解析学火曜セミナー

過去の記録 ~10/21次回の予定今後の予定 10/22~

開催情報 火曜日 16:50~18:20 数理科学研究科棟(駒場) 128号室
担当者 中村 周, 石毛 和弘, 伊藤 健一
セミナーURL http://www.ms.u-tokyo.ac.jp/seminar/analysis/

次回の予定

2018年10月30日(火)

16:50-18:20   数理科学研究科棟(駒場) 128号室
宮西吉久 氏 (大阪大学)
Spectral structure of the Neumann-Poincaré operator in three dimensions: Willmore energy and surface geometry (日本語)
[ 講演概要 ]
The Neumann-Poincaré operator (abbreviated by NP) is a boundary integral operator naturally arising when solving classical boundary value problems using layer potentials. If the boundary of the domain, on which the NP operator is defined, is $C^{1, \alpha}$ smooth, then the NP operator is compact. Thus, the Fredholm integral equation, which appears when solving Dirichlet or Neumann problems, can be solved using the Fredholm index theory.
Regarding spectral properties of the NP operator, the spectrum consists of eigenvalues converging to $0$ for $C^{1, \alpha}$ smooth boundaries. Our main purpose here is to deduce eigenvalue asymptotics of the NP operators in three dimensions. This formula is the so-called Weyl's law for eigenvalue problems of NP operators. Then we discuss relationships among the Weyl's law, the Euler characteristic and the Willmore energy on the boundary surface.