過去の記録

過去の記録 ~08/21本日 08/22 | 今後の予定 08/23~

講演会

16:00-18:00   数理科学研究科棟(駒場) 122号室
竹崎正道 氏 (UCLA)
von Neumann 環上の群作用
[ 講演参考URL ]
http://www.ms.u-tokyo.ac.jp/~yasuyuki/mt.htm

数理ファイナンスセミナー

17:30-19:00   数理科学研究科棟(駒場) 118号室
楠岡 成雄 氏 (東京大)
Gaussian K-Scheme について

2006年11月28日(火)

講演会

16:00-18:00   数理科学研究科棟(駒場) 122号室
竹崎正道 氏 (UCLA)
von Neumann 環上の群作用
[ 講演参考URL ]
http://www.ms.u-tokyo.ac.jp/~yasuyuki/mt.htm

トポロジー火曜セミナー

17:00-18:00   数理科学研究科棟(駒場) 056号室
Tea: 16:40 - 17:00 コモンルーム
芥川 和雄 氏 (東京理科大学理工学部)
The Yamabe constants of infinite coverings and a positive mass theorem
[ 講演概要 ]
The {\\it Yamabe constant} $Y(M, C)$ of a given closed conformal manifold
$(M, C)$ is defined by the infimum of
the normalized total-scalar-curavarure functional $E$
among all metrics in $C$.
The study of the second variation of this functional $E$ led O.Kobayashi and Schoen
to independently introduce a natural differential-topological invariant $Y(M)$,
which is obtained by taking the supremum of $Y(M, C)$ over the space of all conformal classes.
This invariant $Y(M)$ is called the {\\it Yamabe invariant} of $M$.
For the study of the Yamabe invariant,
the relationship between $Y(M, C)$ and those of its conformal coverings
is important, the case when $Y(M, C)> 0$ particularly.
When $Y(M, C) \\leq 0$, by the uniqueness of unit-volume constant scalar curvature metrics in $C$,
the desired relation is clear.
When $Y(M, C) > 0$, such a uniqueness does not hold.
However, Aubin proved that $Y(M, C)$ is strictly less than
the Yamabe constant of any of its non-trivial {\\it finite} conformal coverings,
called {\\it Aubin's Lemma}.
In this talk, we generalize this lemma to the one for the Yamabe constant of
any $(M_{\\infty}, C_{\\infty})$ of its {\\it infinite} conformal coverings,
under a certain topological condition on the relation between $\\pi_1(M)$ and $\\pi_1(M_{\\infty})$.
For the proof of this, we aslo establish a version of positive mass theorem
for a specific class of asymptotically flat manifolds with singularities.

代数解析火曜セミナー

16:30-18:00   数理科学研究科棟(駒場) 052号室
打越 敬祐 氏 (防衛大学校)
非圧縮性完全流体の特異初期値問題
[ 講演概要 ]
題材は流体力学ですが,内容的には超局所解析の考え方を駆使する問題
[ 講演参考URL ]
http://agusta.ms.u-tokyo.ac.jp/alganalysis.html

2006年11月27日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
Aleksandr G. Aleksandrov 氏 (Institute for Control Sciences, Moscow)
Logarithmic connections along Saito free divisors
[ 講演概要 ]
We develop an approach to the study of meromorphic connections with logarithmic poles along a Saito free divisor. In particular, basic properties of Christoffel symbols of such connections are established. We also compute the set of all integrable meromorphic connections with logarithmic poles and describe the corresponding spaces of horizontal sections for some examples of Saito free divisors including the discriminants of the minimal versal deformations of $A_2$- and of $A_3$-singularities, and a divisor in $\mathbf{C}^3$ which appeared in a work of M. Sato in the context of the theory of prehomogeneous spaces.

講演会

16:00-18:00   数理科学研究科棟(駒場) 122号室
作用素環論連続講演 2006年11月27日(月)~12月1日(金)
毎日午後4時~6時 122号室(月~水),126号室(木~金)

竹崎正道 氏 (UCLA)
von Neumann 環上の群作用
[ 講演参考URL ]
http://www.ms.u-tokyo.ac.jp/~yasuyuki/mt.htm

2006年11月24日(金)

談話会・数理科学講演会

16:30-17:30   数理科学研究科棟(駒場) 123号室
お茶&Coffee&お菓子: 16:00~16:30(コモンルーム)
佐々真一 氏 (東京大学・大学院総合文化研究科)
ゆらぎをめぐる風景
[ 講演概要 ]
「ゆらぎ」とは、決まった規則がないままにゆらゆらと漂っているさまをあわらしている。わたしたちは、明確な動きの背後には規則があると自然に信じ、その規則を探ろうとするが、「ゆらゆら」に特別の意味をみようとしないだろう。ところで、それがゆえに、「ゆらゆら」の背後に何らかの構造が埋まっていることがわかったときには、衝撃が一段と大きい。
ゆらぎから新しい構造を抜き出した例を並べると、理論物理学史のひとつの断片ができる。講演前半部分では、このなかから20世紀前半のふたりの研究成果をアレンジしながら紹介したい。そのふたりとは、アインシュタインとオンサーガである。ゆらぎと対峙することで、マクロ側の普遍的法則を抽出し、直接みることができないミクロ側の性質を暴いた。これらの成果を踏まえて、講演後半部分では、ゆらぎの背後に新しい構造を見出そうとするわたしたちの最近の試みを紹介したい。

