{C^n}$. After $f_j$ reduced to Weierstrass' polynomials in $z_n$, it is the key to apply the induction in $n$ to show that elements of $R(f_1, \ldots, q)$ are expressed by $z_n$-polynomial-like elements of degree at most $p=\max_j\deg f_j$ over $\mathcal{O}_n$. In that proof one is used to use a divison by $f_j$ of $\deg f_j=p$ (Oka '48, Cartan '50, Hörmander, Demailly, . . .). In this talk we shall confirm that the division abve works by making use of $f_k$ of the minimum degree $\min_j \deg f_j$. This proof is natrually compatible with the simple case when some $f_j$ is a unit, and gives some improvement in the degree estimate of generators.

2014年06月19日(木)

幾何コロキウム

10:00-11:30   数理科学研究科棟(駒場) 122号室
開始時間と開催場所などは変更されることがあるので, セミナーごとにご確認ください.
酒井 高司 氏 (首都大学東京)
Antipodal structure of the intersection of real forms and its applications (JAPANESE)
[ 講演概要 ]
A subset A of a Riemannian symmetric space is called an antipodal set if the geodesic symmetry s_x fixes all points of A for each x in A. This notion was first introduced by Chen and Nagano. Tanaka and Tasaki proved that the intersection of two real forms L_1 and L_2 in a Hermitian symmetric space of compact type is an antipodal set of L_1 and L_2. As an application, we calculate the Lagrangian Floer homology of a pair of real forms in a monotone Hermitian symmetric space. Then we obtain a generalization of the Arnold-Givental inequality. We expect to generalize the above results to the case of complex flag manifolds. In fact, using the k-symmetric structure, we can describe an antipodal set of a complex flag manifold. Moreover we can observe the antipodal structure of the intersection of certain real forms in a complex flag manifold.

This talk is based on a joint work with Hiroshi Iriyeh and Hiroyuki Tasaki.

2014年06月18日(水)

作用素環セミナー

16:30-18:00   数理科学研究科棟(駒場) 122号室
荒野悠輝 氏 (東大数理)
Toward the classification of irreducible unitary spherical representations of the Drinfeld double of $SU_q(3)$ (ENGLISH)

2014年06月17日(火)

トポロジー火曜セミナー

16:30-18:00   数理科学研究科棟(駒場) 002号室
Tea: 16:00 - 16:30 コモンルーム
松田 能文 氏 (青山学院大学)
2次元軌道体群の円周への作用の有界オイラー数 (JAPANESE)
[ 講演概要 ]
Burger,Iozzi,Wienhardは連結かつ向き付けられた有限型の穴あき曲面の基本群
の円周への作用に対して有界オイラー数を定義した.有界オイラー数を含むMilnor-Wood型
の不等式が成立しその最大性はフックス作用を準共役を除いて特徴付ける.被覆を考えること
により有界オイラー数の定義は2次元軌道体群の作用に対して拡張される.Milnor-Wood型の
不等式およびフックス作用の特徴付けはこの場合にも成立する.この講演では,モジュラー群
などのいくつかの2次元軌道体群のフックス作用の持ち上げがいつ有界オイラー数により特徴
づけられるかについて記述する.

代数学コロキウム

17:30-18:30   数理科学研究科棟(駒場) 056号室
Bao Châu Ngô 氏 (University of Chicago, VIASM)
Vinberg's monoid and automorphic L-functions (ENGLISH)
[ 講演概要 ]
We will explain a generalisation of the construction of the local factors of Godement-Jacquet's L-functions, based on Vinberg's monoid.

(本講演は「東京北京パリ数論幾何セミナー」として, インターネットによる東大数理, Morningside Center of MathematicsとIHESの双方向同時中継で行います.)

Lie群論・表現論セミナー

16:30-18:00   数理科学研究科棟(駒場) 126号室
Pablo Ramacher 氏 (Marburg University)
SINGULAR EQUIVARIANT ASYMPTOTICS AND THE MOMENTUM MAP. RESIDUE FORMULAE IN EQUIVARIANT COHOMOLOGY (ENGLISH)
[ 講演概要 ]
Let M be a smooth manifold and G a compact connected Lie group acting on M by isometries. In this talk, we study the equivariant cohomology of the cotangent bundle of M, and relate it to the cohomology of the Marsden-Weinstein reduced space via certain residue formulae. In case of compact symplectic manifolds with a Hamiltonian G-action, similar residue formulae were derived by Jeffrey, Kirwan et al..

