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1

Basic tools of Riemannian geometry

In this chapter, we will briefly describe the foundations of Riemannian geometry for readers
who are unfamiliar with the subject. Our choice of material is made in view of applications
to Carleman estimates and inverse problems. Readers who are interested in a more system-
atic exposition of Riemannian geometry, can consult, for example, [17], [33]. We provide
proofs only if they cannot be found in the standards textbooks. Our interest is focused on
Riemannian manifolds which are manifolds equipped with metric structure.

1.1 Manifolds

The concept of a manifold is used throughout this lecture note. We start with defining the
notion of a coordinate chart.

Definition 1.1.1 Let M be a topological space. Then a pair (U, ) is called a chart (a
coordinate system), if
0:U— ¢U)CR"

and p(U) is an open set in R". The coordinate functions on U are defined as x7 : U — R,

and
pla) = (z'(a), - ,2"(a)).

Here n is called the dimension of the coordinate system.

Definition 1.1.2 A ropological space M is called a Hausdorff space if for each two distinct
points ay, as € M, there are two open sets Uy, Uy C M such that

ap € Uy, ag € Uy, UlﬂU2:®.
We now want to consider the case where M is covered by such charts and satisfies some
consistency conditions. We have

Definition 1.1.3 An n-dimensional atlas on a topological space M is a collection of charts
{(Uas a) }oes with some index set I such that:

o M is covered by {Uy} ./
o .Uy NUp) is open in R™ for each o, € 1.
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o the map
050 0a" : Pa(Ua NUs) — 05(Us N Up)

is smooth.

Definition 1.1.4 Two atlases {(Ua,a)},e; and {(Vs, ¥p)}se, are compatible if their
union is an atlas.

The set of compatible atlases with a given atlases can be organized by inclusion. The maxi-
mal element is called the complete atlas.
Finally we come to the definition of a manifold:

Definition 1.1.5 A smooth manifold M is called a Hausdorff space with a complete atlas.

Definition 1.1.6 An n-dimensional manifold with boundary is defined as a Hausdorf{f space
together with an open cover {U,} and homeomorphism p,, : U, — f]a such that each f]a is
anopen setin R :={x € R"; x, > 0} and gz 0 @' : 0o(Us NUs) — 0(Ua N Up) is
a smooth map whether U, N Ug is nonempty.

In this lecture note, we deal with smooth manifolds, i.e., C*°-manifolds, which means that
ppoprt,a €1, € J,are C* mappings. We understand that a compact manifold consists
of a finite number of pieces of Euclidean spaces which are glued together. The functions

Yo(z) = (2*(2),--- ,2"(x)) € R"

are called local coordinates on U,,. Sometimes, when there is no danger of misunderstanding,

we also write x = (!, -+ ,2") identifying a point z € M with its representation in some

local coordinates. All manifolds in this book are assumed to be compact and connected.

1.2 Tangent vectors and cotangent vectors

In this section, we introduce the notion of the tangent space 7, M of a differentiable mani-
fold M at a point @ € M. This is a vector space of the same dimension as M.

Definition 1.2.7 A function f : M — R is said to be smooth (respectively C*) if for every
chart {(Uy, o)} on M, the function f o o' : ¢, (U,) — R is smooth (respectively C*)
for any o € 1. The set of all C* functions on the manifolds M will be denoted by C*(M).

Definition 1.2.8 Let M be a differentiable manifold and a € M be given. A tangent vector
X, at point a € M is defined as a map X, : C>*°(M) — R such that

o X, is R-linear:
Xo(M 1+ f2) = AXo(f1) + Xa(fo), forall NeER, fi,f, €C*(M),
o X, satisfies the Leibniz rule:

Xo(fifo) = Xa(fi) fala) + fi(a)Xo(f2), forall fi, fo € C*(M).
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The set of all tangent vectors at a to M is denoted by T, M and is called the tangent space
at a. It is a vector space of dimension n. A basis in this space is given by the coordinate

tangent vectors (6%1) which is defined by

<8i>a(f) = a(zi (foe™) (wla)), 1.2.1)

where p = (x1,--- ,z") is a system of coordinates around a and (y',--- ,y") is the stan-

dard Cartesian coordinate system on R".

In a given coordinate system (z!,--- , 2"), every tangent vector X € T, M can be written
as follows:
X = Z o o (12.2)

=1
where a real-valued function o’ = X o z' : M — R, is called the components of X. Note
that X is differentiable if o are differentiable.

Looking at (1.2.1) and (1.2.2), we can consider that a tangent vector X gives a directional
derivatives of function f € C*°(M):

(X0)0) = X@f@) = Yo' 5L @,

i=1

Now we introduce the tangent bundle 7'M of a differentiable manifold M. Intuitively,
this is the object which we obtain by glueing at each point x of M the corresponding tangent
space T, M. The differentiable structure on M induces a differentiable structure on the
tangent bundle 7 M turning it into a differentiable manifold.

Definition 1.2.9 Let M be differentiable manifold:

o The cotangent space 17 M is the space of linear functionals on T, M. Its elements are
called covectors or one—forms.
o The disjoint union of the tangent spaces

™= ) .M
zeEM

is called the tangent bundle of M.

o Respectively, the cotangent bundle T* M is the union of the spaces T, M, x € M.

e A one-form w on the manifold M is a function that assigns to each point v € M a
covector w, € T M.

Remark 1 The Riemannian metric induces a natural isomorphism ¢ : T, M — T* M given
by ¢(v) = (v,-). For v € T, M we denote v" = «(v), and similarly for ¢ € T* M we denote
©% =171 (¢), ¢ and 1" are called musical isomorphisms.
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An example of a one-form is the differential of a function f € C*°(M), which is defined by

df.(X Z 8351 X e T,M.

Hence f defines the mapping df : T M — R, which is called the differential of f given by
df (z, X) = dfo(X).

In local coordinates,

where (dz!, - - -, dz™) is the basis in the space 77 M which is the dualto the basis (al A

In general, a one-form in local coordinates can be written as

n
w = E w'dzx
i=1

where w' = w(dzl)

Now we introduce the notion of vector fields on manifolds which is an assignment of a
tangent vector to every point x € M.

Definition 1.2.10 A vector field X on an n-dimensional manifold M is a mapping from the
manifold to the tangent bundle, X : M — T M, which associates to every point xt € M a
tangent vector X (z) € T, M.

The set of all vector fields on M will be denoted by X(M).

Following the interpretation of vector fields as maps that operate on functions in a man-
ifold, we may ask ourselves about applying these operation multiple times. It turns out that
not every iteration of vector fields gives another vector field, nonetheless, there is a special
combination, given in the following definition, which is very important as we will see later.

Definition 1.2.11 Let X;Y € X(M) be vector fields on a manifold M, the Lie bracket
[X, Y] is defined as the vector field

B 86 oo
[X;Y}_Z< 8733]_ Jax]> 5‘%

ij=1

; Y= Zﬁ]@ﬁ

We say that the vector fields X and Y commute if [ X, Y} =0.

Lemma 1.2.1 The Lie bracket |-, ] is bilinear over R. For a differentiable function f, we
have

(X Y] = X(Y () =Y (X))

Furthermore the Jacobi identity holds:
(X, Y], Z] +[[Y, 2], X] +[[2, X],Y] =0
for any three vector fields X,Y, Z.
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Proof . In local coordinate with X = Z o'—,Y = Z B‘

J0BiOf 9l of
X Y f Z ( 5’:131 axl ﬂ 8a:j 8I1> ’

7,j=1

and this is linear in f, X and Y. This implies the first two claims. The Jacobi identity follows
by direct computations. O

1.3 Riemannian metric

In this section we introduce the Riemannian metric. The metric g provides us with an inner
product on each tangent space and can be used to measure the length of curves in the man-
ifold. It defines a distance function and turns the manifold into a metric space in a natural
way. A Riemannian metric on a differentiable manifold is an important example of what is
called a tensor field.

Definition 1.3.12 Let M be a smooth manifold. We call g a Riemannian metric on M when
the function g assigns a non-negative number to smooth vector fields X,Y on M and satis-

fies
g(Xl + X27Y) = g(XhY) =+ g('X27Y)7 g(X7Y1 + }/2) = g(X7Y1) + g(X7YV2)7

and
g(X,X) >0 whenever X #0

for all smooth real-valued functions f and vector fields X, X1, Xo,Y, Y1, Y5,
A Riemannian manifold (M, g) is a manifold M with metric g. We call g a positive
definite two-covariant tensor field.

In local coordinates, g is given by a smooth positive definite symmetric matrix function
g = (gjk):
g= Z gijdr’ ® da?,

1,j=1

R
87 =8\ a2 )

Definition 1.3.13 For x € M, the inner product and the norm on the tangent space T, M
are given by

where g;; are given by
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gX,Y) = (X,Y) =Y gual B,

Jk=1
1X| = (X, X)"/? X:iaiﬁ y:zn:ﬁii.
7 7 i=1 Oz’ = 0w

Lemma 1.3.1 Let (M, g) be a Riemannian manifold with Riemannian metric g. Let w be
a transformation which maps a smooth vector field on M to a smooth functions on M.
Suppose that

WX +Y)=wX)+w®), w(fX)=fwlX)

for every smooth real-valued function f and vector fields X andY on M. Then there exists
a unique smooth vector field A on M with the property that w(Z) = (A, Z) for all smooth
vector fields Z on M.

Proof . First we verify the uniqueness of the vector field A . Let U be an open set in M and
let A and B be vector fields on U with the property that

(A4,2) =w(Z) = (B, Z)

for all smooth vector fields Z on U. Then (A — B, Z) = 0 on U for all vector fields Z. In
particular, (A — B, A — B) = 0in U. It follows from the definition of a Riemannian metric
that A = B in U. This proves the uniqueness of the vector field A.

Now suppose that the open set U is the domain of some smooth coordinate system

(x',--+2™). Let
(2 9N_[9 9
bij =8 0xi’8wj n 81‘7;7817]‘ '

Then (g;;) is a matrix of smooth functions in U which is positive definite, and hence invert-
ible at each point of U. Let (g/) be the smooth functions in U characterized by the property
that the matrix (g) is the inverse of (g;;) at each point in U:

Z g gk = O
j=1

Define a smooth vector field A on U by
n o a
A — ey
__Z we a.’L'j7
7,j=1

where

7]

w' = w(

Let Z be a smooth vector field on U given by
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Then
Z wigleah = w(2).

i,7,k=1
We thus obtain a smooth vector field A over any coordinate patch U with the property that
(A, Z) = w(Z) for all vector fields Z on U. If we are given two overlapping coordinate
systems on M, then the uniqueness result was already proved, and the vector fields over the
coordinate patches obtained in the manner just described must agree on the overlap of the
coordinate patches. Thus we obtain a smooth vector field A defined over the whole of M
such that w(Z) = (A, Z) for all smooth vector fields Z on M, as required. O

1.4 Connection

For a manifold M and two vector fields X, Y € X(M), we want to know how one vector
field changes with respect to another. That is, for given two vector fields X (z), Y (z) €
T, M for z € M, how can we understand the differential of X (x) in the direction Y (z)? In
fact, this is related to the definition of the directional derivative of a vector field at x € M.
However there is a difficulty for the interpretation, and we have to clarify such operations,
since vector fields take their value on different tangent spaces. We can clarify by imposing
an additional structure on the tangent bundle of our manifold. This structure is called Con-
nection and it allows two different spaces to be compared through, conceptually speaking,
a notion of the tangent spaces being infinitesimally rolled or slipped along the manifold in
an Euclidean manner and thus preserving the isometry. However, the analytic solution given
here is harder to reconcile for intuitive concept and as for details we recommend readers to
consult [33].

Definition 1.4.14 Let M be a smooth manifold. A connection Dx is defined as a bilinear

mapping
X(M) x X(M) — E(M)
(X,)Y) — DyY

such that
1. Dy is tensorial in X, that is,

DyyvZ=DxZ+DyZ, X,Y,Z € X(M)

and
DxY = fDxY, XY € X(M), feC'(M).

2. Dx(+) is R-linear in Y, that is,
Dx(Y + Z) = DxY +DxZ, X.Y,Z € X(M).
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Dx(fY) = X(/)Y + fDxY, XY €X(M), feC' (M)
Instead of a connection, we also call Dx by a convariant derivative.

Definition 1.4.15 Let M be a smooth manifold. The torsion tensor of a connection D on
T M is defined by:

T(X,Y)=DxY —DyX — [X,Y], X,Y € X(M).
We call D torsion free if T(X,Y) = 0 forall X, Y € X(M).

On a Riemannian manifold, we can choose the connection called the Levi-Civita connection:

Theorem 1.4.1 (The fundamental theorem of Riemannian geometry). On each Riemannian
manifold M, there exists precisely one torsion free connection, denoted by Vx on T'M,
such that

ZUX,Y)) = (VzX,Y)+ (X,V,Y) forall X,Y,Z € X(M). (14.1)

This connection is determined by the formula:

(VxY,2Z) = S[X ((Y,2)) - Z((X,Y)) +Y ((Z. X))

— (X, [V, Z) + (Z,[X,Y]) + (Y, [Z,X])]. (142)

| =

The connection V x is called the Levi-Civita connection. The proof is found in e.g., Theorem
3.3.1in [33] but I repeat.

Proof . We shall first prove that each torsion free connection Dx on 7'M such that
(1.4.1) holds, has to satisfy (1.4.2). This implies the uniqueness. Since V x should satisfy
(1.4.1), it has to satisfy

X({Y,Z)) = (DxY, Z) + (Y,Dx 2),
Y({Z,X))=(DyZ, X) + (Z,DyX),
Z((X,Y)) = (DzX,Y) + (X, DY) .

We shall first prove the existence. For fixed X and Y, we consider the one-form w defined
by

Then w(Z) is tensorial in Z, because we have

w(fZ) = fw(Z)Jr% (XN Y, 2)+Y () (Z X) = X() Y. 2) =Y () (X, Z)] = fu(Z)

(1.4.3)
for f € C*(M). Moreover the additivity in Z is obvious. Therefore there exists precisely
one vector field A which depends on X and Y/, such that
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w(Z) = (A, 7).

We thus put DxY := A. It remains to show that this defines a torsion free connection. Let
us first verify that Dy defines a connection: The additivity with respect to X and Y is clear.
By (1.4.3) we see that it is tensorial, and finally we can show

DxfY = fDxY + X (f)Y.
On the other hand, (1.4.2) implies
<DXYa Z> - <DYX7 Z> = <[X7Y] 7Z>7

and Dy is a torsion free connection. Likewise (1.4.2) follows by adding (DxY, Z) and

For computations, we use, however, local expressions known as the Christoffel symbols
which fully describe the connection, and in other words, we want to express the covariant
derivative in a local coordinate. Given X, Y € X(M) in a local coordinate system, we can

write
n
X = E o'
i=1

where o, 37 are real-valued functions. Therefore in local coordinate system, we have

VyY =) Vai o <6J6x7-> = z;X (%) ot > a BV o <a$7> . (149
i)z .

i,j=1 i,j=1

%) "0
— )
89@7 Y leﬁ 8xj’

The last term on the right-hand side can be written as

%) < 0
\V/ ) = g 145
G (6:1:j> kz:; I 0xy’ ( )
where FZ’; : M — R are real-valued functions for i, j,k = 1,2,--- ;n,and [ Z’; are called

the Christoffel symbols. If we know what these are, then we can compute the connection of
any two vector fields. The Christoffel symbols depend on the choice of coordinate system
and therefore are not tensorial. However they contain all the information about the behavior
of the connection which is tensorial and one can express them in a different coordinate
system.

Then the question is how we can compute these Christoffel symbols. They are easily
expressed in terms of the coefficients of the metric when this is expressed in a coordinate
system. From the definition of the Levi-Civita connection, we have:

u 0 0 - o 0
E(r) = E kppm [ _Z 7\ = E kp 2
L) LA <8xm’ 8xp> — & <vaazl ox;’ 8xp>

m,p=1
BN kp agjp 8gip 0gik
= - — . (14.6
2 pzz;g () (83:,- * Or; 0w ( )
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It follows from the definition of connection that

ViV = zn: < Zﬂ 5Q> - (1.4.7)

l,p=1

Definition 1.4.16 The covariant differential DZ of a vector fields Z is the bilinear form
given by
DZ(X,Y)=(VxZY), X, Ye&XM).

Lemma 1.4.1 Let X and Z be smooth real vectors fields. The following identity holds true:
1
X((7,X)) = DZ(X, X) + 5 Z(XP).
Proof . By (1.4.1), we obtain

X(2,X))=(Vz,X) + <V2X7X>
=DZ(X,X)+ [(VZX,X>+<X,VZX>]

l\.’)\»—ll\.’)\

=DZ(X,X)+ =Z(X).

The proof is completed. 0

1.5 Laplace-Beltrami operator

Definition 1.5.17 Let (M, g) be a Riemannian manifold and f € C'(M). The gradient of
f, denoted by V f, is defined by a vector field on M metrically equivalent to df :

(VI X)=df(X)=X(f) forall X € X(M). (1.5.1)

This reads in local coordinates:

d
=—. 152
Vf= ;Vf o (152)
By
N9
df_;%d
equation (1.5.1) yields
of N~ 0
Uzlgw Vi)a ]221 g0 foral nga oo € XM).

The components of the gradient are
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ij_zax

and then

" L Of 0
ij
vi= Z Ox; dx;’

7,j=1

In physics, a force vector field is called conservative if it is of a certain potential energy.
This definition can be extended to any vector field on manifolds as follows:

Definition 1.5.18 Let X € X(M) be a vector field on M. We say that X is provided by a
potential 1 if there exists a differentiable function ¢ such that X = V1.

Definition 1.5.19 Ler X be a vector field on M. By divX we denote a scalar function given
by

divX = (D, X,e)

i=1
ifv € Mand (e, ,e,) is an orthonormal basis of T, M. We call it the divergence of a
vector field X on M.

In local coordinates,

: — (9o - i - ; 0
leX:,. <8ji+gpij ) Jdois Zl: ( detga) X = aaxi.

If f € C'and X € X(M), then we have

div(fX) = X(f) + fdivx. (1.5.4)

Definition 1.5.20 Let (M, g) be a Riemannian manifold. The Laplace-Beltrami operator is
given by
A f =div(Vf), fecC

In local coordinates, A, is given by

1

"0 0]
A, = — detgg*— ).
& \/detgjk:1 0z, ( ches 8xk>

(1.5.5)

Here (g7*) is the inverse of the metric g = (g;i) and det g = det(g;y).
Let ¢ and f be smooth functions on M. Applying (1.5.4) with X = V1, we obtain

div(fVy) = fA +(V, V). (1.5.6)
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1.6 Green’s formulas

The metric tensor g induces the Riemannian volume form: this is an n-form defined locally
by
dvg = (det 2) 2 dzy A+ Ada,.