2006年11月22日(水)

統計数学セミナー

16:20-17:30   数理科学研究科棟(駒場) 128号室
鎌谷 研吾 氏 (東京大学大学院数理科学研究科)
A Note on Haplotype Estimation
[ 講演概要 ]
Haplotype information is important for many analyses but it is not always possible to obtain. This work is motivated to seek haplotype information from diploid population data. We present a new approach to know the haplotype information using classical methods. We do not intend to say that our method is better than the well-known EM based approache for practical purposes, but our way is attractive in some sense.
[ 講演参考URL ]
http://www.ms.u-tokyo.ac.jp/~kengok/statseminar/2006/15.html

2006年11月21日(火)

応用解析セミナー

16:30-17:30   数理科学研究科棟(駒場) 122号室
いつもの曜日・時間・セミナー室と違いますのでご注意ください
Henrik SHAHGHOLIAN 氏 (王立工科大学、ストックホルム)
Composite membrane and the structure of the singular set
[ 講演概要 ]
In this talk we present our study of the behavior of the singular set
$\\{u=|\\nabla u| =0\\}$ for solutions $u$ to the free boundary problem
$$
\\Delta u = f\\chi_{\\{u\\geq 0\\} } -g\\chi_{\\{u<0\\}},
$$
where $f$ and $g$ are H\\"older continuous functions, $f$ is positive and $f+g$ is negative. Such problems arise in an eigenvalue optimization for composite membranes.
We show that if for a singular point $z$ there are $r_0>0$, and $c_0>0$ such that the density assumption
$|\\{u< 0\\}\\cap B_r(z)|\\geq c_0 r2 \\forall r< r_0$
holds, then $z$ is isolated.

2006年11月20日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
野口潤次郎 氏 (東大数理)
Advances and examples in the value distribution theory

2006年11月18日(土)

アジア数学史セミナー

16:30-18:00   数理科学研究科棟(駒場) 123号室
曜日および時間が通常と異なります。ご注意下さい。
安 大玉 氏 (東京大学大学院人文社会系研究科、東アジア思想文化)
17 世紀西洋実用幾何学の東伝と徐光啓の数学観
─『測量法義』『測量異同』『句股義』を中心として─
[ 講演概要 ]
『測量法義』『測量異同』『句股義』は、いずれも 1607 年イエズス会士宣教師マテオ・リッチ(漢名:利瑪竇)と徐光啓によって刊行された『幾何原本』に続いて刊行された測量法および句股術に関する実用数学書である。『幾何原本』が演繹論理にもとづく“度数の宗”といわれる理論書であるのに対し、これら三部作は、いずれも実用レベルの応用数学の範疇に属するものである。

(1)『測量法義』は、西洋の測量用の観測機器である象限義(geometric quadrant)による測高・測深・測遠の方法を中心に西洋の測量術を紹介した書物である。
(2)『測量異同』は、呉敬の『九章算法比類大全』から六つの類型の問題を抽出し、その解法を通じて西法と中法の異同を論じる小論である。
(3)『句股義』は、中法と西法の比較を経て、中法の欠点として「ただ解法を知るのみで、その義は知らない(第能言其法、不能言其義也)」ことを取り上げ、選別された 15 問について、その“義”を論じたものである。

今回の報告は、かかる三部作の内容分析を通じて、徐光啓の三部作構想の狙いがどこにあるかを明らかにし、また三部作のもつ意義を考えてみたい。
[ 講演参考URL ]
http://www.ms.u-tokyo.ac.jp/~kawazumi/asia.

東京無限可積分系セミナー

13:30-14:30   数理科学研究科棟(駒場) 117号室
岩尾慎介 氏 (東大数理)
離散周期戸田方程式の解の超離散化による周期箱玉系の初期値問題の解法
[ 講演概要 ]
周期境界条件をもつ箱玉系の初期値問題の解は、周期境界条件を持つ離散方程式の解を超離散化することによって得られる。離散方程式の解は、あるリーマン面上のアーベル積分を用いて表現される。このリーマン面の周期行列を直接超離散化することによって、任意の初期状態の箱玉系の基本周期を得ることができる。

