Lie群論・表現論セミナー

過去の記録 ~04/22次回の予定今後の予定 04/23~

開催情報 火曜日 16:30~18:00 数理科学研究科棟(駒場) 126号室
担当者 小林俊行
セミナーURL https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html

2008年10月14日(火)

16:30-18:00   数理科学研究科棟(駒場) 126号室
Jan Moellers 氏 (Paderborn University)
The Dirichlet-to-Neumann map as a pseudodifferential
operator
[ 講演概要 ]
Both Dirichlet and Neumann boundary conditions for the Laplace equation are of fundamental importance in Mathematics and Physics. Given a compact connected Riemannian manifold $M$ with boundary $\\partial M$ the Dirichlet-to-Neumann operator $\\Lambda_g$ maps Dirichlet boundary data $f$ to the corresponding Neumann boundary data $\\Lambda_g f =(\\partial_\\nu u)|_{\\partial M}$ where $u$ denotes the unique solution to the Dirichlet problem $\\laplace_g u=0$ in $M$, $u|_{\\partial M} = f$.
The main statement is that this operator is a first order elliptic pseudodifferential operator on the boundary $\\partial M$.

We will first give a brief overview of how to define the Dirichlet-to-Neumann operator as a map $\\Lambda_g:H^{1/2}(\\partial M)\\longrightarrow H^{-1/2}(\\partial M)$ between Sobolev spaces. In order to show that it is actually a pseudodifferential operator we introduce tangential pseudodifferential operators. This allows us to derive a
microlocal factorization of the Laplacian near boundary points. Together with a regularity statement for the heat equation this will finally give the main result.
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html