過去の記録 ~03/19次回の予定今後の予定 03/20~

開催情報 火曜日 10:30~11:30 数理科学研究科棟(駒場) 056号室
担当者 儀我美一、米田剛
セミナーURL http://coe.math.sci.hokudai.ac.jp/sympo/pde_ra/
目的 首都圏の偏微分方程式、実解析の研究をさらに活発にするために本研究会を東大で開催いたします。


10:30-11:30   数理科学研究科棟(駒場) 056号室
※ 通常と曜日が異なります。
Kaj Nyström 氏 (Uppsala University)
Boundary value problems for parabolic equations with measurable coefficients (English)
[ 講演概要 ]
In recent joint works with P. Auscher and M. Egert we establish new results concerning boundary value problems in the upper half-space for second order parabolic equations (and systems) assuming only measurability and some transversal regularity in the coefficients of the elliptic part. To establish our results we introduce and develop a first order strategy by means of a parabolic Dirac operator at the boundary to obtain, in particular, Green's representation for solutions in natural classes involving square functions and non-tangential maximal functions, well-posedness results with data in $L^2$-Sobolev spaces together with invertibility of layer potentials, and perturbation results. In addition we solve the Kato square root problem for parabolic operators with coefficients of the elliptic part depending measurably on all variables. Using these results we are also able to solve the $L^p$-Dirichlet problem for parabolic equations with real, time-dependent, elliptic but non-symmetric coefficients. In this talk I will briefly describe some of these developments.