Lie Groups and Representation Theory

Seminar information archive ~03/28Next seminarFuture seminars 03/29~

Date, time & place Tuesday 16:30 - 18:00 126Room #126 (Graduate School of Math. Sci. Bldg.)

2008/10/14

16:30-18:00   Room #126 (Graduate School of Math. Sci. Bldg.)
Jan Moellers (Paderborn University)
The Dirichlet-to-Neumann map as a pseudodifferential
operator
[ Abstract ]
Both Dirichlet and Neumann boundary conditions for the Laplace equation are of fundamental importance in Mathematics and Physics. Given a compact connected Riemannian manifold $M$ with boundary $\\partial M$ the Dirichlet-to-Neumann operator $\\Lambda_g$ maps Dirichlet boundary data $f$ to the corresponding Neumann boundary data $\\Lambda_g f =(\\partial_\\nu u)|_{\\partial M}$ where $u$ denotes the unique solution to the Dirichlet problem $\\laplace_g u=0$ in $M$, $u|_{\\partial M} = f$.
The main statement is that this operator is a first order elliptic pseudodifferential operator on the boundary $\\partial M$.

We will first give a brief overview of how to define the Dirichlet-to-Neumann operator as a map $\\Lambda_g:H^{1/2}(\\partial M)\\longrightarrow H^{-1/2}(\\partial M)$ between Sobolev spaces. In order to show that it is actually a pseudodifferential operator we introduce tangential pseudodifferential operators. This allows us to derive a
microlocal factorization of the Laplacian near boundary points. Together with a regularity statement for the heat equation this will finally give the main result.
[ Reference URL ]
https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html