トポロジー火曜セミナー

過去の記録 ~10/17次回の予定今後の予定 10/18~

開催情報 火曜日 17:00~18:30 数理科学研究科棟(駒場) 056号室
担当者 河野 俊丈, 河澄 響矢, 北山 貴裕, 逆井卓也
セミナーURL http://faculty.ms.u-tokyo.ac.jp/~topology/index.html
備考 Tea: 16:30 - 17:00 コモンルーム

2017年04月25日(火)

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
久野 雄介 氏 (津田塾大学)
Formality of the Goldman-Turaev Lie bialgebra and the Kashiwara-Vergne problem in positive genus (JAPANESE)
[ 講演概要 ]
This talk is based on a joint work with A. Alekseev, N. Kawazumi and F. Naef. Given a compact oriented surface with non-empty boundary and a framing of the surface, one can define the Lie bracket (Goldman bracket) and the Lie cobracket (Turaev bracket) on the vector space spanned by free homotopy classes of loops on the surface. These maps are of degree minus two with respect to a certain filtration. Then one can ask the formality of this Lie bialgebra: is the Goldman-Turaev Lie bialgebra isomorphic to its associated graded?

For surfaces of genus zero, we showed that this question is closely related to the Kashiwara-Vergne (KV) problem in Lie theory (arXiv:1703.05813). A similar result was obtained by G. Massuyeau by using the Kontsevich integral.

Our new topological interpretation of the classical KV problem leads us to introduce a generalization of the KV problem in connection with the formality of the Goldman-Turaev Lie bialgebra for surfaces of positive genus. We will discuss the existence and uniqueness of solutions to the generalized KV problem.