We denote by L?(M) the completion of C*°(M ) endowed with the usual inner product

(i f) = /M L@R@ dve i fo € CEM),

Here and henceforth 77 denotes the complex conjugate of n € C.
The Sobolev space H'(M) is the completion of C*°(M) with respect to the norm

IE HHl(M):

2 2 2
HfHHl(M) = ||f||L2(M) + ||ngHL2(M)~
The normal derivative is
8u':Vu-V:igjkv-a—u (1.6.1)
o k=1 T Oy’ -

where v is the unit outward vector field to 9 M. Also consult [17].
For a vector field X, the divergence formula reads
/ divX dv, = / (X,v) doy, (1.6.2)
M oM

where M is the boundary of M and do, is the area element on O M.
For f € H'(M), Green’s formula reads

/ divX fdv, = —/ (X, V) dv, +/ (X,v) f dog. (1.6.3)
M M oM
Then if f € H'(M) and w € H?(M), then the following identity holds:
/ Agwf dv, = —/ (Vw, V) dv, +/ d,wf do,. (1.6.4)
M M oM

Lemma 1.6.1 Let (M, g) be a smooth Riemannian manifold with compact boundary OM.
Then there exists a smooth vector fields N such that

N(z)=v(z), z€IM and |N|<1, zeM, (1.6.5)

where v is the unit normal of M pointing towards the exterior of M in terms of the Rie-
mannian metric g.
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Proof . Since 0 M is smooth, for every x, € M there exist an open neighborhood V of z,
in R™ and a function § € C'*°()) such that

Vo(z) #£0, VzeV, 0(xz)=0, VreVNoM.
Replacing 6 by —#@ if needed, we can assume that
(v(zy), VO(z,)) > 0.

Then the function x4 : V — R™ given by

1
p(x) = WVG(@, zeV

is smooth. We show that ;x = v on ¥V N OM. In fact, since § = 0 on ¥V N IM, we have
VO(z) = (VO,v)v +(VO,7)T = (0,0)v,

which implies that p, V6 and v are parallel each other on V N dM. This together with
|| = |v| = 1 shows that y = v on V N OM.

Since M is compact, 9 M can be covered with a finite number of neighborhoods Vi, - - -, V,,..
Each of them plays the role of V' in the earlier reasoning. By p;, ¢ = 1, - - - m we denote the
corresponding functions of V;, and we have

oM CV,U---UV,

and
wi=v on V,NoM, i=1,---m.

Fix an open set V), such that

McCcV,uV,U---UV,, and VyNOoM =10

and define py : Vo — R by uo(x) = 0in V. Let ¢y, - - - , 1y, be a smooth partition of
unity corresponding to the covering Vy, - -+ , V,,, of M:

’l/)ZGCgo(VZ), and OS’(/)ZSL le,l,m

and
Yo+ U1+ + U, =1 onM.

It is obvious that

N = (Z wim)
=0 M

is the required vector field. O
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1.7 The Hessian in Riemannian manifolds
Definition 1.7.21 Define the Hessian of 1) € C*(M) as the second fundamental form:
D*(X,Y) = Vxdy(X,Y) = Vx(dv)(Y) = X(Y (¥)) — (VxY)(¥),
where V x stands for the Levi-Civita connection.
Since Vx is a symmetric connection, we have
Vxdip(X,Y) = Vxdp(Y, X) = [X,Y]Y + (Vy X = VxY) ¢ =0,
so that D%y is a symmetric tensor field on M. Notice that
D?*Y(X,Y) = (Vy(dy),X) forall XY € LM, x€ M.

In local coordinates, the Hessian of 1) € C?(M) with respect to the metric g is defined by

n

(=0 a , 0
o6 = S (50, + 3 nrtor, X =30z
=1 " i=1 v

ij=1 k=1

where we recall that ¢;,(z) = (Vi (z)), is the [—th coordinate of V) (z) and

(Vo) = e) = S @) o (@), 1=1,.m (172

j=1

and I, is the connection coefficient (Cristoffel symbol) of the Levi-Civita connection V x
to the metric g.
Moreover we have

(Vx(Vi),Y) = X((V,Y)) = (Vi VxY) = X(Y () — (VxY) (1) = D*p(X,Y).
(1.7.3)

Lemma 1.7.1 Let ¢) be a C*(M) function. Then
D2 (X, X) = X((X, V) — 5Vu(XP) (174
for any vector field X .
Proof . Applying Lemma 1.4.1 with Z = V1), we obtain
X((X, V) = D(VH)(X, X) + V(1 X).

This completes the proof. O
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1.8 The Riemannian curvature

Roughly speaking, by the curvature of the space, we can easily see in R3 how much a
manifold is diverted or curved away from a straight line or plane, while in higher dimensions,
the description of curvature at one point cannot be done by a scalar, and instead we need the
tensor. However this tensor is not easy to be understood and we need other simpler indices
extracting the underlying information hidden in the curvature tensor. One of the indices is
the sectorial curvature.

Definition 1.8.22 The curvature tensor of the Levi-Civita connection V x is defined by R :
TMXTMxTM — TM:

R(X,Y)Z =VxVyZ +VyVxZ —VixyZ.

In local coordinates, we have

We put

i.e.,

o 0 0 0
Reway = <R (aa) Fr a>

Lemma 1.8.1 For vector fields X,Y, Z, W, we have

R(X,)Y)Z =—-R(Y,X)Z, (1.8.1)
R(X,Y)Z+R(Y,Z)X + R(Z,X)Y =0, (1.8.2)
(R(X,Y)Z, W) =—(R(X, Y)W, Z) (1.8.3)
and
(RIX, Y Z,W)=(R(ZW)X,Y). (1.8.4)
Proof . See Jost [33], Lemma 3.3.1. ]

1.8.1 The sectional curvature

The sectional curvature is a measure, for example, about the behavior of the space along
a two dimensional subspace. By means of the knowledge of the sectional curvatures along
sufficient amount of planes, we can expect to obtain the whole information of the curvature
of the space.
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Definition 1.8.23 For a Riemannian manifold (M, g), we define the sectional curvature at
a point © € M along the plane I spanned by linearly independent tangent vectors X and
Y in T, M as follows:

Ko - (RXY)YX)
TP - ()

"0 "0
Note that if X = Z o/a—, Y = Z 57 ETo then we can easily see that
T T
i=1 ' i=1 J

ZZ‘M:1 Rijkﬁaiﬁjakﬂe

Ko (IT) = — L
o Zijké:l (8ikgje — 8ij8re) ' fiak Bt

Lemma 1.8.2 Let I1 be the plane spanned by linearly independent tangent vectors X and
Yandlet K(X,Y) = K,(II) (|X|2 V]? - (X, Y)). Then, for any W, Z, we have

(RXYV)ZW)=K(X+W,Y +2) - K(X + W,Y) — K(X + W, 2)
—K(X,)Y +2) = KW,Y + Z) + K(X, Z) + K(W,Y)
—KY+W,X+2)+ K(Y +W,X)+ K(Y + W, 2)
YK, X+ 2)+ K(W,X + Z) — K(Y, Z) — K(W, X).

Thus the sectional curvature determines the whole curvature tensor.

Proof . The proof follows from direct computations. U
For 2-dimensional manifold M, the curvature tensor is simply given by
Rijre = K() (gingj — 8ij&ki) »

since T, M contain only one plane, namely 7, M itself. The function K (z) is called the
Gauss curvature.

Definition 1.8.24 The Riemannian manifold (M, g) is called a space of constant sectional
curvature or space form if K,(II) = k = const for all plane II spanned by the (linearly
independent) tangent vectors X and Y in T, M and all x € M. A space form is called
spherical, flat, or hyperbolic if K, > 0,= 0, < 0, respectively. We call (M, g) an Einstein
manifold if

R, = cgi, ¢ = const.

Lemma 1.8.3 Let (M, g) be a Riemannian manifold with dim M > 3. If the sectional
curvature of M is constant at each point x, i.e., for all plane I spanned by the (linearly
independent) tangent vectors X and Y in T, M

then f(x) = const, and M is a space form.

Proof . See Jost [33], Theorem 3.3.2. ]
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1.8.2 Covariant derivative along a curve

We now describe the restriction of the connection D to a curve on a manifold M. Let
I — M be a smooth curve defined over some interval I of R on the manifold M and
X € X(M) be a vector field on M. Then we say that X is a vector field along a curve if it
is given by the restriction of X to the curve, i.e., X = Xo vyl — M — T.M. Note
that for given any vector field along a curve Y, there always exists an extension of Y.

Definition 1.8.25 Let v : I — M be a smooth curve on M. For any t € I, the tangent
vector

10 = (50) etom. s0r =00, recxm

is called the velocity vector of 7y at the point ~y(t).

If z is a coordinate system around ~(to) and z(y(t)) = (71, , V), then
DI
dt 8352

Definition 1.8.26 Let v : [ — M be a smooth curve on M. A vector field along v is a
smooth map X : I — T M such that

X(t) € T7<t)M

forallt € 1. Avector field X along v is extendible if X (t) = X (y(t)) for some vector field
X on a neighborhood of y(I) C M.

The velocity field 4(t) is an example of a vector field along «. Then we define:

Definition 1.8.27 The covariant derivative of a vector field X along ~ in M is given by
D5 X (1) 1= Dy X (7(1)) = X (1),

where X is a local extension of X and #/(t) € TynM.

The properties of the covariant derivative D are the same as the ones defined for connection
earlier and is well defined, i.e. does not depend on the choice of local extension, and for any
vector field X along v, we have

daf

Di(fX) = X + fDsX,  fec(1).

vy (t))ande;oaaxi,

AN,
J
DX = § ( rk dto‘>axk (1.8.5)

I
—
2

—

—
~

~—

If z is a coordinate system around 7(to), (~y(¢))

then

for  near t,.
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Remark 2 (Euclidean space). Let v : / — R". Then D; X = X and in particular D4y = 7.
In fact, let X be some extension of X such that X o y(¢t) = X. Then

D5 X (8) = Dyn X = (X o) (1) = X(0).

Definition 1.8.28 A vector field X along a curve v : I — M is called parallel if

X(t) :=DsX =0.

1.9 Geodesics in Riemannian manifolds and the exponential
map

We know that in an Euclidean space, a geodesic curve is one whose tangent is constant, that
is, a curve v : I — R™ is a geodesic if and only if |y(¢)] = constant or 4 = 0. In other
words, we see that in an Euclidean space, a geodesic curve is one whose covariant derivative
is identically zero:

Dyy=4=0.
Motivated by this observation, we extend the notion to manifolds and define geodesics.

Definition 1.9.29 A parametrized curve v : I — M is said to be a geodesic curve of M
if

Dy =% =0. (1.9.1)
Next we want to show that at every point and in every direction, there exists a geodesic. That
is, forallz € M and V' € T, M, there exists v : I — M with y(ty) = x and ¥(ty) = V for
some tg € I such that Dy = 0.

In local coordinates, by (1.9.1), we consider the differential equation

" d?~* dvyidyi\ 0
= (dtZ MR dt>8;1:k

iy k=1

with the initial values (o) = = and +(ty) = V. From the theory of ordinary differential
equation, we know that solutions exist and so we have the following:

Theorem 1.9.2 (Local existence and uniqueness of geodesics). Let x € M. Then there
exists an open neighborhood x € U C M and ¢ > 0 such that for V € T, M with |V| < ¢,
there exists a unique geodesic yy : (—¢;&) — M with vy (0) = x and 4y (0) = V.

Definition 1.9.30 A Riemannian manifold M is geodesically complete if all maximal geodesics
are defined for all of R.

Lemma 1.9.1 Let vy : [a,b] — M be a curve on M. Suppose that p = ~(a) is a point on ~y
and V € T, M is a tangent vector at that point. There exists precisely one parallel vector
field X along ~ such that X (a) = V.
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Lemma 1.9.2 Let 7y : [a,b] — M be a geodesic. Then (¥(t),7(t)) = constant, namely, ~
is of constant speed.

Proof . We have

This completes the proof. O

Let (M, g) be a Riemannian manifold with its connection D. Then we know that at every
point x € M, every V € T, M defines a unique geodesic at « with V' as its tangent vector.
Put

E={V eTM; ~y isdefined at 1},

where vy with V' € T, M, is the geodesic through vy, (0) = p with velocity 4(0) = V.
Definition 1.9.31 The exponential map exp : € C TM — M is defined by

exp, : TyM — M,

exp, (V) = (1)
at x € M. Here ~yy is a geodesic curve with tangent V' at x such that vy (0) = .

Note that this map is defined only locally and its importance comes from the fact that it
maps straight lines in the tangent space, since this has the structure of an Euclidean space
and so these lines are geodesics. In other words, a local sphere in the tangent space centered
at 0 € T, M is mapped to a local sphere centered at z € M which is perpendicular to
all geodesics through the point z. This is known as the Gauss lemma and is stated more
explicitly for ¢ € R as

W(t) =rv (1) = exp,(tV).

Lemma 1.9.3 Let (M, g) be a Riemannian manifold and i) € C*(M). Let X € T,M and
a geodesic 7y : [0, 7] — M with v(0) = p, 4(0) = X be chosen. Then

DX, X) = Lu(s(0) (192)
Proof . By (1.5.1), we have
X(K(9) = 50) (7917, (0}
= 5(0) (00
- ;L; (v() . (1.9.3)

and D;y = 0, since  is a geodesic, so that (1.9.2) follows from (1.9.3) and Definition
1.7.21. O



22 M.Bell d and M.Y: t Chapter 1 — Riemannian geometry

1.10 The Riemann distance function

1.10.1 Curves and variations of curves

Definition 1.10.32 A regular curve on M is a smooth map ~ : [a,b] — M such that
4(t) # 0 for all t € [a,b]. The real number

b
()= [ Tt
is called the length of the regular curve ~.

A piecewise regular curve on M is continuous map v : [a,b] — M such that Vi(@iz1,0:]
is regular for some subdivision a = ag < a1 < --- < a, = b. The real number

E('Y) = iﬁ <7\[az‘—1»az‘])
i=1

is understood as the length of the piecewise regular curve .

For a piecewise regular curve v on M, there exists the velocity (¢) at each point ¢ which is
not any break point a;. At a break point a;,

[ = 4(a") = 4(a;)

denotes the jump of the velocity between §(a; ) € Ty(,,)M and ¥(a;").
Lemma 1.10.1 We have the following properties:

1. The length of a (piecewise) regular curve is invariant under parametrization.
2. Any regular curve has a unit speed parameterization.

Proof. Let v : [a,b] — M be a regular curve.
1. Let o : [¢c,d] — [a, ] be a bijective smooth map with o/(s) # 0 for all s € [c, d]. Then
(voo)(s) = o'(s)3(a(s))
and

[ Jasos]as== [*fown|o'ws = [ ol

where the 4 applies if ¢’ > 0 and the — applies if ¢/ < 0.
2. Let a : [a,b] — [0, £(~y)] be the smooth map given by

alt) = / [4(s)] ds.

Then o/(t) = |¥(t)|. Let o be the inverse function of «. Then

is a unit speed curve. This completes the proof.



M.Bell d and M.Y: to 1.10 — The Riemann distance function 23

O

Lemma 1.10.2 Any two points in M can be connected by a piecewise regular curve.

Proof . Since connected and locally path-connected spaces are path-connected, M is path-
connected. Given any two points p and ¢ in M, there exists a continuous curve 7 : [0, 1] —
M connecting them. Then there is a subdivision 0 = ay < a1 < -+ < a, = 1 of [0, 1]
such that ~y([a;_1, a;]) is contained in a coordinate neighborhood = : U — R such that
x(U) is a ball. Replace y([a;_1, a;]) by a smooth curve within this coordinate neighborhood
between the two end-points. U

Definition 1.10.33 Let (M, g) be a Riemannian manifold and v : I — M be a curve on
M. A variation of v is a differential map

D (—n,n) x [a,b] — M
such that for all t € [a,b],
Po(t) = (0,) = (1)
The variation @ is called proper if D4(a) := ®(s,a) = v(a) and $4(b) = D(s,b) = ~(b) for
all s € (—n,n). We denote
Dy(t) = O(s,t) = P'(s), s€(-mn), t€lab],

so that @, is a curve in the t-direction (a main curve) and 9 is a curve in the s-direction (a
transverse curve).

It follows that

7] . 7] %) .

— @ (t) = Dy(t) = P (=), O0,P(s,t) = =—D'(s) = P'(s) =D,
SLB(0) = B.(1) = D), DB(s,1) = —B(s) = B(5) = i
are the velocities of the main curve and the transverse curves, respectively. We may view
the main velocity field 9;® as a vector field along a transverse curve @' and consider its

covariant derivative Dqgs@t along @', Similarly we may view the transverse velocity field

0

0:P(s,t) = o

)

09 as a vector field along a main curve @, and consider its covariant derivative D 4, @;.

Lemma 1.10.3 (symmetry lemma) Let & : (—n,n) X [a,b] — M be a variation of the curve
v : [a,b] = M. Then following identity holds true:

D&, =D .

Proof . We consider locally. Choose a coordinate system 2 around @(sg, tg). In local coor-
dinates, we have z(®(s,t)) = (P1(s,t), -+, Py(s,1)) and

ot dx;"  Os — 0s Ox;

i=1 i=

ov, .
= ¢, =

_ =~ 0D; O 0P _ 4 “~ 0P; 0
ot
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By (1.4.7), we obtain

= d o pddtddl 0
D@@s_g% (dsés s ) B
S (e
Os 875 T ds Ot ) Oxy,
8243k oD OPI 0 .
- TN L _p, ¢t 1.10.1
Z( ”ata>ak 2.2 (1.10.1)
ijk=1
where we have used I}y = I'. O

Lemma 1.10.4 Suppose that X is smooth vector field along a smooth variation of -y through
geodesics @ : (—n,n) X [a,b] — M. Then we have

Dg:Dg X —Dg Dge X = R(P',®,)X.

Proof. Choose local coordinates x. Let z(®(s, t)) = (&', ,®")and X = Zo/(s,t)

i=1

afL’i
be a local expressions for ¢ and X. We have

Dy X = Dy la'g-) =2 ( ot o, ¥ D <8x>>

and
- da’ 0 ; 9
D@Eth'ssX = ZD@ <8t@x + « D<155 (8”1“))

o da 9. dd B . 9
Z ((858t> O + ED@(@) - gD@% +o D@tD¢5(M> . (1.10.2)

When we compute the difference Dg:Dg X — Dy _Dg: X', many terms cancel and we have

n ) 8
DDy X — Dy Dy X = o' (DpDy, — Dy D) o

i=1

= R(P', D,)X.

At the last equality we used
20 = [. 00| =0 | 7 5| <o

This completes the proof. (]
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1.10.2 The distance function

Definition 1.10.34 The function d : M x M — [0, 00) given by
d(p,q) = inf {{(~) ; 7 is a piecewise regular curve from p 1o q}

is called the Riemann distance function.
Lemma 1.10.5 d is a metric on the topological space M.

Lemma 1.10.6 Let v be a unit speed smooth curve and @ : (—n,n) X [a,b] — M be any
smooth variation of vy. Then

d b

75 (U(2))(0) = (v, 7(t))

a

b
- [ W
when V () is the variational field given by
V(t) = 94(0).

Proof . We differentiate the function s — ¢(®,) and then evaluate the result at s = 0.
Using that the connection is compatible with the metric and the symmetry Lemma 1.10.3,

we obtain
()] i = /abaas <<ei5s(t),si5s(t)>1/2> dt

d d [°
20D = —
dsw( S)) ds/a
b b
:/ ,1<D¢tq35,d5s>dt:/ #<D¢S¢t,d’is>dt. (1.10.3)
o q)s‘ o q)s‘

When s = 0, &, = ¢ = 7, |v] =1, and H(0) = V(t), we obtain

b b
@], = [ G- [ wsa.

