講演会

過去の記録 ~10/20次回の予定今後の予定 10/21~


2018年06月22日(金)

16:00-17:00   数理科学研究科棟(駒場) 128号室
Michael Harrison 氏 (Lehigh University)
Fibrations of R^3 by oriented lines
[ 講演概要 ]
Is it possible to cover 3-dimensional space by a collection of lines, such that no two lines intersect and no two lines are parallel? More precisely, does there exist a fibration of R^3 by pairwise skew lines? We give some examples and provide a complete topological classification of such objects, by exhibiting a deformation retract from the space of skew fibrations of R^3 to its subspace of Hopf fibrations. As a corollary of the proof we obtain Gluck and Warner's classification of great circle fibrations of S^3. We continue with some recent results regarding contact structures on R^3 which are naturally induced by skew fibrations. Finally, we discuss fibrations of R^3 which may contain parallel fibers, and discuss when such objects induce contact structures.