応用解析セミナー

過去の記録 ~05/23次回の予定今後の予定 05/24~

開催情報 木曜日 16:00~17:30 数理科学研究科棟(駒場) 002号室
担当者 石毛 和弘

今後の予定

2018年05月24日(木)

16:00-17:30   数理科学研究科棟(駒場) 128号室
柳田英二 氏 (東京工業大学)
Sign-changing solutions for a one-dimensional semilinear parabolic problem (Japanese)
[ 講演概要 ]
This talk is concerned with a nonlinear parabolic equation on a bounded interval with the homogeneous Dirichlet or Neumann boundary condition. Under rather general conditions on the nonlinearity, we consider the blow-up and global existence of sign-changing solutions. It is shown that there exists a nonnegative integer $k$ such that the solution blows up in finite time if the initial value changes its sign at most $k$ times, whereas there exists a stationary solution with more than $k$ zeros. The proof is based on an intersection number argument combined with a topological method.