This completes the proof of the lemma. (]

Lemma 1.10.7 Let v be a unit speed piecewise regular curve and & be any piecewise
smooth variation of . Then

@) = = [ WDy de— 3 ([ Via).

i=1

where V (t) = @4(0) is the variational field along .
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Proof . We can complete the proof because

(e, = nz_le (@ 1)
=1

where we take the sum over [a;_1, a;] of smooth intervals of &, and the endpoints are fixed
under the variation, so that the variational field is 0 at the endpoints. ]

Lemma 1.10.8 Any vector field V' which vanishes at the endpoints of a piecewise smooth
curve vy : a,b] — M, is the variational field of some variation ® : (—n,n) x [a,b] = M of
the curve v with fixed endpoints.

Proof . Thanks to the compactness, we can find 7 > 0 so that £V (¢) € £ C TM for all
t € [a,b]. Let
D(s,t) = exp,y(sV (1), (s,t) € (=n,m) x [a,b].

Then @ is a piecewise smooth variation whose transverse curves are geodesics with velocity

0 s
%@(Svt”s:O =9 (0> = V(t>

This completes the proof of the lemma. O

Corollary 1 I. Every piecewise regular minimizing curve of constant speed is a geodesic.
2. Every geodesic is a locally minimizing curve.

Proof . Lety be a minimizing curve. For any vector field V along v, we have £ &(s, t)|—o =
0 because ¢(®P;) has a minimum at s = 0. Therefore V' (¢) = 0. Use this to show first that
D;%(t) = 0 at any non-breaking points. This is a piecewise geodesic. Next we can show
that there are no break points, and it is in fact a geodesic. ]

What we showed was in fact that geodesics are critical points of the functional /. Is there a
minimizing curve between any two points of M? Is a minimizing curve unique? The answer
is not affirmative in general. For example, on the earth surface, there are uncountably many
minimizing curves between the North Pole and the South Pole. Or consider the situation
where you want to go to the other shore side of a lake, and there are usually two possibilities.
Only if two points are sufficiently close, then there exists in fact a unique minimizing curve
between them.

1.11 Jacobi fields

Let (M, g) be a Riemannian manifold and let 7 : [a, b] — M be a geodesic from p = ~(a)
to g = (b).
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Definition 1.11.35 A smooth vector field J along ~y is called a Jacobi field if the following
equation holds:
D;DsJ + R(J, %)y = 0.

This is called the Jacobi equation. As an abbreviation, we shall sometime write
J4+R(J,4)y =0, DsJ=J.
We denote by _f., the set of the Jacobi fields along .

Lemma 1.11.1 (existence and uniqueness of Jacobi field). Let v : [a,b] — M be a
geodesic. For any V,W & T, M, there exists a unique Jacobi field J along -y such that

J(a)=V, J(a)=W.

Proof . Let {Vi,---,V,} be an orthonormal basis of 7, M. By Lemma 1.9.1, we can take
parallel vector fields { Xy, - -, X,,} along v with X(a) =V}, j = 1,--- ,n. Then for each
t € [a, b], it follows that { Xy (), - - - , X,(¢)} is an orthonormal base of T’,(;) M. An arbitrary
vector fields X along +y is written as

X = _Zof‘Xi, a'(t) = (X(t), Xi(t)) .

Since the vector fields X; along  are parallel, that is, D; X, = 0, we have

D;X =) Di(a'X;) =) <;X” - O‘lD*Xi> =3
i=1

i=1 i=1

and we deduce
D;DyX = X;.
Z dt2

Moreover we write the curvature term as a hnear combination of X, k=1,....n

177 szXka

and then
k
X, A) = Z o' pf X
i,k=1
Let (a}, -, a%) be a solution to an n-system of linear second-order ordinary differential
equations:

d2 n
Tzt i) =0, k=1,n

=1

with Cauchy data
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da
dt
For such a system, the desired existence and uniqueness result is known. Let J be the vector

of(a) = (V. Vi), (@) = (W, Vi) .

field along the geodesic -y given by: J = Z af}X x- Then we have:

k=1
o n d2a§ n .
DsDsJ + R(LAVY =Y~ Xi+ Z ol pf X, = 0.
k=1 i,k=1
Furthermore )
J(a) =V, J(a) =DyJ(a) =W.
Thus the proof is completed. O

Lemma 1.11.2 Let v : [a,b] — M be geodesic and )\, i € R. Then the Jacobi field J along
~ with J(a) = M/(a) and J(a) = piy(a) is given by

J() = (A+ (t —a)u) (D).

Proof . The proof directly follow from Lemma 1.11.1, since R(¥,7) = 0. O

Lemma 1.11.3 Ler v : [0,7] — M be a geodesic in a Riemannian manifold (M, g) and
let & : (—n,n) x [0,7] = M be a smooth variation of -y through geodesics. Let V be the
variational field given by

V(t) = 3'(0) = %@(s,t)

s=0

Then the vector field V' along the geodesic vy satisfies the Jacobi equation. (Here for all s,
b, is a geodesic in M).

Conversely every Jacobi field along v can be obtained in this way, i.e., by a variation of ~y
through geodesics.

Proof . We apply Lemma 1.10.4 to the vector field b, along @ to have
DDy, @5 — Dy D@y = R(9', D,) .
Since for all s € (—n,7), t — P is a geodesic, we have D@S@s = 0. Lemma 1.10.3 yields
D&, =D, &'.

Thus ) o
DésDés@t + R(@t, @s)@s =0.

Since ¢*(0) = V(t) and &, (t) = #(t) at s = 0, we have the Jacobi equation:
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D;D;V + R(V,4)y = 0.

This completes the proof of the first part.

Conversely let V' be a Jacobi field along 7. Let ¢ : (—n,n7) — M be a geodesic such that
¢(0) = ~(0) and ¢(0) = V(0). Let X and Y be parallel vector fields along the curve c(s)
(Lemma 1.9.1) with

X(0) = é(0) = V(0), Y(0) = (DeV)(0) = V(0).
We put
D(s,t) = exp,) (HX(s) +sY(s))), se€(-nm), tel0,r]

Then all curves s € (—n,7), t — P4(t) are geodesics by the definition of the exponen-
tial map and ®o(t) = exp,()(t7(0)) = 7(t). Thus &(s,1) is a variation of 7(¢) through
geodesics. By the first part of the proof, the vector field given by

20 = 50(at) = (5o = #(0),
is a Jacobi field along ~y. Finally
Z(0) = 9°(0) = &(0) = V(0)
and

D;Z(0) = Dy @'[s1=0 = De®Ps|s1=0 = Di(s)(X (s) + sY (5))]s=0 = Y'(0) = V(0).

Thus Z is a Jacobi field along v with the same initial data values V'(0), V' (0) as V.
The uniqueness implies Z = V. We have thus shown that V' can be obtained from a variation
of (¢) through geodesics. O

Corollary 2 Let v : [0,7] — M be a geodesic on the Riemannian manifold M such that
7(0)=p € M, i.e,
() = exp, (t7(0)) .

For Y € T,M, the Jacobi field J along  with J(0) = 0, J(0) = Ds.J(0) = Y is given by

J(t) = (D expp) (t7(0))(tY).
That is, J(t) is given by the value applied to tY of the derivative of exp, : Tp,M — M at
the point t(0) € T, M.
Proof . Let
P(s,t) = exp,, (t(7(0) + sY))
be a variation of (¢) through geodesic. By Lemma 1.11.3, the corresponding Jacobi field is

J@=iam>o=wwmawmmw
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and
J(0) = (Dexp,) (0)(0) =0, J(0)=Y-

Consequently the derivative of the exp, mapping can be computed from Jacobi fields along
radial geodesic. This completes the proof. ]

Definition 1.11.36 Lez vy : [0, 7] — M be a geodesic. For each’Y € T,M by Jy we denote
the Jacobi field along v with

Jy(0) =0, and J(0) = DyJy(0) =Y.

Definition 1.11.37 Let v : [0, 7] — M be a geodesic on M. A Jacobi field J along v is
called normal if
(J(t),4(t)) =0, forallt.

Lemma 1.11.4 Let J be a Jacobi field along a geodesic ~ : [0,7] — M. Then J is normal
if and only if J(0) and J(0) are orthogonal to (0).
Proof . We have

5722 (J(t),%(t) = % (D3, %) = (DyDsJ,4) = — (R(J,4)%,7) = 0.
Then

{(J(8),7(t)) = at + 0.
If J vanishes at two points, then we obtain (.J(t),¥(¢)) = 0 for all ¢, that is, .J is normal. [J

In Riemannian manifold with constant sectional curvature, we can describe the normal Ja-
cobi field more explicitly.

Lemma 1.11.5 (Jacobi field in constant sectional curvature manifold) Suppose that M is a
Riemannian manifold of constant sectional curvature k. Let vy be a unit speed geodesic on
M with v(0) = p and 4(0) =V, where V is a unit vector in T, M. For any vector field Y
orthogonal to V', the normal Jacobi field Jy is:

Jy(t) = Sk@)Y (1),
where Y (t) is the parallel vector field along v with Y (0) =Y and

Rsin(t/R) k=1/R?
Sp(t)y =<1 k=0
Rsinh(t/R) k= —1/R?

is the solution to . )
S+kS=0, S(0)=0, S(0)=L
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Proof . Put J(t) = S(¢t)Y (¢). Then
DyJ = Si(t)Y and DyDsJ = S.Y = —kJ

as Y (t) is parallel. Thus J(0) = 0 and J(0) = D4J(0) = Y. By the construction, .J is
orthogonal to ~. It is a Jacobi because

R(JAYY =k ((3,9) J = (J,4)4) = kJ = —D;Ds ],

as 7y has unit speed and J is normal to 7. We conclude that J = Jy-. ]

1.12 Convexity of Riemannian distance function

Definition 1.12.38 (conjugate points) We say that two points p and q on a geodesic segment
v are conjugate if there exists a nonzero Jacobi (necessarily normal) field along ~ which
vanishes at p and q.

Lemma 1.12.1 Consider the smooth function exp,, : & — M. Let ¢ = exp,(rv) # p be a
point on the geodesic ~(t) = exp,(tv). Then

exp,, is not a local diffeomorphism at rv < p and q are conjugate points.
Proof . By Corollary 2, if J(0) = 0 and .J(0) = D5J(0) = Y, then
Jy (t) = (D exp,) (t7(0))(tY).
The value of such a Jacobi field at ¢ = exp,(rv) is
Jy (1) = (Dexp,)(ry(0))(rY).

Thus there is a nonzero Jacobi field which vanishes at p and ¢ if and only if there is a nonzero
vector Y in the kernel of (D exp,)(ty(0)). O

For abbreviation, we put for p € R

cos(/pt), if p >0, % sin(y/pt), if p >0,
() =<1, if p=0, ; s,(t) =1t if p=0,
cosh(y/=pt), if p <0, —= sinh(y/=pt), if p < 0.

These functions are the solutions of the Jacobi equation for constant sectional curvature p:

f)+pf(t)=0
with initial values f(0) = 1, f(0) = 0 and f(0) = 0, f(0) = 1, respectively.
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Let (M, g) be a Riemannian manifold and let y : [0, 7] — M be a geodesic on M. We
denote by J(t) a Jacobi field along ~y and let 3(t) = |J(t)].
For ;+ > 0 we denote

Ju(t) = BO0)eu(t7]) + |f.Y|71 B(O)Su(t Y1)

which solves

FO + i’ £6) =0,  £.(0) = B(0), f.(0) = B(0).

Theorem 1.12.3 Assume that the sectional curvature K,(II) of the manifold M satisfies
K, (II') < pu for all plane sections II, where y1 > 0. If f,,(t) > 0 and J(t) # 0 fort € (0,7),
then we have

fu®) < B(t), te[0,7].
Proof . By direct computations, we obtain

3o+ il (0) = 5 (70, T2 + 3P (), T0)
= (@20 57 ) + s 0. 500

- |}| (= (RULAT) + A (.7)

+m (‘J‘ 17 — <J J> > (1.12.1)

because K, (IT) < pfort € (0,7), provided .J has no zero on (0, 7). We then also have

& (B0l — BOL0)) = B0~ BOFD = (D) + 3P 50 (1) 20,

which implies that

B()fu(t) = B fu(t) = 5(0)£u(0) = B(0)£,(0) = 0, V€ (0,7).

Next we see that

Therefore
This completes the proof. O

Theorem 1.12.4 Let (M, g) be a Riemannian manifold and p € M. We assume that the
exponential map exp,, : T, M — M is a diffiomorphism on &, = {V € T)M : |V| < p}.
Let the curvature of M in the ball
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B(p,d) ={x e M : d(p,z) <4}
satisfy K, (IT) < yu for all plane sectional IT with ;1 > 0, and suppose that

0 < T in case >0
o M )
2./t

Let ]
P(x) = EdQ(p,:zz), x € B(p,9).

Then ) is smooth on B(p, 0) and satisfies
Vi(x) = —exp;'p,  |V(z)| =7r(2) = d(p, ).
Furthermore

DP(X.X) Vi (z) cot (/ur(z)) |X|?,if >0,
;X) 2
X, if u=0, Yz B(pd), X eT,M.

Proof . We have
Vi (z) = —exp; ' p.
Let~y : [0,1] — M be the geodesic from z to p given by
(t) = exp, (—tVY)
Let X € T, M. Let c(s) be the curve in M with ¢(0) = z, ¢(0) = X. Let
¢(87 t) = ech(s) (t exp;(];) p) :
Thus @ is a variation of the geodesic ~ and we have
?(s5,0) = D(s) = c(s), @(0,t) = Do(t) = exp, (—tV(z)) = (), @(s,1) =p.

Then 5
Vile(s)) = —explyp = 85, )

t=0
Furthermore, by Definition 1.7.21, we find

D2y (dt, ¢t) = b <q‘sf, w> - <D¢tq'5t, v¢>
- <D¢t¢t, w> + <q’5f, Dqs,,w> - <D¢tq'5f, w>
_ <q’5t,D@v¢>. (1.12.2)

Now let J(t) = 2&(s, )

be the Jacobi field along a geodesic v : [0, 1] — M from x to
s=0
p with



34 M.Bell 1 and M.Y: t Chapter 1 — Riemannian geometry

JO0)=d%°0)=¢0)=X, J1)=
Therefore
D2)(X, X) = D?)(d, &) |5 1m0 = — <q§t, D¢t¢s> ls.t=0
_ <gbt, D¢S¢t> ls.tzo
— <c'(0), J(0)>
=~ (J(0),4(0)). (1.12.3)

Since J(1) = 0, and there are no conjugate points on the geodesic segment 7y, we see that
for any ¢ € [0,1), J(t) # 0. On the other hand, for t € (0,¢) and z € B(p,d), by the
assumptions we have ¢,/ur(z) € (0,7/2).

o If there exists t, € (0, 1) such that f,(ty) < 0, then
B(0)eu(tor(x)) + (tor(a)) ™ B(0)s,(r(x)) < 0.

On the other hand, since
B0) = |J(0)] = |X], B(t) = 7
we have 3(0) = ‘X‘D%(X X). Then

| X2 r(@)eu(tor(x)) < sultor(z)) D*)(X, X).
Thus we conclude that
|X P /() cot(/ar(z)) < D*(X, X) if p>0

and
|X?r(x) < tor(x)D*(X, X) < r(@)D*p(X,X) if p=0.

o Let f,(t) > Oforallt € (0,1). Applying Theorem 1.12.3 with ¢ = 1, we obtain
B(0)eu(r(x)) + (r(2)) ™' B(0)su(r(x)) < 0.

Then
X[ r(@)eu(r(e)) < s,(r(x))D*)(X, X).

This completes the proof of the theorem. O

Corollary 3 Let M be a Riemannian manifold with sectional curvature < 0. Let p € M
and let

Yo = 3¢, 2).

If the exponential map exp,, is a diffeomorphisme on the ball B (p, p), then we have

Dy(X,X) > |X|*, Vze Bpp), XecT.M.
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Corollary 4 Let M be a simply connected and geodesically complete manifold with non-
positive curvature and p € M. Then for

V(@) = 3E0.0)

we have

DX)(X, X) > |X[*, VzeM, XeT,M.
Lemma 1.12.2 Let R? have the metric
g = gidr1dry + godradas,

where g1 > 0, go > 0 are C™ functions on R?. Then the Gaussian curvature is

1 ( 0108 | OmOm  (On ’
4g1g2 83:1 83:1 83628 X 0rq

Proof. Let

Then {X, Y} is an orthonormal basis on (R?, g). We thus have
1 0o 0
=(RxyX,)Y)=—(R 1.12.5
(RxyX,Y) . < 2 o 8x2> ( )
where
Rxy X = -VxVyX +VyVxX + V[X,Y]X
and R is the curvature tensor. Let I’ z’; be the coefficients of the connection D. Then

1 1 8g1 2 1 8g1 2 1 8g2

12 — 11 —

2%1 a962 2g2 a362 2 2g2 6331

From the properties of connection, we have

Vavia Vaa<F1 9 a2 a)

ey 9 Oy 29z, T 120
arh, o 8 ory o )
= — I — _— [’ _
8I% 81’1 + HV% 8331 + 8331 Ox To + vagl 81‘2
aFlQ (? 1 72 8F12 2 2 a
= — I,I LIy | —. 1.12.6
al‘l 8.1'1 + < 12+ 11 + 0.751 + 12+ 12 61‘2 ( )

Thus

9 9\ _ 12, 0T 2 2
<v5x1 vOTz oxq’ 8I2> B (FHFH * 0xq Tl ) e
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2 2 2
_10e 1 (agl> ! <8g2> o (L12.7)

T 2022 4g \Odxs)  4gy \ Oy
since <%, 3%2> = 0. Calculations similar to (1.12.7) give
o 0 10% 1 /0 0 1 /0 0
vov, 0 0N 10 1 (05 (On) L (0w (0w)
Ozy  Oxg 81'1 81'2 2 (9{132 4g1 81'1 81'2 4g2 8132 (')xg
(1.12.8)
Equations (1.12.7) and (1.12.8), together with (1.12.5), yield (1.12.4). ]

Example 1.1. We consider a Riemannian manifold (R?, g) where ¢ is given by
g = e @) o duy + e~ @) duodi,.

We obtain from Lemma 1.12.2 that K, = 0 for any = (21, 25) € R?; that is, (R?, g) is of
zero curvature. Then the function ¢ (z) = %dz (p, ) is strictly convex and satisfies (A.2) in
M C R? for any p ¢ M.

Example 1.2. Consider a Rieamannian manifold (R?, g) where g is given by
g= e@1H22) do dy + e~ @) dpo dirs.
By Lemma 1.12.2 we obtain

Then the function () = $d*(p, z) is strictly convex on M C R? for any p ¢ M.
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Well-posedness and regularity of the
wave equation with variable coefficients

2.1 Preliminaries

In this chapter, we will consider the initial-boundary value problem for the wave equation
on a manifold with boundary. This initial boundary value problem corresponds to an elliptic
operator —A, given in Chapter 1. We will develop a widely applicable approach to prove
existence and uniqueness of solutions and to study their regularity proprieties. The materials
are picked up from Lions and Magenes [47].

