複素解析幾何セミナー

過去の記録 ~11/14次回の予定今後の予定 11/15~

開催情報 月曜日 10:30~12:00 数理科学研究科棟(駒場) 128号室
担当者 平地 健吾, 高山 茂晴, 細野 元気

2018年11月26日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
糟谷久矢 氏 (大阪大学)
DGA-Models of variations of mixed Hodge structures (JAPANESE)
[ 講演概要 ]
Mixed Hodge structureは(Projectiveとは限らない)代数多様体のコホモロジー等に現れる非常に重要な構造です。Variations of mixed Hodge structures(VMHS)とは複素多様体をパラメーターとして複素幾何学的に良い振る舞いをしながら変化するMixed Hodge structureたちのことです。今回のお話ではこのVMHSの代数的なモデルについて考えてみたいと思いいます。具体的にはMorganの Mixed Hodge diagramと呼ばれるケーラー多様体のde Rham複体(あるいは対数的 de Rham複体)を積構造込みで模した代数的な対象に対して、”(Unipotent)VMHSのようなもの"を定義します。このVMHSのようなものは純粋に代数的に定義されたものであるため、本来のVMHSのようにベースとなる空間のパラメーターごとにMixed Hodge structureをとる(ファイバーをとる)ことを自然にはできません。本講演ではこの"VMHSのようなもの”からいかにファイバーを取るかということをメインテーマにしてお話ししたいと思います。さらに時間があれば、本結果の幾何学的応用についてもお話ししたいと思います。特に今回の結果によりMorganのMixed Hodge structureとHainのMixed Hodge structureの深い関係が見えることをお話ししたいと思います。