代数幾何学セミナー

過去の記録 ~04/29次回の予定今後の予定 04/30~

開催情報 月曜日 15:30~17:00 数理科学研究科棟(駒場) 122号室
担当者 權業 善範・中村 勇哉・高木 俊輔

2017年05月09日(火)

15:30-17:00   数理科学研究科棟(駒場) 122号室
柴田 康介 氏 (東大数理)
Upper bound of the multiplicity of locally complete intersection singularities (English)
[ 講演概要 ]
The multiplicity of a point on a variety is a fundamental invariant to estimate how the singularity is bad. It is introduced in a purely algebraic context. On the other hand, we can also attach to the singularity the log canonical threshold and the minimal log discrepancy, which are introduced in a birational theoretic context. In this talk, we show bounds of the multiplicity by functions of these birational invariants for a singularity of locally a complete intersection. As an application, we obtain the affirmative answer to Watanabe’s conjecture on the multiplicity of canonical singularity of locally a complete intersection up to dimension 32.