Let us consider the following initial boundary value problem for the wave equation with
potential ¢ € L>°(M):

(02 — Ay +q(x)u=F, in (0,7) x M,
uw(0,) =up, Ou(0,-) =uyin M, (2.1.1)

u=f, on (0,7) x OM,
with various assumptions on F,ug, u; and f.

Our primary interest is the study of initial-boundary value problem (2.1.1) in a certain
class, for example,

u = u(t) € C([0,T]; H*(M))nC ([0, T); L*(M)).

We remind the reader that u belongs to this class when w is a continuous function of ¢ €
[0, 7] with value in H'(M) and is continuously differentiable with respect to ¢ € [0, 7]
in L?(M). We state two main results for the unique existence of the solution with a priori
estimates to problem (2.1.1) in two choices of the spaces of data F, ug,u1, f (Theorems
2.2.5 and 2.2.6). Moreover we prove the regularity of the Neumann derivatives in both two
cases.

If H is a Banach space, then we denote by L!(0, T'; H) the space of measurable functions
h:(0,T7) — H, where the norm is defined by

T
/ VR dt = 1Al 12 ozoany < 00
0
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It is known that the space L(0,7T; H) is complete.
We show a classical inequality and use frequently.

Lemma 2.1.1 (Gronwall’s inequality) Let an interval I be [a,+00) or [a,b] or [a,b) with
a < b. Let o, B and u be real-valued functions defined on 1. Assume that 3 and u are contin-
uous and that the negative part of « is integrable on every closed and bounded subinterval

of I
1. If B is non-negative and u satisfies the integral inequality
t
() < alt) + / B(s)u(s)ds, Vtel,
then , .
u(t) < aft) —|—/ a(s)B(s) exp (/ ﬁ(r)dr) ds, Vtel.

2. If, in addition, the function « is non-decreasing, then

) < atesp ([ tﬂ(S)dS) .

Proof .
1. Define:

o(s) = exp ( / Sﬂ(r)dr) / B u(r)dr, Vsel.

‘We obtain for the derivative

V(s) = <u(s) - / ) ﬁ(r)u(r)dr) B(s) exp <— / ) [ﬁ(r)dr) . Vsel

<a(s)

Since 3 and the exponential are non-negative, this gives an upper estimate for the deriva-
tive of v. Since v(a) = 0, integration of this inequality from a to ¢ gives:

u(t) < /atoz(s)[?(s) exp <— /asﬁ(r)dr> ds, Vtel.

Using the definition of v(¢) for the first step, and then this inequality and the functional
equation of the exponential function, we obtain

[ seputsids = vt exp (/ t p)r
< [a@seo (/ i | (ryar) ds

- /Stﬁ(r)dr

Substituting this result into the assumed integral inequality gives Gronwall’s inequality.
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2. If the function « is non-decreasing, then using the part 1 and a(s) < a(t) for s < t, we
obtain

ut) < alt) + [—a@) exp </:ﬁ(r)dr>] Zt = a(t) exp (/atﬂ(r)dr> , Vtel

This completes the proof of the lemma. O

2.2 Principal results
Theorem 2.2.5 LetT" > 0 be given. Suppose that
Fe LY0,T; L*(M)), wup€ H' (M), u € L*(M) and f € H'((0,T) x OM).
Assume, in addition, that the following compatibility condition is valid:
£(0,+) = uolom- (2.2.1)
Then there exists a unique solution u of (2.1.1) satisfying
u € C([0, T]; H' (M) N CH([0,T]; L*(M)),
and there exists C' > 0 such that for any t € (0,T'), we have
[ 1wy + 10| 2 pg)
<C (”f”Hl((O,T)xaM) + [l g vy + Nuall 2ag) + ||FHL1(0,T:L2(M))) - (222)

Furthermore
dyu € L*((0,T) x OM) (2.2.3)

and there exists a constant C' = C'(T, M) > 0 such that

10wt 20,1y o) < C (HfHHl((o,T)xaM) + ol gy + Nuall p2ae) + ||FHL1(O,T:L2(M))) :
(2.2.4)

Theorem 2.2.6 LetI’ > 0 be given. Suppose that
FeLY0,T;H Y (M)), wup€ L* (M) u € H' (M), and fec L*((0,T)x OM).
Then there exists a unique solution v of (2.1.1) such that

u € C([0,T); L*(M)) nC' ([0, T); H *(M)), (2.2.5)

and there exists C' > 0 such that for any t € (0,7 we have
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[uC) 2 rey + 10 -2 a0y

<C (HfHL?((o,T)xaM) + ||“0||L2(M) + H“1||H—1(M) + HF||L1(0,T;H—1(M))) - (226

Furthermore,
dyu € H((0,T) x OM), (2.2.7)

and there exists a constant C' = C'(T, M) > 0 such that

||8Vu||H*1((O,T)><8M)

<C (||fHL2((o,T)xaM) + luoll L2 any + Nl g1 pg) + HF”LI(o,T;H—l(M))) - (2.2.8)

Theorem 2.2.5 gives a rather comprehensive regularity result for (2.1.1) with f € H((0,T)x
OM), while Theorem 2.2.6 is another regularity result with weaker regularity condition on
F , Up, U, f

In order to prove Theorems 2.2.5-2.2.6, in Sections 2.3 and 2.4, we first prove regularity
results for the wave equation with the homogenous boundary condition. Then on the basis
of the transposition, we establish Theorems 2.2.5-2.2.6.

2.3 Homogenous boundary condition

We start with the case f = 0. Then compatibility condition (2.2.1) implies that uy €
Hg(M). Let us consider the following initial and homogenous boundary value problem
for the wave equation:

(0F — Ay + q(x)) u(t,z) = F(t,z) in (0,T) x M,
uw(0,) =wup, OQu(0,-) =uy in M, (2.3.1)

u(t,z) =0 on (0,7) x OM.

2.3.1 Existence and uniqueness of a solution

Let H be a separable real Hilbert space, and let ' be another separable Hilbert space, which
is continuously and densely embedded in H. By (-, -)V,,V, we denote the dual pairing be-
tween V'’ and V. Moreover let A € C([0,T]; Z(V, V")), and let

alt,u,v) = — (A(t)u, v)y v
be the associated quadratic form. We assume that a is symmetric:
a(t,u,v) = a(t,v,u)

and there exist positive constants « and 3 such that
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a(t,u,v) = allully, = B flullg -
We consider the evolution equation
u'(t) = A(t)u + F(t), u(0)=mug, ' (0)=1u (2.3.2)

Let us recall the following classical result (see Lions and Magenes [47]).

Theorem 2.3.7 Assume that F € L'(0,T; H), uo € V,u; € H and that A is as described
above. Then there exists a unique weak solution

u € C([0,T);V)NnCH[0,T]; H)

to the evolution problem (2.3.2).

Let A be the positive self-adjoint operator induced by the bilinear form af(-, -), that is, A is
defined by

(Au,v) o1 g1 = a(u,v) = / ((Vu, Vo) + quv) dvg, Yu,v € H(}(M)
H 0 M

Then A is an operator from V = H}(M) into V' = H~1(M), and there exist positive
constants « and 5 such that

2 2
a(u,v) > « ||u\|H&(M) - HuHL?(M)'

2.3.2 Regularity of solutions
Lemma 2.3.1 Let T > 0 and q € L*>°(M) be given. Suppose that
F e LY0,T; L*(M)), wuy€ Hy(M), wuy € L*(M), and f=0.
Then the unique solution u of (2.3.1) satisfies
u € C([0,T); Hy(M)) nCH([0,T]; LA (M)). (2.3.3)
Furthermore there exists a constant C' > 0 such that we have

(@)l 2y + 10w 20 < € (||u0HH1(M) + [l 2 gy + ||FHL1(0,T;L2(M)))
(2.3.4)

Proof . Using the classical result for the existence and uniqueness of weak solutions given
by Theorem 2.3.7 in abstract evolution equations setting, we obtain

u € C([0,T); Hy(M)) nCH([0,T]; L*(M)). (2.3.5)

Multiplying the first equation of (2.3.1) by 0,u and using Green’s formula, we obtain
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jt[ /M (Beu(®)? + [Vu(®)]?) dvg}—i— /M qududv, = /M F(t,2)0u(t) dv,.  (23.6)

1/2
Let e(t) = (||Vu(t)\|ig(M) + ||3tu(t)||2LQ(M)> for t € (0, 7). Then, by (2.3.6), we obtain

% (2(1) < C (||F(t, M gzag €(t) + eQ(t)> . Vie(0,7), 2.3.7)

which implies that €'(t) < C' (||F(t, Mrzomy + e(t)). By Gronwall’s lemma we find

e(t) < Cr (e(O) +/0 15 ) 2 dt) , Vte(0,7). (2.3.8)

The proof of (2.3.4) is completed. O

Lemma 2.3.2 Let T > 0 and q € L*>°(M) be given. Suppose that
Fel'0,T;H*M)), u=0 wu =0 and f=0.
Then the unique solution u of (2.3.1) satisfies
u € C([0,T); L*(M)) nC* ([0, T); H*(M)). (2.3.9)
Furthermore there exists a constant C' > 0 such that
)l 2 aey + 10060 L2y < C N lps ooy - (2.3.10)

Proof. Fix A > 0 large. Let A be the positive self-adjoint operator in H (M) induced by
the bilinear form a(-, -), that is,

(At y = alet) = [ (T 90+ g+ New) dvg, Vit € T(M).

By means of the Lax-Milgram theorem, A is an isomorphism from Z(A) = H} into
HY(M), and Ap = (=4, + ¢ + \)p whenever p € H?(M) N H}(M), and A=l =
(=A; + g+ N~ for any ¢ € L2(M). Moreover A2 is an isomorphism from H (M)
onto L*(M). Define

w= A",

Then w satisfies the following boundary value problem:
(02 +A—=XN)w=A"2F in (0,T) x M,
w(0,-) =0, Guw(0,:)=0in M, (2.3.11)

w =0, on (0,7) x OM,
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equivalently
(02 — Ag + q(2))w = A"Y2F,in (0,T) x M,

w(0,-) =0, Gw(0,-)=0 in M, (2.3.12)

w =0, on (0,7) x OM.
On the other hand, we have A=Y/2F € L*(0,T; L?(M)). Thus by Lemma 2.3.1, we see that
w € C([0,T]; Hy(M)) N C*([0, T); L*(M)). (2.3.13)

Furthermore there exists a constant C' > 0 such that

lw@ll g ag) + 0w (B 2 gy < C HA_1/2F||L1(O,T;L2(M)) : (2.3.14)
This implies
u € C([0,T]; L*(M))nc*([0,T); H(M)). (2.3.15)
Furthermore there exists a constant C' > 0 such that
() 2y + 10O -1 a0y < CIEF N a0 -1 (0t - (2.3.16)
This completes the proof. O

Lemma 2.3.3 Let T > 0 and q € L (M) be given. Suppose that
F e LY0,T; Hy(M)), wup€ H*(M)NHj(M), u, € Hy(M) and f=0.
Then the unique solution u of (2.3.1) satisfies
u € C([0,T]; H* (M) N HY}(M)) N CH[0,T]; Hy(M)) (2.3.17)

and there exists C' > such that for any t € (0,T) we have

(@)l g2y + 10w g1 ag) < C <Hu0||H2(M) + Junll g gy + HFHLl(o,T;Hg(M))) :
(2.3.18)

Proof . By the duality argument, the proof follows from Lemma 2.3.2. O

Lemma 2.3.4 Let T > 0 and q € L*>°(M) be given. Suppose that
Fe LYN0,T; L*(M)), wup € Hy(M), uy € L*(M) and f=0.
Then the unique solution u of (2.3.1) satisfies

u € C([0,T); Hy(M)) N CH([0,T]; L*(M)) (2.3.19)
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and there exists C' > 0 such that for any t € (0,T) we have
B(t) < O (B(9) + I1F | oz ) €500, forall s € [0.7) (2320

for some constant C = C(T, M), where

B0 = 5 (1) ag + 1000 xag )

Proof . Let = ||q|| ;o () and let us set

Es(t) = E(t) + g w720

‘We have

Eit) - /M(6—q(x))u(a:,t)u’(w,t)dx+ / Fla, 0 (z, t)dz.

M
Then

E5(t) < 20 [[ult)ll 2 1o Ol 2y + 1E O 2ou 16 012000
< (14 2V B0 + 5 IFO) 20
and therefore
Es(t) < C <E5(s) + |\F||L1(07T;L2(M))) Clalien forall ¢,s e [0,7]

from where (2.3.20) easily follows. ]

2.4 Regularity of the normal derivative

Lemma24.1 Let T > 0, g € L®(M) be given. Assume that f = 0. Then for a unique
solution u to (2.3.1), the mapping

(ug, u1, F) = Oyu,

is linear and continuous from H} (M) x L*(M) x L'(0,T; L*(M)) to L*((0,T) x OM).
Furthermore there exists a constant C' > 0 such that

||auu||L2((o,T)xaM) <C (HUO||H5(M) + HU1HL2(M) + ||F||L1(07T;L2(M))) . (24.1)
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Proof . Let N be a C? vector field on M such that
N(z)=v(z), z€dM; IN(z)| <1, zeM. (2.4.2)

Multiply both sides of the first equation in (2.3.1) by (N, Vu) and integrate over (0, T') X M,
and we have

T T
I / / F(t, ) (N, V) dvydt = / / Pu (N, V) dvydt
0
// Agu (N, Vu) dvgdt+// u (N, Vu) dvgdt

Integrating by parts with respect to ¢, we obtain

- T
I = // Ofu (N, Vuy dvgdt = [/ Oru (N, Vu) dvg}
0Jm M 0

1 T
- // (N, V(10wul*)) dvedt. (2.4.4)
2 Jo Jm
Then, by the divergence theorem, we obtain

T
// O}u (N, Vu) dvedt = [/ Owu (N, Vu) dvg}
// div(N) |dyul? dvgdt—{// |Oyul? dagdt] (2.4.5)
oM

Since the last term is 0, using (2.3.4) in Lemma 2.3.1, we conclude that

2
1131 < © (ol agy + et auny + 1P o azean) (24.6)

On the other hand, Green’s theorem yields

T T
- / / Agu (N, V) dvydt — / / (Vu, V((N, Va)) dvydt
0JM 0JM
T
— / / |0, ul” dogdt. (2.4.7)
0 JoMm

Thus by Lemma 1.4.1, we deduce

// 0,ul” doydt 4+ = // |Vul® dodt
oM oM

// DN (Vu, Vu) dvgdt + = // \Vul* div(N) dvgdt. (2.4.8)
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Using the fact
\Vul® = [0,u)* + |Voul> = 0,0, =e€dM

and V., is the gradient of the tangential on 9M, we obtain

1 (7 T
I, = _// |8, ul? dagdt—// DN (Vu, Vu) dvydt
2 0 Jom 0 JM

T T
+1 / / |Vu|2diV(N)dvgdt+[l / / |V ul? dagdt] (2.4.9)
2Jo Jm 2 Jo Jom

=0

Consequently we deduce

T 2
[ o o) <. (1l + (lualgnn + Bilisn + 1Flsorszon) )
2
<0 (104841 + (Bl + Dol + 1 lsoraae) ). @410

Finally by Lemma 2.3.1, we have

2
|+ <C (||U0||H5(M) + Jurll g2 any + ||FHL1(0,T;L2(M))) : (24.11)

Collecting (2.4.11), (2.4.10) and (2.4.6), we obtain

T 2
2
[ 1ol doa < € (luallgun + Bl + IFlgrasany) - @412

This completes the proof of (2.4.1). ]

2.5 Non-homogenous boundary condition

We now turn to the non-homogenous case of the wave problem (2.1.1). Let 5 = L'(0,T; L*(M)).
By (-, ) 41 - We denote the dual pairing between 7 and 7.

Definition 2.5.39 Let T > 0, ¢ € L>(M) be given, and let
F=0, wu€Ll*M), u€H?'M), and feL*(0,T)xIM).

Then we say that u € €' is a solution of (2.1.1) in the transposition sense if for any ¢ € €,
we have

T
(1 0) s = | (1, 0(0)) g1 g = (10,0 (0)) g2 1] — /0 [ S0 dogat,
(2.5.1)
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where v = v(t, x) is the solution of the homogenous boundary value problem:
(02 — Ay + q(x))v(t,x) = ¢(t,z) in (0,T) x M,
o(T,2) =0, v (T,x)=0 in M, (2.5.2)
v(t,x) =0, on (0,T)x OM.

Henceforth we always interpret the solution to (2.1.1) in the transposition sense.
Then we see the following lemma.

Lemma 2.5.1 Let T > 0, ¢ € L>°(M) be given. Assume that
F=0, u€Ll*M), w€H'M), and fecL*(0,T)xIM).
There exists a unique solution to (2.1.1)
u € C([0,T); L*(M)) N CH([0,T]; H 1 (M)). (2.5.3)
Furthermore there exists a constant C' > 0 such that

) 2y + 1 O =100y < € (HUOHLZ(M) + lunll g gy + ||f||L2((o,T)xa/v1)) :
(2.5.4)

Proof . Let ¢ € 57 := L'(0,T; L*(M)). Let v € C([0, T]; H}(M)) be a solution of the
final boundary value problem for the wave equation (2.5.2). By Lemmata 2.4.1 and 2.3.1,
the mapping ¢ +— 0, v is linear and continuous from # to L*((0,T) x M) and there exists
C' > 0 such that

[0l g + 10 Olan) < C 16l (25.5)

and
10001l 20,1y xomty < C I e - (2.5.6)
We define a linear functional ¢ on the linear space 7 as follows:
T
U6) = [(11,000)) -1 4y — (10, (0)) 2 12| — / f(t,2)d,0(t,x) dog dt,
0 Jom

where v solves (2.5.2). By (2.5.5)-(2.5.6), we obtain

14@)] < C (ol agay + laallg-sa + 1l 2omrx0nn) 1911 -
It is known that any linear bounded functional on the space .7 can be written as

o) = (u, ¢).}i“’,,%"a

where v is some element form the space 57, Thus system (2.1.1) admits a solution u € J#”’
in the transposition sense and we see
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lell e < © (Htoll anny + Netll-scay + 1l agoizyony) -
This completes the proof of the lemma. ]

Next we need the following estimate for non-homogenous elliptic boundary value problem
(see Lions and Magenes [47]).

Lemma 2.5.2 Let ) € H (M) and ¢ € H(OM). Let w € H*(M) be a unique solution
of the following boundary value problem:

Agw=1in M,
(2.5.7)
w=¢ on OM.
Then the following estimate holds true:
ol agy < € (s + 18l mscone) ) - (258)

2.6 Completion of Proofs of Theorems 2.2.5 and 2.2.6

First we complete the proof of Theorem 2.2.5. First we decompose the solution u of (2.1.1)
as
u=y+z,

where y and z are the solutions respectively to

(02 - Ay + (@) y(t,2) = Fin (0,T) x M,

y(0,2) =0, %' (0,2)=0 in M, (2.6.1)
y(t,z) =0 on (0,T) x OM
and (0 — Ag+q(x)) 2(t,z) =0 in (0,7) x M,
2(0,2) = ug(z), 2(0,x) =ui(x)in M, (2.6.2)
2(t,z) = f(t,2) on (0,T) x OM.

