談話会・数理科学講演会

過去の記録 ~02/23次回の予定今後の予定 02/24~

担当者 寺杣 友秀
セミナーURL http://www.ms.u-tokyo.ac.jp/seminar/colloquium/index.html
備考 お茶&Coffee&お菓子:15:00~15:30 (コモンルーム)

今後の予定

2018年03月10日(土)

11:00-12:00   数理科学研究科棟(駒場) 大講義室号室
新井仁之 氏 (東大数理)
視知覚の数理科学 (JAPANESE)
[ 講演概要 ]
本講演では、脳内の視覚情報処理の数理モデルとその応用に関して、講演者による結果を中心に述べる。まず数理モデルを作るために考案したかざぐるまフレームレットについて概略を述べ、それを基礎に構成した視覚情報処理の非線形モデルを概説する。さらにこれらを用いて行った各種の錯視の解析を示す。錯視は人の視知覚のメカニズムを解明する上で鍵となる極めて重要な知覚現象であると考えている。先端的な数学を用いることにより、錯視に関して従来の方法では得られなかったような多くの新しい知見が導かれる。このほか、本研究の応用として得られるさまざまな画像処理技術についても、実例を交えながらいくつかの結果を示す。

2018年03月10日(土)

13:00-14:00   数理科学研究科棟(駒場) 大講義室号室
二木昭人 氏 (東大数理)
K安定性と幾何学的非線形問題 (JAPANESE)
[ 講演概要 ]
K安定性は代数幾何における幾何学的不変式論(GIT)の安定性として定式化されたものであるが,アイデアの端緒は Kazdan-Warner が見出したある非線形偏微分方程式の可解性の障害にある.この非線形問題は微分幾何学的に表現すると,2次元単位球面に滑らかな関数 k を任意に与えたとき,計量 g に適当な正の関数 f をかけて得られる計量 fg が k をガウス曲率になるように,f を決めることができるか,という問題である.これは Nirenberg の問題と呼ばれ,現時点でも完全な答えは得られていない.2次元球面を1次元複素射影空間とみなし,更に Fano 多様体の特別な場合とみなして,Fano 多様体の GIT 安定性として定式化したのは Gang Tian であり(1997),さらに一般の偏極多様体に一般化したのは Simon K. Donaldson である(2002).GIT 安定性はモーメント写像を用いた描像があり,有限次元シンプレクティック幾何の形式的議論が,非線形偏微分方程式を解くにあたっての関数空間における無限次元シンプレクティック幾何的な議論の適切な方向を探る指針を与える.Fano 多様体においては,K安定性がモンジュ・アンペール方程式の可解性と同値であり,従ってケーラー・アインシュタイン計量の存在と同値であることが2012年頃,Chen-Donaldson-Sun と Tian によって証明された.モーメント写像を用いた描像を用いると,他の色々な非線形問題においても同じパターンで,K安定性と可解性の同値性を証明する問題として定式化される.

2018年03月10日(土)

14:30-15:30   数理科学研究科棟(駒場) 大講義室号室
川又雄二郎 氏 (東大数理)
双有理幾何学と導来圏 (JAPANESE)
[ 講演概要 ]
極小モデル理論によれば、代数多様体の間の双有理写像は基本的な双有理写像(フリップや因子収縮写像)に分解され、双有理幾何学は双正則幾何学に帰着される。その際の道案内になるのが標準因子Kである。代数多様体上の幾何学はその上の連接層によって表現されるが、連接層全体のなすアーベル圏から、複体を考え局所化することによって対称性がアップした導来圏Dが得られる。Kの変化とDの変化の間には思いがけず密接な関係が観測された。一方、有限群による商特異点の極小特異点解消(幾何学)とその群の表現(代数)の間には隠れた関係(マッカイ対応)が観測される。これらを総合した予想としてDK予想がある。最近の進展について解説する。

2018年03月10日(土)

16:00-17:00   数理科学研究科棟(駒場) 大講義室号室
俣野 博 氏 (東大数理)
反応拡散方程式の定性的理論
(JAPANESE)
[ 講演概要 ]
反応拡散方程式は,非線形偏微分方程式の重要なクラスの一つであり,粒子の拡散を表す項と,粒子の生成消滅を表す非線形項を組み合わせた形で表される.この方程式は,物理学,生物学,化学など広い分野 に応用があるため,過去数十年間にわたって盛んに研究が進められてきた.とくに,1960年代後半から70年代にかけて,反応拡散方程式の解の定性的なふるまいを無限次元力学系の視点から解き明かす研究が少しずつ始まり,その後,大きな流れになっていった.近年は,特異摂動法など種々の解析手法の発展と相まって,反応拡散方程式の解の性質についての理解はますます深まり,応用範囲も広がっている.本講演では,1970年代後半に始めた私自身の研究も振り返りながら,この分野の半世紀にわたる発展の歴史の一部を概観する.

2018年04月06日(金)

15:30-16:30   数理科学研究科棟(駒場) 123号室
石本健太 氏 (東大数理)
微生物走流性の流体数理 (JAPANESE)
[ 講演概要 ]
走流性とは流れに対する生き物の応答を意味し、例えば川魚が流れに逆らって泳
ぐことはよく知られているが、精子や鞭毛虫などの微小生物の中にも同様に流れ
に逆らって泳ぐものがいる。本講演では、微小スケールの流体力学の導入から始
め、流体方程式を解析することで生き物の泳ぎを理解する試みについてお話しす
る。後半では自身の微生物走流性の2次元流体モデルの研究を紹介し、複雑な現
象に潜む流体の数理について議論する予定である。