代数幾何学セミナー

過去の記録 ~05/28次回の予定今後の予定 05/29~

開催情報 月曜日 15:30~17:00 数理科学研究科棟(駒場) 122号室
担当者 權業 善範・中村 勇哉・高木 俊輔

2017年05月23日(火)

15:30-17:00   数理科学研究科棟(駒場) 122号室
小関 直紀 氏 (東大数理)
Perverse coherent sheaves on blow-ups at codimension two loci (English)
[ 講演概要 ]
I would like to talk about my recent work in progress.
Let us consider the blow-up X of Y along a subvariety C.
Then the following natural question arises:
What is the relation between moduli space of sheaves on Y
and that of X?
H.Nakajima and K.Yoshioka answered the above question
in the case when Y is a surface and C is a point. They
showed that the moduli spaces are connected by a sequence
of flip-like diagrams. The key ingredient of the proof is
to use perverse coherent sheaves in the sense of T.Bridgeland
and M.Van den Bergh.
In this talk, I will explain how to generalize their theorem
to the case when Y is a smooth projective variety of arbitrary
dimension and C is its codimension two subvariety.