By Lemma 2.3.1 , we have
y € C([0,T]; Hy(M)) N C'([0,T]; L*(M)) (2.6.3)
and there exists a constant C' > 0 such that we have

1YWy + 1V Oll2ng) < CIF 10,2200 - (2.06.4)
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Furthermore, by Lemma 2.3.3, there exists a constant C' > 0 such that

||8z/yHL2((o,T)x6M) <C ||F||L1(0,T;L2(M)) : (2.6.5)
Next put 2’ = 0. Then
(02 — Ay +q(x))0(t,x) =0 in (0,7) x M,
0(0,2) = ur(z), 0'(0,2) = (Ag — q(x))uo(z) in M, (2.6.6)
O(t,z) = f'(t,x) on (0,7) x OM.

Since " € L*((0,T) x OM), u; € L*(M) and (A, — q(x))ug € H (M), by Lemma
2.5.1, we have

6 € C([0,T]; L*(M))nC*([0,T); H H(M)). (2.6.7)

Furthermore there exists a constant C' > 0 such that

101leqo.rpsz2 0y 16 leo.rpsm-1 000 < € (HUOHHl(M) + llurll g2 gy + Hf”Hl(O,T;L?(BM))) :
(2.6.8)
Thus (2.6.7) implies the following regularity for z:

z € CY([0,T); L*(M)) N C*([0,T]; HH (M)

and
Agz €C([0,T); H 1 (M)).

Moreover there exists C' > 0 such that
Hzl(t)HL?(M) <C (HUOHHI(M) + ||u1||L2(M) + ”f”Hl(o’T;m(aM))) )
186201 any < € (ol v + lallzgng + 1 linozzoney) - 269)

Using Lemma 2.5.2, we can find

12Ol + 12 Oll 2 ag) < € (ol agy + lllzzgan + 1 llimomycons)
(2.6.10)
Collecting (2.6.10) and (2.6.4), we obtain

()| gy + 10 Ol 2 £ C (HuUHHl(M) + fJwtll 2 an) + ||f||H1((0,T)xaM)) :
(2.6.11)
The proof of (2.2.4) is similar to Lemma 2.4.1. If one multiplies (2.1.1) by (N, Vz), then
the arguments leading to (2.4.3) gives

T T
0= / / O}z (N,Vz) dvydt — / / Agz (N, Vz) dvydt
0JMm 0JMm
T
+// q(x)u(N,V2), dvgdt == I} + I, + I (2.6.12)
0JM
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with )
2
11 < C (I s orymans + Noll g any + il agy) (2.6.13)

Furthermore we derive from Green’s formula

1 T T
5= / / 10,27 dogdt + / / DN(Vz, Vz) dvydt
0 JoMm 0JM

T T
—1// |Vz|2div(N)dvgdt—1// \V-f” doydt. (2.6.14)
2Jo Jm 2 Jo Jom

By this with

2
|5 < C (HfHHl((o,T)xaM) + HUOHH(}(M) + HulnHl(M)) ) (2.6.15)

we derive from (2.6.13), (2.6.14) and (2.6.12) that

10wl 20,1y om0y < C (HfHHl((o,T)xaM) + [luoll g3 gy + ||u1||H1(M)) : (2.6.16)

The proof of Theorem 2.2.5 is now completed.

Next we proceed to the proof of Theorem 2.2.6. We decompose the solution « of (2.1.1)
as
u=1y+z,

where y and z the solutions respectively to (2.6.1) and (2.6.2).
Lemma 2.3.2 implies

y € C([0,T]; LA(M))nC*([0,T); HH(M)) (2.6.17)
and there exists a constant C' > 0 such that
1yl 2 + 1Y O < CNEN L0 21 p - (2.6.18)
Next, by Lemma 2.5.1, we have
z € C([0,T]; L*(M))NC*([0,T); HH(M)) (2.6.19)
and there exists a constant C' > 0 such that we have

12Ol 2 + 12" Ol -1y < € (Hu0||L2(M) + lJutll g-rpgy + ||f||L2((o,T)xaM)) :
(2.6.20)
Combining (2.6.20) and (2.6.19), we see that
u € C([0,T); L*(M))nCH([0,T); H (M) (2.6.21)

and there exists a constant C' > 0 such that
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@Il L2ty + 19 Ol -1 0
<C (HU0||L2(M) + il -1y + 11220y xomy + ||FHL1(0,T;H—1(M))) - (2.622)

Now it remains to prove d,u € H~((0,T) x OM) and (2.2.8). Let ) € H*((0,T) x OM)
satisfy ¥(0, ) = (T, ) = 0 on OM. Let w be a solution of

(0 — Ay +q(x) w(t,z) =0in (0,T) x M,
w(T,z) =0, w(T,z)=0 in M, (2.6.23)
w(t,z) = Y(t,x) on (0,7) x OM.

Then by Theorem 2.2.5, we have

IOl i any + 10" Ol 2y < C 1 o) xom) - (2.6.24)

Furthermore there exists a constant C' = C'(T', M) > 0 such that

||avw||L2((o,T)xaM) <C ||¢||H1((0,T)xaM) : (2.6.25)

Multiplying the first equation of (2.6.23) by u, integrating it on (0, 7') x M and using Green’s
formula, we obtain

T T T
/ dyup dogdt = — / / Fw dvgdt—l—/ owf dagdt—i—/ [upw’(0) — u1w(0)] dv,.
0 Jom 0JM 0 Jom M

Now, by (2.6.24) and (2.6.25), we see that there exists a constant C' > 0 such that

T
/ 0, u1) dagdt‘
0 JoM

< ClIYl i o,y xomy <||u0||L2(M) + luall -2 vy + 1 220,y xom) + ||FHL1(0,T;H—1(M))) ,

(2.6.26)

which implies (2.2.8).






3

Carleman estimate of the wave equation
in a Riemannian manifold

In this chapter, we prove a Carleman estimate with second large parameter for a second
order hyperbolic operator in a Riemannian manifold M. Our Carleman estimate holds in
the whole cylindrical domain M x (0,7 independently of the level set generated by a
weight function if functions under consideration vanish on boundary (M x (0,7")). This
type of Carleman estimate is called global in (0,7) x M. The proof is direct by using
calculus of tensor fields in a Riemannian manifold.

3.1 What is a Carleman estimate?

Let P(z;0) be a differential operator defined on some Riemannian manifold M. A Carle-
man estimate for this operator is the following L>-weighted a priori estimate:

slleull 2y < Clle™ Pull 2 ag - (3.1.1)

where the weight function ¢ is real-valued with non-vanishing gradient, s is a large posi-
tive parameter and v is any smooth compactly supported function in M. We note that in
Carleman estimate (3.1.1), the estimate is valid uniformly for all large s > 0, i.e., s > sq:
a fixed constant. In other words, the constant C' > 0 should be independent of s > s, and
u € C§°(M). For applications, the parameter s plays an essential role and it is also impor-
tant how to choose a weight function ¢ in order to adjust given geometric configurations.

A Carleman estimate was first established by Carleman [12] in 1939 for proving the
unique continuation for a two-dimensional elliptic equation. Since then, it has remained an
essential method for proving the unique continuation properties for partial differential oper-
ators with non-analytic coefficients. This tool has been refined, generalized by many authors
and plays now a very important role in the control theory and inverse problems. Calderén
[11] in 1958 gave very important development of the Carleman method with a proof of an
estimate of the form (3.1.1) using a pseudo-differential factorization of the operator and
initiated one method by singular-integral in microlocal analysis. In Chapter VIII in [18],
Hormander shows that microlocal methods can provide the same estimates with weaker
assumptions on the regularity of the coefficients of the operator.
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As for Carleman estimates, we can refer to [1], [2], [S], [14], [15], [16], [20], [21], [22],
[29], [30], [31], [32], [38], [42], [52], [54], and the references therein. Here we do not intend
a complete list of related works.

3.2 Weight function

In order to state a Carleman estimate, we need to choose a suitable weight function ¢. Let
(M, g) be a compact manifold with boundary O M. We assume that there exists a positive
and smooth function 1)y on M which satisfies the following assumptions:

o Assumption (A.1): 1) is strictly convex on M with respect to the Riemannian metric
g. That is, the Hessian of the function v in the Riemannian metric g is positive on M:

D?o(X, X)(z) >0, €M, X eT,M\{0}.
Since M is compact, it follows that there exists a positive constant ¢ > 0 such that
D% (X, X)(x) > 20|X[>, zeM, XeT,M\{0}. (3.2.1)
e Assumption (A.2): We assume that ¢)y(x) has no critical points on M:

53161% [Vibo(z)| > 0. (3.2.2)

e Assumption (A.3): Under assumption (A.1)-(A.2), let a subboundary Iy C O M satisfy
{zx € OM; I, > 0} C I. (3.2.3)
Let us define
Q=Mx(0,T), Y=0Mx(0,T), Xy=1Iyx(0,7T)
and
U(t,z) =do(z) — Bt —t) + P, 0<B<o 0<to<T, By>0, (3.24)

where the constant g is given in (3.2.1). We choose a parameter [, such that the function ¢
given by (3.2.4) is positive. We define the weight function ¢ : M x R — R by

o(x,t) = V@) (3.2.5)
where v > 0 is a second large parameter and set
o(t,x) = syp(t,x), (3.2.6)

where s is a real number, and is considered as the first large parameter. As a preparation,
we shall establish a number of elementary properties of the weight function ¢ which will be
useful in the succeeding parts.
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Lemma 3.2.1 Let ¢ be the weight function given by (3.2.5). Then

o =ypY,  Vo=pVy, (3.2.7)
¢ =y (w” + v Iz//IQ) . Agp =0 (A + |V, (3.2.8)
D?p(Vz, Vz) = vp (D*(Vz,V2) + v [(Vz, V§)|?) . (3.2.9)

Furthermore there exists a constant C' > 0 such that
}(8,52 — Ag)2¢(t,x)| < O¥p(t,x), forall (t,z)c Q. (3.2.10)

Proof . Direct computations show (3.2.7) and (3.2.8). Applying Lemma 1.7.1, we obtain
for any vector field X:

DX, X) = X((X, V(e™))) ~ V() X])
=X (X, V) - %ww}(m?)
— 9 (X(0490) = 3TU(XE)) +9 (X, 94) X0
= 1 D*(X, X) + 7% |(X, Vo). (3.2.11)

For X = Vz, we obgtain (3.2.9). This completes the proof.
Finally, by direct computations, we show (3.2.10). O

3.3 Conjugate operator
Let us consider the second-order hyperbolic operator P(x, D) given by
P(x,0) = 0} — A,. (3.3.1)

In order to prove a Carleman estimates, the first step is to conjugate the operator P by the
exponential weight function. The standard approach to a Carleman estimate of the form
(3.1.1) starts from the observation

e*?P(x,0)u = Py(t,z,0)z, (3.3.2)
where P; is the second-order differential operator given by
Py(t,x,0) = e*¥P(x,0)e” "%, (3.3.3)
and the new function z is given by
2(t,x) = e*u(x,t), (t,x) € Q. (3.3.4)

Observing that
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PO (e™%2) =2 —sp'z  and ¥V (e *¥2) = Vz — 52V, (3.3.5)

we easily obtain
Py(t,z,0)z = Pz + P, 2 =G, (3.3.6)

where P;" and P, are two partial differential operator given by:

Prz=2"— Agz + s (|<,0’|2 — |V<p|2) z,
Prz==25(2'¢' = (Vz,Vp)) — s (¢" — Agp) 2 (3.3.7)

S

and
G, =e’fF. (3.3.8)

For obtaining an estimate such as (3.1.1), it suffices to argue for the operator P;.

With the previous notations, we have
S

[P 2||* + || Bz || + 2 (P =, Prz) = (|Gl (33.9)

Now we will make the computation of 2 (P, z, P, z). For this, we will develop the six terms

S

appearing in (P z, P, z) and integrate by parts several times with respect to the space and
time variables.

Lemma 3.3.1 Let ¢ be a smooth function in Q. Then for any z € H*(Q) such that
2(z,7) =2 (x,7)=0, for 7=0,T, (3.3.10)

the following identity holds true:

(P2, P 2) = 25/ (gp” 12> — 22 (Vz, V') + D%p(Vz, Vz)) dvdt

Q
2
283/@ E (I@’I ¢" +D*(V, V) = 2¢' (Vop, V@’)) dvydt
_ ;/Q 2 (82 — A,)* pdvydt + Bo,

where By is a boundary term given by:

By = s/ (000 |V2|* = 2(V2, V) 0,2) doydt + s/ (290’2’@2 — 2 8,,@) dogdt

b by

1
) (3 (¢ — Bgp) + 2002 (¢ ~ [Vl — S|l aule” - M) ot
X
(3.3.11)

Proof . By (3.3.7), we see that
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(Pfz,P;z) = —2s /Q 22 = (Vz, V) dvgdt — s /Q 2" (" — Agp) z dvgdt
+2s /Q Agz (29" — (V2, V) dvedt + s/QAgz (¢" — Agp) z dvgdt

2 /Q (17 = 196P) = (¢ - (V2 Vi) dvd

— SS/Q (|<p'\2 - |Vgp|2) (9" — Agp) |2|? dvydt == XG:Ij. (3.3.12)
=1
First one easily see that

I, = —3/ 'O, (|z'|2) dvgdt—s/ <V <|z'\2) ,V1/}> dvgdt—Zs/ 2 (V' Vz) dvgdt

Q Q Q

= s/ 12'* (¢" + Agp) dvdt — 25/ 2 (V' Vz) dvgdt — {s/ 12| 8, dagdt} .
Q@ Q z
(3.3.13)

By integration by parts, we obtain
Iy =—s /Q 2" (" — Agp) z dvgdt
— S/Q (0" — Agp) |2 dvgdt + ;/Qat (12%) (07 — Ag) ¢ dvydt
= .S/Q (¢ — Agp) |2 dvgdt — ;/Q |27 (07 — Ag) ¢ dvydt. (3.3.14)
Furthermore, by Green’s formula and integration by parts, we obtain
I3 =2s /Q Agz (2" — (Vz, V) dvgdt
= —25/@ (Vz, V) '+ (V2, V') 2 = (V2,V ((Vz,V)))) dvgdt
+2s [/2 0,2 (Z'¢' — (V2,V)) dagdt]
= S/Q (V2> ¢" = 2(Vz, V') ' +2(Vz,V ((Vz,V)))) dvedt
+2s {/2 Dz (¢ = (Vz,Vy)) dogdt| .
Applying Lemma 1.4.1 with the vector fields Z = Vz, we obtain

(Vz,V ((Vz, V) = D¥ (Vz,Vz) + % (Vo,V (IV2])).
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Therefore, we conclude that

Iy = s/ (IVz]? (¢" — Agp) — 22/ (V2, V') + 2D*p(Vz, V2)) dv,dt
Q

+ {s / (20,2 (2'¢' — (V2, V) + 0, |Vz|?) dcrgdt]. (3.3.15)
X

On the other hand, we compute
Iy=s /Q Agz (¢ — Agp) zdvgdt
= (196" = &) + 5 (VU0 9 " = D)) ) vyt
+ |:S/ Dz (¢" — Agp) 2 dagdt}
_ —S/Q <|v2| o) — |z| A (" Aggo)> dvydt

+ {8/ (3 z (" — Agp) z — f|z| (" Agcp)> dagdt] . (3.3.16)
b

Next we have also
Is = —283/ (|at(/7‘2 - |V<P|2) 2(¢'2 = (Vip, Vz)) dvydt
Q
= —SS/Q (8t(\z|2)gp' — <V(\z|2),Vgﬁ>) <|<,0’|2 - |Vg0|2> dvgdt
=5 [ s (6" = Ag) (10 = [Vl?) vt
Q
& [ 14 (v0o = [96l") = (Vi VU1 = [90)) v
Q
3 2 712 2
+[50 [oup o (19 - 96F) o]
X
:83/ |2 (9" = A9) (16 = IVl ) dvgat
128 / o (16" + D*e(Vip, Vi) — 26! (Vp, V') ) vyt

+ [53/ A,z <|<,o’|2 - \wf) dagdt] . (3.3.17)
X

Finally we see that

Ty = /Q (¢~ Agp) (16~ Vl?) dvga (3:3.18)
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Then adding (3.3.13)—(3.3.18), we see that
(P2, P 2) = 25/ (gp” 12> — 22/ (Vz, V') + D2p(Vz, Vz)) dvgdt
Q
253/ |2|? <|<p’|2 ¢+ D*p(V, Vi) — 2¢/ <Vg0,V<p’)) dv,dt
Q

S 2
_2/Q|2|2((9t2—Ag) o dvydt + Bo,

where By is given by (3.3.11). Thus the proof of Lemma 3.3.1 is completed. U

3.4 Interior estimate

In this section, we want to prove a lower bound of (P, z, P, z). For this end we decompose
this integral in the following form

(Pfz,Pr2) =T+ F+ T3+ Bo. (3.4.1)
where 71, J> and J3 are given by:
T = 25/ (cp” |2']> — 22/ (V2, V') + D2p(Vz, Vz)) dvgdt (3.4.2)
Q
To = 253/ |2|? (|<,0’|2 ¢+ D*p(V, Vi) — 2¢/ (V@,Vg@’)) dvgdt (3.4.3)
Q
Ty = _;/ 127 (87 — A)? p dvdt. (3.4.4)
Q

We denote

bw) = ¥/ — [V
In what follows, we use the same letter C'in order to denote constants which are independent
of s, v and z, although it may have different values in different contexts.

