代数学コロキウム

過去の記録 ~12/10次回の予定今後の予定 12/11~

開催情報 水曜日 17:00~18:00 数理科学研究科棟(駒場) 056号室
担当者 今井 直毅, 三枝 洋一

2017年11月08日(水)

18:00-19:00   数理科学研究科棟(駒場) 056号室
Xin Wan 氏 (Morningside Center for Mathematics)
Iwasawa theory and Bloch-Kato conjecture for modular forms (ENGLISH)
[ 講演概要 ]
Bloch and Kato formulated conjectures relating sizes of p-adic Selmer groups with special values of L-functions. Iwasawa theory is a useful tool for studying these conjectures and BSD conjecture for elliptic curves. For example the Iwasawa main conjecture for modular forms formulated by Kato implies the Tamagawa number formula for modular forms of analytic rank 0.
In this talk I'll first briefly review the above theory. Then we will focus on a different Iwasawa theory approach for this problem. The starting point is a recent joint work with Jetchev and Skinner proving the BSD formula for elliptic curves of analytic rank 1. We will discuss how such results are generalized to modular forms. If time allowed we may also explain the possibility to use it to deduce Bloch-Kato conjectures in both analytic rank 0 and 1 cases. In certain aspects such approach should be more powerful than classical Iwasawa theory, and has some potential to attack cases with bad ramification at p.

(本講演は「東京北京パリ数論幾何セミナー」として,インターネットによる東大数理,Morningside Center of Mathematics と IHES の双方向同時中継で行います.今回は北京からの中継です.)