2014年06月16日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 126号室
伊師英之 氏 (名古屋大学)
非等質ジーゲル領域の荷重ベルグマン核の新しい例 (JAPANESE)

Kavli IPMU Komaba Seminar

16:30-18:00   数理科学研究科棟(駒場) 002号室
A.P. Veselov 氏 (Loughborough, UK and Tokyo)
Universal formulae for Lie groups and Chern-Simons theory (ENGLISH)
[ 講演概要 ]
In 1990s Vogel introduced an interesting parametrization of simple
Lie algebras by 3 parameters defined up to a common multiple and
permutations. Numerical characteristic is called universal if it can be
expressed in terms of Vogel's parameters (example - the dimension of Lie
algebra). I will discuss some universal formulae for Lie groups
and Chern-Simons theory on 3D sphere.
The talk is based on joint work with R.L. Mkrtchyan and A.N. Sergeev.

2014年06月11日(水)

作用素環セミナー

16:30-18:00   数理科学研究科棟(駒場) 118号室
窪田陽介 氏 (東大数理)
Finiteness of K-area and the dual of the Baum-Connes conjecture (ENGLISH)

数理人口学・数理生物学セミナー

14:50-16:20   数理科学研究科棟(駒場) 128号室
小林 徹也 氏 (東京大学生産技術研究所 統合バイオメディカル国際研究センター)
個体群ダイナミクスの経路積分表現と変分構造 (JAPANESE)
[ 講演概要 ]
個体群動態の理論は、人口学や生態学、進化生物学などの分野において長い研究の歴史がある。この理論は近年、バクテリア等を用いた進化実験などが可能になったことや、免疫・ウィルスの生体内動態を計測できるようになったことを受け、システム生物学などのミクロな細胞を対象にする分野でも大きく注目されている。特に細胞生物学では、細胞の持つシグナル伝達系などの環境応答などが研究されてきたこともあり、シグナル伝達系による個々の細胞の振る舞いが個体群の振る舞いや増殖に及ぼす影響に関心が集まっている。また、実験的に個々の細胞の状態を追跡する技術も登場したことにより、それらの情報を活用するためにも、系譜の振る舞いと集団の振る舞いを統合して理解・解析することが求められている。
本研究ではこのような背景を受け、まず経路積分形式に基づく個体群ダイナミクスについての記述を導入する。経路上の測度に注目することにより、ダイナミクスに内在する変分構造や関連する幾何学的関係を明らかにする。この構造を用いて、個体群の選択過程における新たな見方を提案するとともに、変動環境に対する集団の応答性と集団増殖率の間に成り立つ一般的な関係を明らかにする。
本研究は、杉山 友規氏との共同研究である。

2014年06月10日(火)

講演会

14:40-16:10   数理科学研究科棟(駒場) 056号室
Sergei Duzhin 氏 (Steklov Institute of Mathematics)
Bipartite knots (ENGLISH)
[ 講演概要 ]
We give a solution to a part of Problem 1.60 in Kirby's list of open
problems in topology thus proving a conjecture raised in 1987 by
J.Przytycki. A knot is said to be bipartite if it has a "matched" diagram,
that is, a plane diagram that has an even number of crossings which can be
split into pairs that look like a simple braid on two strands with two
crossings. The conjecture was that there exist knots that do not have such
diagrams. I will prove this fact using higher Alexander ideals.
This talk is based on a joint work with my student M.Shkolnikov

諸分野のための数学研究会

10:30-11:30   数理科学研究科棟(駒場) 056号室
北海道大学のHPには、第1回(2005年6月22日)~第22回(2009年2月18日)の情報が掲載されております。
木村 芳文 氏 (名古屋大学多元数理科学研究科)
The self-similar collapse solution of a point vortex system and complex time singularities (JAPANESE)
[ 講演概要 ]
A system of N point vortices is a Hamiltonian dynamical system with N degrees of freedom,and it is known that under certain parameter and initial conditions, there are self-similar collapse solutions for which N vortices collide at a point while rotating without changing the initial shape of configuration. In this talk, I will introduce such collision solutions and discuss some properties of complex time singularities in relation with those solutions.

解析学火曜セミナー

16:30-18:00   数理科学研究科棟(駒場) 128号室
阿部 健 氏 (名古屋大学)
On estimates for the Stokes flow in a space of bounded functions (JAPANESE)
[ 講演概要 ]
The Stokes equations are well understood on $L^p$ space for various kinds of domains such as bounded or exterior domains, and fundamental to study the nonlinear Navier-Stokes equations. The situation is different for the case $p=\\infty$ since in this case the Helmholtz projection does not act as a bounded operator anymore. In this talk, we show some a priori estimate for a composition operator of the Stokes semigroup and the Helmholtz projection on a space of bounded functions. 