Lemma 3.4.1 Let © be the weight function given by (3.2.5). Assume that (A.1) holds. Then
there exists a constant C' > 0 such that for any € > 0, there is C. > 0 such that

Ji+2(0+8) By Z2(g—ﬁ)/@0<|zl|2+|vz|2) vt

—C </ o [b()] |2|? dvgdt + 05/ o |2|” dvdt + ¢ |]P;z||2> . (3.4.5)
Q Q
where By is a boundary term give by

B, = [/ o (78,,@/) |z|2 — ,28”2) dagdt} )
>
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Proof . Using Lemma 3.2.1, we obtain
7 =2 / 79 (" + 7 [ |21 = 2002 (T2, Vo) + D2(V2, V2) + 7 [(T2, Vo)) dvgdt
Q

_ 2/ o (zp" 122 + D2(Vz, V) + 7y (2 — <Vz,Vw))2) dvydt. (3.4.6)
Q
Then

T > 2/ o (DQdJ(VZ, Vz)+ " |z’\2) dvgdt > 4@/ o |Vz|? dvgdt—4ﬁ/ o |Z[* dvdt.
Q Q Q

3.4.7
Next, multiplying the first equation of (3.3.7) by oz and integrating by parts, we have

1
/ Prz(oz)dvgdt = —/ o | dv,dt + / o |Vz|* dvydt — / o' (0,(|2]*) dv,dt
Q Q Q 2 Jq
1 .
+2/ (Vo,V(|2]*) dvgdt+/o‘5b(z/))|z|2 dvgdt—/ 020, doydt
Q Q z
1
= —/ o |2 dv,dt —|—/ o |Vz* dvydt + /(U" — Ao)|z|? dv,dt
Q Q 2 Jq

+ / a*b(y) |2|? dvgdt + [ / o (vo 0 |2° — 20,2) dagdt} (3.4.8)
Q X

B

Using the fact that
o" — Ago =0 (¢// - Agw) + 720(3(7/})’
we deduce that for any € > 0, there exists C. > 0 such that

'/ o |2/ dvodt — By| < / o 22 [b()| dvgdt + ¢ || P2
Q Q
+ / o |Vz|2 dvgdt + Cg/ o’ \z|2 dvgdt. (3.4.9)
Q Q
Combining (3.4.9) and (3.4.7), we obtain

J1+468B1 > 4(0— B) /a |Vz|2 dv,dt
Q

_c </ o3 |22 ()] dvgdt + ¢ || P 2| + cg/ o2 |22 dvgdt> (3.4.10)
Q Q
Using (3.4.9) again, we have
2(9—/3)/ o | * dvydt—C (/ o |z |b(y)| dvgdt+e}|P;z||2+c€/ o?|z|? dvgdt>
Q Q Q

<2(p— B)/ o |Vz|* dvgdt +2(0 — B)By. (3.4.11)
Q
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Combining (3.4.11) and (3.4.10), we obtain (3.4.4). O

Lemma 3.4.2 Let o be the weight function given by (3.2.5). Assume that (A.1) holds. Then
there exists a constant C' > 0 such that the following estimate holds true:

To > 27/6203 (b(1))? |2 dv,dt +4/Qa3 (g|vw|2 — B |1//\2) 22 dvgdt.  (3A4.12)
Proof . Using Lemma 3.2.1, we find
5 =25° /Q () [0 (" + 7 10 P) ] dvidt — 4s° /Q P 0 VP dvydt
258 /Q T (D20(V, V) + 7 (Vi) |2 dvydt

=2 [ o (0" W/ 2 + D*(VY, Vo) [2f*) dvdt + 2y / o (b(1)? 2" dvedt
Q

VoS

27/ % (b)) || dvgdt—|—4/ o (g|v¢|2—/5|¢’|2) 122 dvydt. (3.4.13)
Q Q

This completes the proof of the lemma. O

On the other hand, by (3.2.10), we obtain
|J5] < 072/ o |z|2 dv,edt < ny/ o? |Z|2 dv,dt. (3.4.14)
Q Q

By Lemma 3.4.2, Lemma 3.4.1 and (3.4.14), we obtain the following lemma.

Lemma 3.4.3 Let ¢ be the weight function given by (3.2.5). Assume that (A.1) holds. Then
there exists a constant C' > 0 such that for any € > 0 there is C. > 0 such that

Tt ot Jo+ 2o+ 9) B2 20— 9) [ o (Vs +1217) dvs

Q
T2y /Q o (b())? | vyt + 4 /Q o* (IV0 — B10/F) 12 dvyds

—C(/Qa3|z|2|b(¢)| dvgdt+eHRjz|yz+cﬂ/Qo?|z|2 dvgdt). (3.4.15)

3.5 Carleman estimate

Theorem 3.5.8 Let
U(tv I) = 8799(157 I)
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Assume (A.1) and (A.2). Then there exist constants C' > 0 and 7, > 0 such that for any
v > 7, there exists s, = s.() such that for all s > s, the following Carleman estimate
holds:

c/ o (192 + | + 0% <) dvgdtg/\Psz|2 dvgdt—B,  (35.)
Q Q

for z € H*(Q) satisfying z(t,-) = 2'(r,-) = 0 at 7 = 0, T. Here B is a boundary term given
by:

B / o (D00 |V2|? = 2(Vz, Vi) ,2) dogdt+ / o (21/)’2'8,,z - |z’|QaV¢0) doydt
X X
+/ o <28,,z (=28 — Agth + vb(1)) + a?dabo 2| b)) + % |2]% 0, (Agtho + |w0|2)> dogdt
X
—2(0+pB) [/ o (v0 0 |2° = 20,2) dagdt} . (352
X

There are two feautures in our Carleman estimate:

e it is attached with the seccond large parameter . The Carleman estimate was considered
in [14], [15], [30], [31] for functions with compact supports. The dependecny on the
second large parameter is, however, automatically derived if one prove the Carleman
estimate by the method stated below. As such direct derivation of Carleman estimate, see
also [42].

e Our Carleman estimate does not assume compact supports for functions under consider-
ation.

The proof is based on Bellassoued and Yamamoto [7].
Proof . Since § < g, for n > 0 small we have

Bl +n) <o (3.5.3)

Let us consider
Q"= {(x,1) € Q; [b(w)] <[V},
Then

T+ To+ Ts+2(0+ B)Br > 2(0 - ﬁ)/ o (|VZ|2 + |z'|2> dv,dt
Q
427 [ Q)P vt + alo = 1+ ) [ o2 [V dvgd
QA\Q" Qn

-C <77/ o |2 dvgdt—i—/ o®z|? dvgdt—i—sHPS‘LzHQ—i—CE’y/ o? |z dvgdt> .
7 Q\Q" Q
(3.5.4)

Using (3.5.4) and assumption (A.2), we obtain
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T+ T+ T3 +2(0+6)By > 5/ o (|V,z|2 + |z’|2) dvgdt+2’yn201/ o |2* dvdt
Q Q\Q"

+ Calo—BL+n)) / o |o|? dvdt

Qn
—C’(n/ o |z)? dvgdt—l—/ o |z dvgdt+5||P:z||2+’y/ o? |z dvgdt>
" Q\Q" Q

> (5/ o <|Vz|2 + |z’|2> dvgdt + (2y0°Cy — C)/ o |2 dv,dt
Q Q\Q"

P:LZH2 + ’y/ o?|z? dvgdt> :
Q
(3.5.5)

(Colo— B(L+ 1)) — nC) /

o |2|* dv,dt — C <€ }
QM

Then for small 7, large v > 7, and s > s,(y), we obtain
1
Tt Tt To+2(0+ BBy > 5/ o IV + 21 + 0% =) dvgdi— |2 356)
Q

By (3.4.1) we find

2
)

1
2(P}z Prz) — 2B > 25/ o (\Vz|2 +12P + o2 |z|2) dvdt — 3 || PF2 3.57)
Q
where B = By — 2(o + ) B;. Then there exists s.(y) > 0 such that for any s > s,, we have
1G,J? - 28 > c/ o (1V2P + [+ =) dvgt. (358)
Q

The proof is completed. 0

Corollary 5 Assume (A.1) and (A.2). Then there exist constants C > 0 and -y, > 0 such
that for any v > v, there exists s, = s.(7y) such that for all s > s, the following Carleman
estimate holds:

C/ e*0 <|Vu|2 + U] + o2 |u|2) dvgdt < /625“’ (07 — Ag)u‘2 dvgdt
Q Q
+ /a (|Vu|2 + [u']? + o |u|2> e**? dogdt (3.5.9)
P>

forw € H*(Q) satisfying u(t,-) = u/(7,-) = 0,7 =0,T.

Corollary 6 Assume (A.1), (A.2) and (A.3). Then there exist constants C' > 0 and ~, > 0
such that for any v > =, there exists s, = s,(7y) such that for all s > s, the following
Carleman estimate holds:



64 M.Bell d and M.Y: t Chapter 3 —

C/ g <|Vu|2 + |u/|2 + 02 |u|2) dvgdt < /625<P
Q Q

(0} — Ag)u|2 dvgdt

2 2s
+La@m&¢®wt@5m
0

forw € H*(Q) satisfying u(t,-) = u/(7,-) = 0at7=0,T and u(t,z) = 0 on X.

Proof . Noting that if u(¢,z) = 0 on X, then we have z(¢,z) = 0 on X and the boundary
term B is given by

B = —/ 0|8Vz\28yw0 dog dt.
b
O

Corollary 7 Assume (A.1), (A.2) and (A.3). Let w be a neighborhood of 1. Then there exist
constants C > 0 and v, > 0 such that for any ~y > -y, there exists s, = s.(y) such that for
all s > s, the following Carleman estimate holds:

C/ >0 <|Vu|2 + '] + o2 |u|2) dvgdt < /625“’ (07 — Ag)u‘2 dvgdt
Q Q
+/0@N+#Mﬂﬁwwﬁ65m
wT

for uw € H?*(Q) satisfying u(t,-) = v'(1,-) = 0at 7 = 0,T and u(t,z) = 0 on . Here
wh=wx (0,7).

Proof . Let V. = {z € w; dist(z,0w N M) < ¢} and w. = w\V.. We take a smooth cut-off
function ¢ such that §(x) = 1 for z € M\w,/, and 0(x) = 0 for € ws./4. The function
w = fu satisfies the equation

(0} — Apw = 0(9} — Ag)u + (ud 0 +2(VO,Vu)), in Q
with the boundary conditions:
w(t,z)=0 in X, Ow=0 in X

Furthermore, we have w(7,-) = w/(r,-) = 0, 7 = 0,7. Thus applying Theorem 3.5.8 and
keeping in mind that A,0, V@ are supported in w,, we have

C/ e*¥a <|Vu|2 + [P + o |u|2) dvgdt < /625"’ (07 — Ag)u|2 dvgdt
Q Q
+ / o <|Vu|2 + || + o2 |u|2> % dvgdt. (3.5.12)
wf

Let p € C*(w) be a function such that suppp C w and p(x) = 1 for all x € w,. Taking the
scalar product of (97 — Ag)u with opue®?, we have:



M.Bell d and M.Y: to 3.6 — Unique continuation and the observability inequality 65

/Q(@t2 — Apu (opue*?) dvydt = —/

op |u|? €% dv,dt + / op | Vul|® €2 dv,dt
Q Q

+ /Q o (vp (Vb, Vu) + (Vp, Vu)) ue**? dvydt — /nyopw'u'uem" dvgdt
+2 /Q o?p ((Vih, Vu) — 'u') ue*? dvgdt. (3.5.13)
Then we have
/Qap (Vu|® €2 dv,dt < /Q |(('))t2 - Ag)u‘2 dv,dt

+/Qp(x)a(|u'|2+a2 |u|2> ¢ dvydt (3.5.14)

Estimating the integral / o |Vul? €27 dv,gdt in (3.5.12) by the right-hand side of (3.5.14),
ya

w,

we obtain (3.5.11). ’ ]

3.6 Unique continuation and the observability inequality

Originally the Carleman estimate has been invented for proving the uniqueness in a Cauchy
problem for an elliptic equation by Carleman [12], and as the first application of the Car-
leman estimate in this section, we will discuss the methodology for the uniqueness and the
conditional stability for a hyperbolic equation by a local version of the Carleman estimate:
theorem 3.5.8. Contrast to our Carleman estimate, there is so-called a local Carleman esti-
mate which holds locally in a subdomain defined by the level set of the weight function, not
in the whole domain M x (0,T). We emphasize that whenever we apply a local version
of Carleman estimate, it is essential to introduce a cut-off function and apply the Carleman
estimate to the product of a solution to a partial differential equation by the cut-off function.

3.6.1 Conditional stability for the Cauchy problem

Let I C OM be an arbitrary and non-empty sub-boundary of 0. M. We consider a Cauchy
problem for a hyperbolic equation:

(0F = A +a(@))u=F, (,1)€Q (3.6.1)
and
u(z,t) = f(z,t), Oyu(z,t)=h(x,t), (x,t)e X =1Ix%x(0,T). (3.6.2)

Cauchy problem
Let u satisfy (3.6.1) and (3.6.2). Then determine « in some domain @y C @ by f and h.
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As for the uniqueness results, we can refer to a lot of works, for example, [2], [14], [18],
[19], [29], [34], [41], [50], [49], [51], [52]. Therefore we will not list them comprehensively
even though we restrict ourselves to hyperbolic equations. In this section, we give accounts
of methods for applying Carleman estimates to prove stability results in the Cauchy problem.
One introduces a suitable cut-off function and extends Cauchy data in a suitable Sobolev
space to reduce the problem to functions with compact supports and then one can apply a
local Carleman estimate to obtain a stability estimate of u by data on 2. This argument is
quite traditional and is valid for other types of partial differential equations.

We define Q(r) by
Q(r) ={(z,t) € Q; p(z,t) 2r}.

Theorem 3.6.9 Let ¢ be a weight function satistying (A.1) and (A.2) and let I} C OM.
Let us assume that
Q(Tl)CQUZh Zlipl X (O,T)

Then for any 0 < r < 19 < 13, there exist constants C, depending on M, Iy,  and r; such
that for a solution u to the Cauchy problem (3.6.1) (3.6.2) we have

[l 1 gy < C (A4 BITRA"), (3.6.3)

where

o —T1

A= Fll 2y + 1 flliamy + 10l p2myy s B=lulligy, &= e

Proof . Let € C*(R) satisfy # = 1 in [r; + &, +00) and § = 0 in (—o0, r1]. Let
w(z, t) = 0(e(x, t))u(x,t), (z,t) € Q.

Then

(07 — Ag 4+ q(x)) w = 0(p) F +20'(¢) (¢'t — (Vip, Vu)) + (¢" — Agp)u)
+0"(0) (¢ = [Vl )u. (3.64)

Applying the Carleman estimate (Corollary 1) to w, we obtain
C/ e*?s (|Vw\2 + ' + s |w|2) dvgdt < /62&0 6(0) F|” dvdt
Q Q
+ /s (IVel + ' + 52 [w]?) € doydt
z
i / 0259 g (|VU|2 4 |u’|2 4 g2 ‘u|2) dvgdt. (3.6.5)
Q(ri)\Q(r1+e)

Therefore
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sr 2 2 2 sr 2 2 2
Ce? yg()OVu|+ww|+—m|)d%dts623(uwu%mﬁ»+|fnp@ﬂ+nmu%&0
r2
S ulf ) (3.66)

which implies
Cull gy < €A+ e BB (3.6.7)

for s > s,. Now minimizing the right-hand side of (3.6.7) with respect to s, we obtain
(3.6.3). O

3.6.2 Observability inequality

In section 3.5, we consider Cauchy problems where we are not given boundary values on
some part of the boundary Y. In this section, assuming that we know the boundary condi-
tion on the whole lateral boundary 2/, but not an initial value, we discuss the estimation of
the solution by extra boundary data or interior data of the solution.
Such an estimate is called an observability inequality. As for the derivation of an observ-
ability inequality by Carleman estimate, see e.g., [35], [38], and for related works, see [3],
[40].

Let us consider the following initial boundary value problem for the wave equation with
bounded potential ¢ € L>(M):

(0F = Ay+q@)u=0, in Mx (0.7),

uw(0,-) =ug, Gu(0,) =uyin M, (3.6.8)
u=0, on OIM x (0,T).
Let )
e 1) 3.6.9
=7 gé%wo(x : (3.6.9)

Theorem 3.6.10 Let (M, g) be a Riemannian manifold such that assumptions (A.1)-(A.2)
and (A.3) hold and let T > Ty and ¢ € L*°(M). Then there exists a unique solution u to
(3.6.8) withug € HY(M), uy € L2(M) such that

u € C([0,T]; Hy(M)) nC([0,T]; L*(M))
and we can choose a constant C' > 0 such that
ol pey + NunlZ2 gy < C 1Ol 72esy - (3.6.10)

Proof . For T' > Ty, let us define

2
Y(x,t) = o(x) — B <t - Z) + Bo. (3.6.11)



68 M.Bell d and M.Y: t Chapter 3 —

We fix 6 > 0 and 8 > 0 such that
oT? > 4111%1( o(z) + 40 (3.6.12)
e

and
/ﬂﬂ>4m%wdﬂ+4& 0<pB<o, (3.6.13)
xe

where 3 is given by (3.2.5). Then ¢ (x, t) verifies the following properties:
() Y(z,0) < fog—dand ¢(z,T) < By — d for all z € M. Then there exists € > 0 such that

W(x,t) < Py — g, Vee M, te(0,2e)U(T —2¢,T).

T
(i) (a:, 2) = ¢o(z) > 0 for all z € M. Then there exists £; > 0 such that

J T
w(x7t)260_17 \V/xEM, ’t_2‘§€1

We introduce a cut-off function 7 satisfying 0 < n < 1,n € C*(R),n = 1lin (26, T — 2¢)

and Suppn C (6,7 — ¢).
Let u be a solution of (3.6.8). Put

w(z,t) =nt)u(z,t), (x,t) € Q.
We note
(02 — Ay + q(x)) w =2/ () (z,t) + " (t)u(z, t),in (0,T) x M,
w(0,-) =ug, Gw(0,-) =wuy in M, (3.6.14)
w =0, on (0,7T) x OM.
Furthermore we have
w(r,z) = w(r,z) =0, 7=0,T forall ze& M.
Applying the Carleman estimate Theorem 3.5.8 to the function w, we obtain
C/ %0 (|Vw|* + [0w]* + o7 |w[?) dvydt < /625“’ 0 O+ 1"u)? dvgdt
Q Q
+/0@M%m®thM$
B>

0

for any v > v, and s > s.(7). Fixing v = ,, for any s > s, we have
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M.B
e 2 2 2
C/ / %5 (|Vul” + [0pu|”) dvgdt < /625“’ [n'u" + n"u|” dvgdt
M Q

T/2—e1
+/ 510,ul* e*¢ dogdt. (3.6.16)
o

Since " and 1" are supported in (0, 2¢) U (T — 2¢,T), by (i) and (ii) we conclude

T/2+46; T

Clehs / Byt < < [ 1o + 2 / B(t)dt + 2% £(0),

T/2—e; Yo 0

where
) 5
dy :=exp [ (8o — 1) , doi=exp | v(Bo— 5) :

On the other hand, by Lemma 2.3.4, we arrive at
E(0)<C (eCS 1022 sy + e’Q(dl’dO)SE(O)> .

It is easy to find s large such that

0872(d17d0)s < 1
-2
Thus
2
E(0) < Cllovullz2sy) »

which is exactly the desired inequality (3.6.10). O






4

Inverse problem and exact
controllability for the wave equation in a
Riemannian manifold

4.1 Introduction

The main interest of this chapter lies in an inverse problem of identifying unknown coeffi-
cients of the wave equation from measurement on lateral boundary. The problem is attractive
to many researchers, since it is a mathematical model in geophysics of finding properties
of geophysical media by observation of wave fields on a part of the surface of the Earth.
We wish to know condition for the uniqueness of solutions, but the uniqueness has not been
shown for the case of anisotropic media. Proofs of uniqueness theorems of multidimensional
inverse problems for differential equations are based on the following two points;

o the Bukhgeim-Klibanov method presented in [10].
e Carleman estimates near the boundary for boundary value problems.

We remark that the Bukhgeim-Klibanov method is an application of Carleman estimate to
inverse problems and effective for various inverse problems of determining coefficients in
the equations for which a Carleman estimate holds. Since the Carleman estimate essentially
depends on the type of differential equation and the shape of the domain, several serious dif-
ficulties may arise in particular for hyperbolic systems with variables coefficients. Stability
estimates play a special role in the theory of inverse problems of mathematical physics that
are ill-posed in the classical sense (e.g., [42]). They determine the choice of regularization
parameters and the rate at which solutions of regularized problems converge to an exact
solution (e.g., [13].)

Originally the method by Carleman estimates for inverse problems, was introduced si-
multaneously and independently by Bukhgeim and Klibanov in 1981 as a powerful tool for
proofs of global uniqueness results for multidimensional inverse problems with a single or
a finite number of measurements. Gradually different authors have started to successfully
modify and apply their method to establish the Lipschitz stability as well as the Holder sta-
bility for hyperbolic and parabolic ill-posed Cauchy problem as well as inverse problem.