東京無限可積分系セミナー

15:00-16:00   数理科学研究科棟(駒場) 117号室
土谷洋平 氏 (東大数理)
積分変換の項を持つソリトン方程式とその解の構造について
[ 講演概要 ]
ソリトン方程式の中には特異積分変換の項を持つIntermediate long wave, Benjamin-Ono, intermediate nonlinear Schr\\"{o}dinger などの方程式がある。これらの方程式は,適当な条件の下で微差分系(関数微分方程式)に書き換えると佐藤理論の枠組みで捉えることができるようになる。このような方法を中心に現在分かっていることと問題点を紹介したい。

2006年11月17日(金)

統計数学セミナー

15:00-16:10   数理科学研究科棟(駒場) 118号室
清水 泰隆 氏 (大阪大学大学院基礎工学研究科)
Functional estimation of L'evy measure for jump-type processes
[ 講演概要 ]
Recently, stochastic processes with Poissonian jumps are frequently used in finance and insurance. In their applications, it often becomes important to estimate some functionals of integral types with respect to L'evy measures. In this talk, we propose a nonparametric estimator of their functionals based on both continuous and discrete observations. If time permits, we shall also mention the application to the mathematical insurance, in particular, the estimates of ruin probabilities for genelarized risk processes.
[ 講演参考URL ]
http://www.ms.u-tokyo.ac.jp/~kengok/statseminar/2006/13.html

2006年11月16日(木)

講演会

16:30-18:00   数理科学研究科棟(駒場) 118号室
Pierre Berthelot 氏 (Rennes大学)
Crystalline complexes and D-modules

応用解析セミナー

16:00-17:30   数理科学研究科棟(駒場) 056号室
奈良 光紀 氏 (東京工業大学)
The large time behavior of graphical surfaces in the mean curvature flow
[ 講演概要 ]
We are interested in the large time behavior of a surface in the whole space moving by the mean curvature flow. Studying the Cauchy problem on $R^{N}$, we deal with moving surfaces represented by entire graphs. We focus on the case of $N=1$ and the case of $N\\geq2$ with radially symmetric surfaces. We show that the solution converges uniformly to the solution of the Cauchy problem of the heat equation, if the initial value is bounded. Our results are based on the decay estimates for the derivatives of the solution. This is a joint work with Prof. Masaharu Taniguchi of Tokyo Institute of Technology.

作用素環セミナー

16:30-18:00   数理科学研究科棟(駒場) 126号室
戸松玲治 氏 (東大数理)
商型右余イデアルの特徴づけとポワソン境界の分類

2006年11月15日(水)

講演会

16:30-18:00   数理科学研究科棟(駒場) 117号室
Pierre Berthelot 氏 (Rennes大学)
Crystalline complexes and D-modules

数理ファイナンスセミナー

17:30-19:00   数理科学研究科棟(駒場) 118号室
塚原 英敦 氏 (成城大)
歪みリスク尺度の1-パラメータ族とその応用

2006年11月14日(火)

トポロジー火曜セミナー

16:30-18:00   数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
高瀬将道 氏 (信州大学理学部)
High-codimensional knots spun about manifolds
[ 講演概要 ]
The spinning describes several methods of constructing higher-dimensional knots from lower-dimensional knots.
The original spinning (Emil Artin, 1925) has been generalized in various ways. Using one of the most generalized forms of spinning, called "deform-spinning about a submanifold" (Dennis Roseman, 1989), we analyze in a geometric way Haefliger's smoothly knotted (4k-1)-spheres in the 6k-sphere.

2006年11月13日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
小野 肇 氏 (東京工業大学)
Sasaki-Futaki invariant and existence of Einstein metrics on toric Sasaki manifolds

代数幾何学セミナー

16:30-18:00   数理科学研究科棟(駒場) 126号室
青木昌雄 氏 (京大数理研)
Hom stacks and Picard stacks

2006年11月10日(金)

東京幾何セミナー

16:00-17:30   数理科学研究科棟(駒場) 056号室
中島啓 氏 (京都大学大学院理学研究科)
箙多様体のベッチ数の計算
[ 講演概要 ]
箙多様体の S^1 作用に関する固定点は, 次数付き箙多様体と呼ばれる. そのベッチ数の母関数は, 量子ループ代数の q-指標の t-類似と呼ばれ, 表現論的に大切な対象である. このベッチ数を, 仮想ホッジ多項式と, 箙多様体の stratified グラスマン束の構造を用いて計算するアルゴリズムを紹介する. 時間があれば, 大型計算機による計算結果についても紹介する.

トポロジー火曜セミナー

17:40-19:00   数理科学研究科棟(駒場) 118号室
樋上和弘 氏 (東京大学大学院理学系研究科 物理)
WRT invariant for Seifert manifolds and modular forms
[ 講演概要 ]
We study the SU(2) Witten-Reshetikhin-Turaev invariant for Seifert manifold. We disuss a relationship with the Eichler integral of half-integral modular form and Ramanujan mock theta functions.

< 前へ 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 次へ >