談話会・数理科学講演会

過去の記録 ~04/19次回の予定今後の予定 04/20~

担当者 寺杣 友秀
セミナーURL http://www.ms.u-tokyo.ac.jp/seminar/colloquium/index.html
備考 お茶&Coffee&お菓子:15:00~15:30 (コモンルーム)

2018年01月26日(金)

15:30-16:30   数理科学研究科棟(駒場) 002号室
小池祐太 氏 (東大数理)
Wiener汎関数ベクトルの最大値のGauss型近似とその高頻度データ解析への応用 (JAPANESE)
[ 講演概要 ]
本報告では, Wiener汎関数からなる(高次元)ベクトルの最大値の分布とGauss型ベクトル
の最大値の分布の間のKolmogorov距離を評価する問題を考える. 特に, 最近数理統計学
の分野におけるChernozhukov, Chetverikov & Katoによる一連の研究で発展した,
独立な高次元確率ベクトルの列の和の分布をそのGauss型の類似物の分布で近似する理論を,
Wiener汎関数からなるベクトルへと拡張することを試みる. 本報告では, Chernozhukov,
Chetverikov & Kato (2015, PTRF)の結果のWiener汎関数からなるベクトルへの一般化
が可能であることを示す. さらに, 特別な場合として, (同じ次数をもつ)多重Wiener-伊藤積分
のベクトルの最大値の分布とGauss型ベクトルの最大値の分布の間のKolmogorov距離が0に
近いことを示すには, 共分散行列の成分どうしが近く, かつ前者の各成分の4次キュムラントの
最大値が0に近いことを示せば十分であること, すなわち(広い意味での)fourth moment
phenomenonが起きることを示す. 最後に, 高頻度データ解析への応用例を与え、理論の
拡張可能性について概観する.