Here we recall the following assumptions. Let (M, g) be a Riemannian compact mani-
fold we assume that:



72 M.Bell ] and M.Y: t Chapter 4 —

e Assumption (A.1): There exists a function )y, which is strictly convex on M with
respect to the Riemannian metric g. That is, the Hessian of the function v in g is positive
on M:

D%*o(X, X)(2) >0, zeM, XecT,M\{0}.

Since M is compact, it follows that there exists a positive constant ¢ > 0 such that
D% (X, X)(x) > 20|X[>, zeM, XeT,M\{0}. (4.1.1)
e Assumption (A.2): We assume that ¢)y(x) has no critical points on M:
?53 [Vipo(x)| > 0. (4.1.2)
o Assumption (A.3): Under assumption (A.1)-(A.2), let a subboundary I'y C O M satisfy
{x € OM; 0,00 > 0} C Iy, (4.1.3)

Let us define

Q=Mx(-T,T), Y¥=0Mx(-T,T), %o=1Iyx (~T.T)
and
P(t,x) = ho(x) = B*+ B0, 0<B <o, fo>0, (4.1.4)

where the constant g is given in (4.1.1). We choose a parameter [y such that the function )
given by (4.1.4) is positive. We define the weight function ¢ : M x R — R by

oz, t) = V@D, (4.1.5)

where v > 0
Henceforth we assume that (A.1)-(A.2) and (A.3) hold true. Let (z,t) be the function
defined by (4.1.5). Then

o(x,t) = V@D = oo (x)u(t), (4.1.6)
where ¢o(z) > 1 and p(t) < 1 are defined by

po(x) = W@H0) > 0 = gy Yre M and pu(t)=e " <1, Vte (-T,T).
(4.1.7)
Let

1 1/2
1= 75 (gt
and we fix § > 0 and 8 > 0 such that
2
4
oT* > max () + 49

and
2
pT* > gé%l(wo(ﬂc) + 40.

Then ) (x, t) verifies the following properties:
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o Y(x,£T) <y — 40 forall z € M.
e Then there exists € > 0 such that

o(x,t) = V@D < =2) = g < dy, forall zeM, [t|>T—2. (4.1.8)

Finally we consider the following Banach spaces L§,¢(Q) and H ;W(Q) which are the space
L?*(Q) and H'(Q) equipped with the following norms:

2 2
Il 0= | €l dv

lall7s o) = /Qe?w (\vu\? + ) + 5 |u|2> dvydt.

4.2 Inverse source problem

4.2.1 Preliminaries

Let us consider the following wave equation
Ofu — Agu+ q(z)u = h(z)R(z,t) in Q=M x (=T,T),

u(x,0) = dyu(x,0) =0 in M, (4.2.1)

u(z,t) =0 in ¥=Ix(-T,T),
where h and R are given by
heLl*M), RelL'-T,T,L*M)), R €L'(-T,T;L>*(M)).
By Theorem 2.2.5 the unique solution u;, of (4.2.1) satisfies
wp € C([=T,T); A(M)) N CN([=T, T); H (M) N C(~T, T; H*(M))

and
oy, € L*(X).

Let us consider the linear map:

Lr i LA(M) — L*(%)
h— Zr(h) = (Ou}) 5, - (4.2.2)

Lemma 4.2.1 There exists a positive constant C' such that the following estimate hold true:
1w Ol 2agy + IVl 2agy < ClBNl 20y, € (=T, T) 4.2.3)
and moreover
10" ()l 2ty + N1 AN p2gpgy + VU Ol 200y < CllAllL2rey T E (=T, T). (4.2.4)
Furthermore we have

12 (W)l 22y < C Ml 2 ngy  Sorall b€ LH(M),
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Proof . Applying Theorem 2.2.5 to the solution u of (4.2.1), we obtain
”u/(t)HL?(M) + ||U(t)||H01(M) < PRI o rz20n)
< Nl oy IBN 1 sz anyy < C IRl L2gary - (42.5)
In order to prove (4.2.2), set v = u’. Then we have

V" — Agu + q(x)v = h(z)R (z,t), in M x(=T,T),

v(0,2) =0, v'(0,z)=h(z)R(z,0),in M, (4.2.6)
v(z,t) =0, in XY=Ix(-T,T).
Theorem 2.2.5 yields

1) sy + IV O 2ga < C (10O agag) + IR s Criazan))
< C (Il gz + Wl oag 1B N rpzoenny ) - 427)
O

We need the following lemmas, which are simple consequences of energy identity.

Lemma 4.2.2 Let us consider F € L'(=T,T;L*(M)), z1 € L*(M). Let z be a given
solution of the second-order hyperbolic system:

2 — Agz+q(x)z = F(z,t)in Q=M x (=T,T),
z2(0,2) =0, 2(0,2)=2z in M, (4.2.8)

z(x,t) =0 on ¥ =1 x(-T,T).

Then the following estimate holds true:

2 2
1l < € (Il + 1P 2 ) (429)

for some positive constant C' > 0.

4.2.2 Uniqueness and stability estimate
Let v be a given solution to

V" — Ao+ q(x)v = h(z)R (z,t), in Mx(=T.T),
v(0,2) =0, ' (0,z)= f(z)R(z,0),in M, (4.2.10)

v(z,t) =0, on Y =1Ix(-T,T),
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and we introduce a cut-off function 5 satisfying 0 < n < 1,n € C®°®R),n = 1 in
{t, |t| <T — 2} and suppn C {t, |[t| <T —}. Put

w(z,t) =nt)v(z,t), (z,t) € Q.

Noting that w satisfies

(0F — Ay + q(x)) w = nhR + 200" + n'v,in (=T,T) x M,

w(0,-) =0, (0, ) = h(x)R(x,0), in M, (4.2.11)

w =0, on (=T,T) x OM.
Furthermore we have

w(r,x) =w'(r,x) =0, 7==T, forall ze M.
Applying the Carleman estimate to the function w, we obtain
Cs HwHQHSlW(Q) < HhR/HigM(Q) + ||77/U/\|ig&(Q) + ||77”U\|igw(cg) +s Hauw||igw(zo)

for any s > s,

Lemma 4.2.3 Let w be a given solution of (4.2.11). Then there exists a constants C > 0
such that for all s > 0 large enough, the following estimate holds true:

2d15

2 2 2 2
Cs Hw”HSlM(Q) < ||hR| 2@ T€ [Pl z2 ) + 5 Han”LfW(Z‘O) :

Proof . It follows from (4.1.8) that
/62s¢ (WU,'z N In”vl2> dvgdt < Ce** || 0 (4.2.12)
Q
where C' > 0 is a generic constant. This completes the proof. O

Lemma 4.2.4 Let & € L*(—T,T; L°°(M)). Then there exists a positive function k : Rt —
R* such that lim k(s) = 0 and

s$—-400
W12, gy < K(3) e hllEary V€ THM).
Proof . We have

T
S T 2 —a$ - 2
2%0(®) |y (z))| (/0 e D(t, ) [ Lo ) dt) dz.
(4.2.13)

/Q €2 (@)D (x, 1) dadt < /

M

On the other hand, by the Lebesgue theorem, we obtain
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T
B () = [ O (1,
0
<

— S 2
/ e PO D(t, )| ] gy - (4.2.14)

=k(s)=s—o000(1)

This completes the proof. O

Theorem 4.2.11 Assume that (A.1), (A.2) (A.3) hold true, T' > T} and that
R(t,x), R'(t,x) € L*(=T,T, L™ (M)), (4.2.15)

|R(z,0)| > mo >0 almost everywhere on M (4.2.16)
with some constant my > 0. Then
CHA 2wy < NLr) |25y < C N0l 2y forall  he L*(M).  (42.17)
Proof . Let z = e*?w. Then we have
2" — Agz + q(x)z = e Pow.
Now decompose the conjugate operator P as follows:
Pow = Pfw+ P, w, (4.2.18)

where P, and P, are two partial differential operator given by:

Prw=w" — Agw + q(z)w — s* (|<,9’|2 - \th|2> w
Prw=2s(w'¢’ — (Vw, V) + s (¢" — Agp) w. (4.2.19)

Therefore we obtain
2 — Agz +q(2)z = ¥ F(x,t) + e Ayw, in M x (=T,T),
2(x,0) =0, 2'(z,0) = h(z)R(z,0)e’® in M, (4.2.20)
z(z,t) =0, on X =1Ix(-T,T),
where
Agw = s (\gp’|2 - |ch\2) w+2s(2'¢ = (Vz,Vo)) + s (¢" — Agp) w 4.2.21)

and
F(z,t) = nhR'(z,t) 4+ 2n'v" +n"v

Next we use assumption (4.2.16) and (4.2.9) with z = e*#w, and we obtain
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s 2 2 2 s 2
Clle %hHm(M) <s ||w||H_;w(Q) + HhR/HLgW(Q) + et ||h||L2(M)
+ [l Agwz! || 1 ) + 5 ||(?l,w||i%w(20) . (4.222)

Since
e Agwy = e [32 <|<p'\2 - |V<p|2) w+ Ps*w] [sap'w + w'}, (4.2.23)

we obtain by the Schwartz inequality

l[e*? Agw2'|| 1) < Cs/QeQS“’ (32 lw|® + |[Vw|* 4 |w’|2) dxdt = C's ||w||i1811¢(Q> .

4.2.24)
Inserting (4.2.24) into the right-hand side of (4.2.23), we obtain.

s 2 2 2 s 2 2
Cllehll oy < sllwlli ) + I1AR L2 ) + B |[A z2pn) + 10vwllz (s -
(4.2.25)
We will now complete the proof of Theorem 4.2.11. Using Lemma 4.2.4, we obtain

HewohHQL%M) < k(s) ”eS%h”i?(M) 4+ Cle2sh HhHi?(M) +C; ||81,v|\i2(20) . (4.2.26)

Here we note that the first term on the right-hand side of (4.2.26) can be absorbed into the
left-hand side if we take large s > 0. On the other hand, since @o(z) > dy > d; for all
x € M, we have for s sufficiently large

2
”hHi?(M) < Cllo |25y = C ||$R(h)”i2(zg) : (4.2.27)

The proof of Theorem 4.2.11 is completed. O

4.3 Determination of coefficient

The main interest of this section is an inverse problem of determining unknown coefficients
of the wave equation from measurement data on lateral boundary. Physically speaking, we
are required to determine a coefficient of a restore force from measurements of boundary dis-
placements. We wish to know conditions for the uniqueness of solutions, but the uniqueness
has not been shown for the case where observation is done on arbitrary part of a boundary.
We shall address our inverse problem precisely. Let (M, g) be a compact Riemannian man-
ifold. We consider the Dirichlet mixed problem for a second-order wave equation:

u’(x,t) — Agu(x, t) + q(x)u(z,t) =0,in M x (=T,T)
w(z,0) = ug(z), u'(x,0)=wui(x), in M 4.3.1)

u(z, t) = f(x,t) on I'x (=T,T).
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We denote the solution to (4.3.1) by u,.
Let 7 C I' be a part of the boundary I" = 0f2 which is given a priori. A question of our
inverse problem is how to conclude ¢ (z) = ¢2(z) x € M under the observation

Oug (x,1) = Oyug, (z.1);  (z,t) € Xy =1y x (=T, T) 4.3.2)

When 7 is the whole boundary I, a strong affirmation result is known for the uniqueness
in multidimensional inverse problems with a single observation (Bukhgeim and Klibanov

[10D).

In the case where I be an arbitrary part of I', the condition for unique identification
had been an open problem. In recent years, several works (e.g., Isakov and Yamamoto [32],
Imanuvilov and Yamamoto [24]) on this subject have appeared, and mainly concerned with
the uniqueness and stability in determining a coefficient of the zeroth-order term when
the part I is given by I'1 = {z € I', (x — x) - v(x) > 0}. This subboundary can corre-
spond to the geometric optics condition for the observability (see Bardos, Lebeau and Rauch
[3]). Kubo [39] gives some Carleman estimates including boundary conditions to show the
uniqueness across a lateral boundary for hyperbolic equations, and he shows the unique-
ness in a hyperbolic inverse problem by the above unique continuation, provided that I'\ I
contain a flat part of the boundary.

Imanuvilov and Yamamoto [24] establishes the uniqueness and stability in an inverse
problem of determining a potential by the Dirichlet data and the Neumann data on a suffi-
ciently large part of the boundary I" over a sufficiently long time interval. In particular, their
stability result is global in {2 and both-sided Lipschitz stability estimate.

Stability estimates play a special role in the theory of inverse problems and for example
determine the choice of regularization parameters and the rate at which solutions of regular-
ized problems converge to an exact solution ([13]).

As related uniqueness and/or stability estimates for inverse problems, we refer for exam-
ple [4], [5], [6], [8], [91, [23], [25], [291.[36], [37], [55].

The above-mentioned works discuss inverse problems in the case where M is a bounded
domain in an Euclidean space. We shall next consider the stability for our inverse hyperbolic
problem in the case of a Riemannian manifold M. For example, in (4.3.1), assuming that
(up, u1) is given, we are concerned with the stability. Our main interest is the Lipschitz
stability in the inverse problem, that is, an estimate ||¢; — ¢»|| < [a suitable norm of (u,, —

u‘h)lfl]'
Throughout this section, let us set
2(M,) = {q € Wh2(M); lgllyr,00 pg) < Mo} (4.3.3)

for any fixed My > 0. Let us take the Hilbert space H(M) = (H3(M)NHL(M))® H*(M)

as the state space of our system. The norm in (M) is chosen as follows:

oo )y = lollZsgany + lealyoqng - Forany (o, m) € HM).  (43.4)
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Before stating the main results, we recall the following lemma on the unique existence of a
weak solution to problem (4.3.1), which we shall use repeatedly in the sequel. The proof is
based on [47], for example. We can also refer to [24].

Lemma 4.3.1 Let (ug, u1) € H(M) and let g € 2(M). Then there exists a unique solution
u = u, to (4.3.1) starting from (ug, uy) whithin the following class

u € C([=T, T H¥ (M) N CH (=T, T|; H*(M)) N C*([=T, T H' (M) (43.5)
Moreover there exists a positive constant C' = C'(My) such that

g lleqray sy + Waller (aay;m oy + [talle gz < € 1o, w) ) -

(4.3.6)
Furthermore B
dyuy € L*(X).
Let us consider the linear mapping
N L®(M) — L*(5)
q— Ni(q) = (c’)yu;)‘fo . 4.3.7)
The main result of this section can be stated as follows:
Theorem 4.3.12 Let T' > Ty. Let (ug, uy) € H(M). We assume that
lug(z)| >mo >0, €M, and u, € H'(-T,T;L*(M)). (4.3.8)
Then there exists a constant C' > 0 such that
lar = ell 2y < CINHa@) = Ni(@)l 25,0 Y, @2 € 2(Mo). 4.3.9)

Here the constant C' is dependent on M, T', M, ||(uo, u1) |34y and independent of ¢, ¢> €
2(M).

Proof . We consider the difference u = u4, — ug4, and have:
" — Agu+ qi(x)u = h(z)R(x,t) in M x (=T,T),
w(z,0) =4 (z,0) =0 in M, (4.3.10)
u(z,t) =0 on I'x (=T,T),
where h and R are given by
h(z) =q(z) — q2(x), and R(z,t) = ug(x,1). (43.11)

We have
R, R € L*(=T,T, L™(M)).
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Moreover we have
|R(z,0)| = |ug(x)| > mg, almost everywhere on M.
Then by theorem 4.2.1, we obtain
lar = @2l g2 any = IRl 2any < C LR 2wy = C |0ty = By || oz
This completes the proof. O

4.4 Hilbert Uniqueness Method (HUM)

We here present the Hilbert Uniqueness Method (HUM). As for more details, see e.g., Li-
ons [46]. As in the preceding chapter, we assume that there exists a positive and a smooth
function vy on M which satisfy the following assumptions:

e Assumption (A.1): )y is strictly convex on M with respect to the Riemannian metric
g. That is, the Hessian of the function v in g is positive on M:

D?o(X, X)(z) >0, ze€M, X T, M\{0}.

Since M is compact, it follows that there exists a positive constant ¢ > 0 such that

D% (X, X)(z) > 20|X[*, zeM, XeT,M\{0}. (4.4.1)

e Assumption (A.2): We assume that ¢)y(x) has no critical points on M:
i ; . 442
min [Vio(w)] > 0 (4.4.2)

e Assumption (A.3): Under assumption (A.1)-(A.2), let a subboundary Iy C O M satisfy
{x € OM; O, > 0} C I}, (4.4.3)

Let us define

Q =Mx(0,T), X=0Mx(0,T), Xy=Iyx(0,T), INt=I\Iy,, X1 =I1x(0,T).

We consider the following initial boundary value problem for the wave equation with
bounded potential ¢ € L>*(M):

(0F — Ay + q(x))u =0, in (0,7) x M,

u(0,-) =up, Ou(0,-) =uyin M, (4.4.4)
u=f, on (0,7) x OM.

It follows from Theorem 2.2.6 that there exists a unique solution v of (4.4.4) satisfying
u e C([0,T]; LA (M) n ([0, T]; H™H(M)) (4.4.5)

for any given:

uy € L* (M), uy € H*(M) and f € L*(0,T) x OIM).
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Definition 4.4.40 The problem (4.4.4) is called to be exactly controllable if for any given
(ug,u1), (vo,v1) € LA(M) x H (M), there exists f € L*(0,T; L*(I")) such that the
unique solution of (4.4.4) starting from (ug, u1) satisfies

w(T,-) =vy, and (T, )=v.
Let )
9 3

Theorem 4.4.13 Assume that T' > T,. Then for any given (ug,u1) € L*(M) x H (M)
there exists f € L?(0,T; L*(I")) such that

fz,t) =0, on X,
and the unique solution of (4.4.4) starting from (ug, uy) satisfies
w(T,-)=0, and u'(T,-)=0.

The first idea of HUM is to seek a control f in the special form f = 0, w where w is solution
of the homogenous problem:

(0} — Ag+ q(z))w =0, in (0,7) x M,
w(0,) = wo, Hw(0,-) = wy in M, 4.4.7)
w =0, on (0,T) x OM

for a suitable choice of initial values (wg, w;) € Hg(M) x L*(M). Let us recall that for any
given (wo,w;) € HY (M) x L?*(M), the problem (4.4.7) has a unique solution w satisfying

w € C([0, T]; Hy(M)) N C([0,T]; L*(M))
and there exists C' > such that for any ¢ € (0,7") we have
08 L3 vy + 180l 200y < € (Il g agy + lenlloag) ) - (448)

Furthermore
d,w € L*((0,T) x OM) (4.4.9)

and there is a constant C' = C'(T, M) > 0 such that

19001l z2q0,ry0mn) < € (Il mggag) + s - (4.4.10)

We recall that the non-homogeneous boundary value problem for a wave equation:
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(32 = Ay +qla)v=0, in (0,7)x M,

o(T,-) =0, Ow(T,")=0in M, (4.4.11)

v dyw,on (0,T) x Iy,
10, on (0,7)x I7,

possesses a unique solution v satisfying
v(0,-) € L* (M), 2/(0,:) € H (M)
and that
||U(0)||L2(M) + H/(O)”H—l(/\/l) <C ||U||L2(2) <C ||auw||L2((o7T)xaM)
< C (Ilwoll gy any + lnlloag) ) -
Let the mapping
J: H = Hy (M) x L2 (M) — H (M) x L*(M) = "

be defined by
J(wo, wr) == (v'(0), —v(0)).
Lemma 4.4.1 Assume (A.1)-(A.2) and (A.3). Then J is an isomorphism of 7 onto 7.