トポロジー火曜セミナー

16:30-18:00   数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
小鳥居 祐香 氏 (東京大学大学院数理科学研究科)
On relation between the Milnor's $¥mu$-invariant and HOMFLYPT
polynomial (JAPANESE)
[ 講演概要 ]
Milnor introduced a family of invariants for ordered oriented link,
called $¥bar{¥mu}$-invariants. Polyak showed a relation between the $¥
bar{¥mu}$-invariant of length 3 sequence and Conway polynomial.
Moreover, Habegger-Lin showed that Milnor's invariants are invariants of
string link, called $¥mu$-invariants. We show that any $¥mu$-invariant
of length $¥leq k$ can be represented as a combination of HOMFLYPT
polynomials if all $¥mu$-invariant of length $¥leq k-2$ vanish.
This result is an extension of Polyak's result.

2014年06月09日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 126号室
高橋良輔 氏 (名古屋大学)
Modified Kähler-Ricci flow on projective bundles (JAPANESE)

数値解析セミナー

16:30-18:00   数理科学研究科棟(駒場) 056号室
及川一誠 氏 (早稲田大学理工学術院)
弱安定化ハイブリッド型不連続Galerkin法について (JAPANESE)
[ 講演概要 ]
ハイブリッド型不連続Galerkin(HDG)法とは、要素内部の未知量に加え、要素間境界上の未知量を導入して定式化を行うという、新しいタイプの不連続Galerkin法である。本講演では、従来のHDG法の安定化項を弱めることによって得られる新手法(弱安定化HDG法)を紹介する。 弱安定化HDG法の理論誤差解析や、ガウス型数値積分公式による実装法、数値計算結果などについて示す。非適合有限要素法との関連性についても述べる。
[ 講演参考URL ]
http://www.infsup.jp/utnas/

2014年06月06日(金)

談話会・数理科学講演会

16:30-17:30   数理科学研究科棟(駒場) 056号室
旧記録は、上記セミナーURLにあります。
お茶&Coffee&お菓子: 16:00~16:30 (コモンルーム)。ඁ

Mikhail Kapranov 氏 (Kavli IPMU)
Lie algebras from secondary polytopes (ENGLISH)
[ 講演概要 ]
The secondary polytope of a point configuration
in the Euclidean space was introduced by Gelfand, Zelevinsky
and the speaker long time ago in order to understand discriminants
of multi-variable polynomials. These polytopes have
a remarkable factorization (or operadic) property: each
face of any secondary polytope is isomorphic to the
product of several other secondary polytopes.

The talk, based on joint work in progress with M. Kontsevich
and Y. Soibelman, will explain how the factorization property
can be used to construct Lie algebra-type objects:
$L_¥infty$ and $A_¥infty$-algebras. These algebras
turn out to be related to the problem of deformation
of triangulated categories with semiorthogonal decompositions.

2014年06月04日(水)

作用素環セミナー

16:30-18:00   数理科学研究科棟(駒場) 122号室
Ion Nechita 氏 (Univ. Paul Sabatier)
Positive and completely positive maps via free additive powers of probability measures (ENGLISH)

2014年06月03日(火)

トポロジー火曜セミナー

16:30-18:00   数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
高倉 樹 氏 (中央大学・理工学部)
Vector partition functions and the topology of multiple weight varieties
(JAPANESE)
[ 講演概要 ]
A multiple weight variety is a symplectic quotient of a direct product
of several coadjoint orbits of a compact Lie group $G$, with respect to
the diagonal action of the maximal torus. Its geometry and topology are
closely related to the combinatorics concerned with the weight space
decomposition of a tensor product of irreducible representations of $G$.
For example, when considering the Riemann-Roch index, we are naturally
lead to the study of vector partition functions with multiplicities.
In this talk, we discuss some formulas for vector partition functions,
especially a generalization of the formula of Brion-Vergne. Then, by
using
them, we investigate the structure of the cohomology of certain multiple
weight varieties of type $A$ in detail.

2014年06月02日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 126号室
林本 厚志 氏 (長野工業高等専門学校)
一般化された擬楕円体と固有正則写像 (JAPANESE)

代数幾何学セミナー

15:30-17:00   数理科学研究科棟(駒場) 122号室
中村勇哉 氏 (東京大学数理科学研究科)
On base point free theorem for log canonical three folds over the algebraic closure of a finite field (JAPANESE)
[ 講演概要 ]
We will discuss about the base point free theorem on three-dimensional
pairs defined over the algebraic closure of a finite field.

We know the base point free theorem on arbitrary-dimensional Kawamata
log terminal pairs in characteristic zero. By Birkar and Xu, the base
point free theorem in positive characteristic is known for big line
bundles on three-dimensional Kawamata log terminal pairs defined over
an algebraically closed field of characteristic larger than 5. Over the
algebraic closure of a finite field, a stronger result was proved by Keel.

The purpose of this talk is to generalize the Keel's result. We will
prove the base point free theorem for big line bundles on
three-dimensional log canonical pairs defined over the algebraic closure
of a finite field. This theorem is not valid for another field.

This is joint work with Diletta Martinelli and Jakub Witaszek.

< 前へ 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 次へ >