Proof . Let (wo,w1) € Cg° x C§°. Multiplying equation (4.4.11) by w and integrating by
parts, we obtain

T
0—/ / (V" — Av + qu) dvgdt = [/ (wU’_wlv)dvg]
/ / w" — Aw + qw Udvgdt—l—/ /an wo,v) dogdt

_ / (w10(0) — wor! (0)) dv + / 0 dogdt. (4.4.12)
M o
Hence
’ 2
<‘](w07w1> (w07w1)>j;ﬂ ! :/ \8Vw| dUgdt.
0 Iy
The observability inequality yields
(J (wo, w1), (wo, w1)) 4 e > C || (wo, wr)[%,  V(wo, wn) € Cg° x C3.
Applying the Lax-Milgram theorem to the linear mapping .J, we obtain
(J (wo, wr), (wo,wn)) 4o s > C [|(wo, wn)||5 »  V(wo,wr) € H.

This completes the proof. g

Remark As for topics related to the exact controllability, see [3], [43], [44], [45].
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Carleman estimates for some
thermoelasticity systems

5.1 Introduction

As an important application of our Carleman estimate with second large parameter, we con-
sider thermoelasticity systems. To our best knowledge, there are not many works concerning
Carleman estimates for strongly coupled systems of partial differential equations where the
principal parts are coupled. Indeed, no general method is available for proving Carleman es-
timates for systems, except that by the multiplication of the system by the cofactors matrix,
we can use the machinery of scalar Carleman estimates for the determinant. Unfortunately
this method needs high regularity assumptions on the coefficients. Especially in the case of
the boundary problem, since this method increases the multiplicity of real characteristics
near the boundary, the Lopatinskii condition is not easily satisfied.

In deriving a Carleman estimate for the thermoelasticity systems, there is another diffi-
culty coming from the coupling of two equations and we have to keep the dependency on
the second large parameter in the weight function. Thanks to the second large parameter ~y
in our Carleman estimate Theorem 3.5.8 for the scalar hyperbolic equation, we will derive
Carleman estimates for some strongly coupled systems. Isakov and Kim [30], [31] apply
Carleman estimates with second large parameter to a linear elastic system with residual
stress, and we can refer to Eller [14], Eller and Isakov [15] as related works. In this section,
thanks to Theorem 3.5.8, we establish Carleman estimates for

e a coupled parabolic-hyperbolic system related to the thermoelasticity
e athermoelasticity plate system
e athermoelasticity system with residual stress.

The arguments in this chapter are adaptations of [7]. We do not assume that functions to be

estimated have compact supports in some cases, while in [14], [15], [30] and [31], functions
are always assumed to have compact supports.

5.2 Carleman estimates for elliptic/parabolic operators

In order to prove Carleman estimates for some thermoelasticity systems, we need Carleman
estimates with second large parameter also for a second-order parabolic or elliptic operator
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€0y — A, € = 0, 1. As for Carleman estimates for parabolic equations with singular weight
functions, we can refer to Fursikov and Imanuvilov [16], Imanuvilov and Yamamoto [?].
In this section we give a Carleman estimate for parabolic equations with the regular weight
function ¢.

We use usual functions spaces, C5°(Q), H*(Q)) and we set
H*!(Q) = H'(0,T; L*(M)) N L*(0, T; H*(M)).
We recall that
0 =579,

and we set &« = (o, ..., ) € (NU{OD)", || =g + - -+ vy, 0% = (%) R (6271) "
Let (M, g) be a Riemannian compact manifold. We recall the following assumptions:

e Assumption (A.1): There exists a function 1y which is strictly convex on M with
respect to the Riemannian metric g. That is, the Hessian of the function ) in the Rie-
mannian metric g is positive on M:

D?o(X, X)(z) >0, €M, X eT,M\{0}.
Since M is compact, it follows that there exists a positive constant ¢ > 0 such that

D%y (X, X)(z) > 20|X|*, zeM, XeT,M\{0}. (5.2.1)

o Assumption (A.2): We assume that ¢5() has no critical points in M:
213161% [Vibo(z)| > 0. (5.2.2)
o Assumption (A.3): Under assumption (A.1)-(A.2), let a subboundary I'y C O M satisfy
{z € OM; 0,9y > 0} C I. (5.2.3)

As in the previous chapter, we set
Q=Mx(-T,T), Y¥=0Mx(-T,T), %o=1Iyx(=T,T)

and
U(t,x) = Po(x) = Bt* + fo, 0<B <o, =0, (5.2.4)
where the constant g is given in (5.2.1). We choose a parameter [y such that the function ¢
given by (5.2.4) is positive. We define the weight function ¢ : M x R — R by
o(x,t) = @D, (5.2.5)

where v > 0 is a parameter.

Then the following parabolic/elliptic Carleman estimate with second large parameter
holds:
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Lemma 5.2.1 Let ¢ = 0, 1. There exist three positive constants ., s, and C' such that, for
any vy > v, and any s > s, the following inequality holds:

07/ (a-l 310y, OF + o [Vy(a, ) + o |y(x,t)|2)62wdvgdt
Q

|a|=2

= / €0y — Ag)y(z,t)[?e*? dv, dt + / o |0,y)> e*% dogdt (5.2.6)
Q

o
for any y € H>Y(Q) such that ey(x,0) = ey(x,T) = 0in M and y(z,t) = 0 on X.

Proof . For s > 0, let us introduce the new functions z(z,t) = e*?y(z,t) and h, ., = €*?hy,
where hy = (ed; — A,)y. The standard approach to Carleman estimate (5.2.6) starts from
the observation:

e*(edy — Ag)y(x,t) = L, 5(t,x, D)z(z,t) (5.2.7)
where
L, s(t,x, D)z(z,t) = edz — Agz + 5 (V(Ag)p +7° V| ©) z
+2570 (Vih, Vz) — 272 [V|* 22 — se(Dyp)z. (5.2.8)
We set

Az(,t)+ Bz(x,t) = hy,(2,t) = hola,t) — (0(Ag) + 70 |VY|?) z+ea(9))2, (5.2.9)

where
Az(z,t) = —Ayz — o | VY| 2 (5.2.10)

and
Bz(z,t) = €dyz + 20 (V), Vz) . (5.2.11)

With the previous notations, we have
2 2 2
s llz2g) = 142l L2(q) + 1B2ILaq) + 2 (A2, B2) (g - (5:2.12)

Next we will compute 2 (Az, Bz) 5 g, to first look for lower bounds for (Az, Bz) (g We
decompose (Az, Bz);2q) = K1 + Kz + K3 with

K1 = —e/ (Agz + 0% |VY|? 2) 9z dvydt
Q

Ky e — / Az (20 (Vi), V2)) dvydt
Q

Ky = _2/ 0% | V| 2 (Vap, V2) dvydt. (5.2.13)
Q

We first deal with /Cy:

_ 9 2 1 2 20 o
K1 e/Qat (IVz]) dvgdt 26/@0 [V T (|2]7) dvgdt
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= 6/ 00,0 |Vpo|? | 2|? ddt
Q
=w/ o2 Vo) |2|? dv, dt, (5.2.14)
Q

where we have used V¢ = V).
For the term Cs, the integration by parts in x yields

Ks = —2/6203 \Vabo|? 2 (Vo V2) dv, dt
/620—3|vw0|2<v¢0,v(|z|2)> dv, dt
- /Q 12> div (0 [Veo|? Viho) dvg dt
= /Qas 12* (IV¥0]* Agtbo + 37 Vo[ + (Vebo, V (|Ve|*) ) dv dt.(5.2.15)
We now turn to the term /Co. By a similar way to in (3.3.15), we also have
Ko = —Q/QO'AgZ (Vho, Vz) dvg dt
:27/Qa|<vz,v¢o>|2 dvgdt—/QU|V22Agw0, dv, dt
—’y/QU|Vz|2|V1/102 dvgdt+2/QaD2¢o(vz,vz) dv, dt
- [/Za|a,,z|2 (Vi - v) do, dt] . (5.2.16)
From (5.2.16), (5.2.15) and (5.2.14), we have
(A2, B2) 1o 37/Qa‘3|w0|4z|2 dvgdt+27/Qa|<Vz,Vz/zo>|2 dv, dt
—7/@0 V2| |V¢0|§; dxdt + Q1(2,Vz)
- [/20|81,22(V1/Jo-1/) dogdt] : (5.2.17)

where Q;(z, Vz) satisfies

1Q1(2,V2)| < C (/ o V2] dvgdt—i—/ o |2 dvgdt—&—fy/ o2 |2 dvgdt> .
Q Q Q

(5.2.18)
Multiply (5.2.9) by yoz V4| and integrate by parts, and we obtain
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’}//QO'Z|V1/)0|2 hs~(x,1) dvgdt:fy/Qoz|V¢0|2(Bz) dv, dt
—'y/QUz|V1/10|2Agzdvgdt—7/@03|z|2|V¢0|4 dv, dt
zfy/Qaz|V¢02 (Bz) dvgdt—ﬁ—'y/Qa|Vz|2|V1/Jo|2 dv, dt

+72/QJ<V1/JO,VZ>|V¢o|22dvgdt+fy/Qoz<Vz,V(|V¢o|2)> dv, dt

—’y/ o |2* [Vabo|* dvgdt. (5.2.19)
Q
Hence
27/ o |2 |Vapo|* dv dt = 27/ o |Vz2” |Vapo|* dvgdt +2Q5(2,Vz),  (5.2.20)
Q Q

where Qs(z, Vz) satisfies

|Q2(2,V2)| < C <’y2/ o |z dvgdt—i—slv/
Q Q

1 2 1 2
— || B — || 5.2.21
+ B2+ 5 s | (5221)

o |Vz|? dv, dt>

and we have used ¢ > 1 in Q).
As a consequence, we have

(A2, B2) 0, :37/ o3 [Vl |22 dvgdt+2v/ o [(V2, Vo) |? dvy di
Q Q
—W/QUWZFN%F dvgdt + Q1 (2, Vz) — [/Za|ayz2(v¢0.y) dagdt]
:7/ o [Vabo 4|22 dvgdt+27/ o [(V2, Vi) |? dvy di
Q Q

+7/ o | V2 V| dv, dt — [/ o |0,z* (Vb - v) dagdt]
Q z

+ Q1(2,Vz) +2095(2, Vz). (5.2.22)
Now, combining (5.2.22), (5.2.21) and (5.2.18), we have

2(Az,Bz)+2 [/ 0 0,2* (Vb - v) doyg dt] > 27/ o Vo[ |2]* dv, dt
D) Q
+2’y/ o |Vz? V| dv, dt — C (/ o | V2 dvydt + / o |2* dv, dt)
Q Q Q

1
—C (72/ o |2* dv, dt + s_lfy/ o |Vz|* dv, dt> ~ 1 IB2|* = 2 || hsr|®
Q Q
(5.2.23)
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Now, since Vg # 0 in M, we conclude that for any s > s, and v > -, we obtain
2(Az,Bz)+2 |:/EO' 10,2* (Vb - v) dog dt]
> Oy </Q o3 |2 dvgdt +/Qa V22 dv, dt) - i IBIP = 2 s |2, (5.2.24)
Thus we have also
ol + | [ 7l0usl (T v) do ] =
C <7/Q (032 + 0 |V2|?) dvgdt + || Bz|* + |Az||2). (5.2.25)

Next we will estimate |A,z|. Since
|Az)* > C|Agz]” — o |[Vibo|* |27 in Q, (5.2.26)

by ¢ > 1 and (5.2.25) we obtain
C’y/ o7V Agz(z, 1)) dadt < ||Az|]” + C’y/ o® |2)* dv, dt
Q Q

gc<|hw|2+/a|aV22(w0-y) dcrgdt>. (5.2.27)
X

By (5.2.27) and (5.2.25), we deduce

||hs,ﬁ,\|2 + |:/ZU |(9,,z|2 (Vi - v) dv, dt} >

cw/ (0% 2(2, ) + 0 [V, O + 0 [Ag(a, D)) dvgdt. (52.28)
Q

The final step is to add integral of Z 10%y(z,1)|* to the right-hand side of (5.2.28). This
|a|=2
can be made using the following computation

2
Ag<0'_1/22’) _ U—l/QAgZ + (%0—1/2 |V’¢)|2 N %0—1/2Ag,¢))z _ ,}/0.—1/2 <VZ,V1/J> )
(5.2.29)
We deduce from (5.2.29) and the elliptic estimates that

CZ/|8“(0‘1/22)|2 dvgdtg/ (071 Agz)? + 03 |2 + 0| V2[) dvgdt, (5.2.30)
jol=2"¢ ?

where we have used z(-,t) = 0 on dM forall t € (0,7).
On the other hand, we can find
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C’Z/U_l 10%2) dv, dt < Z/
Q Q

|a]=2 Jar|=2

8‘1(0_1/2z)|2 dv, dt + /(03 |2|* + o |Vz|2) dv, dt.
Q
(5.2.31)
By (5.2.31) and (5.2.30), we obtain
Cv Z / o 10"z dvgdt < ’y/ (071 Agz)? + ® |2* + 0 |V2|?) dvgdt. (5.2.32)
e Q
Substituting z(x, t) = e**y(x, t) and noting (5.2.9), we can complete the proof of (5.2.6). [J

From Lemma 5.2.1 we can derive the following type of Carleman estimates:

Lemma 5.2.2 Let ¢ = 0,1 and k € N. There exist three positive constants ., s, and C'
such that, for any v > v, and any s > s, the following inequality holds:

C’fy/Q (akil Z 0% (z, t)|* + "+ [ Vy(z, t)|> + o*F3 |y(x,t)|2>625*0 dv,g dt
|a|=2

< / o (e, — Ag) y(z, t)|* €2¥ dv, dt + / o0yl e doy dt (5.2.33)
Q o

for any y € H*Y(Q) such that ey(x,0) = ey(x,T) = 0in M and y(z,t) = 0 on X.

Proof . In order to apply Lemma 5.2.1, we introduce y; = /2y with ¢*/2 = ¢'3%. Let us
remark that

‘Vﬁ < Cyp?,  |Bp?| < Oy, (Agsog < Oyt (5.2.34)
Then
| Agyi|* > Co | Agy? — Cy e [yP — C2e* [y,
|8°‘y1\2 > Ot |6°‘y|2 — CypF |y|2 — Cy2pF \Vy\2 , al=2 (5.2.35)
and

Vinl* > Co [Vyl* — Oy [yl (5.2.36)
After computations we also see that
Yo (18 + Y10l ) + o [Vl + 0" )
|a|=2

> Cs7 (Al + D 0% + 0 [Tyl + ot yl? )
|a|=2

- O (5720 [Ty 4% ) . (5237)

Then for s > s, and v > ~,, we obtain
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Yo (1Al + Y10l ) + o[Vl + o )
|a|=2

> Os 1! ( Ayl + Y 107y + 0 [Vyl® + ot [yl ) (5.2.38)

Ja|=2
On the other hand, we have
(0 — Ag) i|* < " (€0 — Ag) y> + 4 [y]> + 42 [Vy[?) . (5.2.39)
From (5.2.39), (5.2.38) and (5.2.37), we deduce

fy/ (7"“_1<|Agy|2 + Z 0°y[* + o” |V?J|2 +ot ‘y|2 )62s¢ dvgdt <
Q

|a]=2
C (/ o |(ed, — Ay) yl* €2 dv, dt + / "t 0,yl° €2 doy, dt) (5.2.40)
Q 2o
provided that s > s, and v > +,. This completes the proof. g

5.3 Carleman estimate for a coupled parabolic-hyperbolic
system

Let M be an n—dimensional compact connected C*° Riemannian manifold and let 7" > 0
be given. In this subsection we will use the scalar Carleman estimate with second large
parameter (Theorem 3.5.8) to prove Carleman estimates for a parabolic-hyperbolic strongly
coupled system arising in the thermoelasticity theory. In order to formulate our Carleman
type estimates, we introduce some notations:

(02 — cAg) u(z,t) + algy(x,t) = fr(x,t)in Q=M x (0,T),
(O — Ag) y(z,t) + adwu = fp(x,1) in Q, (5.3.1)

u(z,t) =0, y(xz,t)=0 on Y=1Ix(0,T).

The coupling parameter a and the velocity ¢ are assumed to be positive constants. The
boundary of M may be empty, and in the case of no boundary, the Dirichlet boundary
condition in (5.3.1) is neglected.

Let (u,y) satisfy the linear coupled parabolic-hyperbolic system (5.3.1) such that

y(z,0) =y(z,T) =0, &u(z,0)=du(z,T)=0, forall zeM,j=0,1.
(5.3.2)
Furthermore we assume that there exists a positive function ¢ satisfying the assumptions
(A1), (A.2) and (A.3) with respect to the metric g.
The following theorem is a Carleman estimate with second large parameter for the coupled
parabolic-hyperbolic system (5.3.1).
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Theorem 5.3.14 There exist v, > 0 and C' > 0 such that for any v > +,, there exists
S« = 84(y) > 0 such that the following estimate holds:

c/ (1Agy> + o |Vy|* + o |y + o (|Vul® + |0uul?) + o2 [uf*)e*** dv, dt
Q

< [ ol 1nP) e dvdis [ o (ool +10) 2 da,dt (533)
Q

2o

for any solution (u,y) € H?*(Q) x H*'(Q) to problem (5.3.1) satisfying (5.3.2) and any
S > S,.

System (5.3.1) arises in three spatial dimensions when analyzing the linear system of
thermoelasticity:

( t M, ) (I t) + aVy(a:, t) = fe(x7 t) iIl Qa
(0 — A)y(z,t) + adivoyw = fp(x,t) in Q, (5.3.4)
(r t)=0, y(z,t)=0 on X,

where A, , is the elliptic second-order linear differential operator given by
Av(z) = pAv(z) + (n+ A) (Vdivv(z)) reM (5.3.5)

for v = (v, vy,v3)", where - denotes the transpose of matrix. Here ¢ and z = (71, 7o, 73)
denote the time variable and the spatial variable respectively, and w = (wy, wo, ws3) " de-
notes the displacement at the location x and the time ¢, and y = y(z,t), the temperature,
is a scalar function, f, € L*(Q) is a heat source and f. € H'(Q)) is a body force, and
for simplicity, we here assume that A > 0 and © > 0 are constants. Setting v = curlw,
u=divw, Ay = A, ¢ = 2u + X and f;, = divf,, we can change the first equation in (5.3.4)
into a diagonal system of hyperbolic equations in w, v, v with principal parts 97 — uA and
02 — (A + 2u)A. Subsection 5.5.1 gives the detailed arguments of such diagonalization in
a bit general case. Thanks to the diagonalization, we can apply Lemma 5.2.1 and Theorem
3.5.8 to establish a Carleman estimate for (5.3.4) provided that w has compact supports. For
Carleman estimates for Lamé system for functions without compacy supports, see [26], [27]
and [28].

In the case where M is a bounded domain in R"”, that is, M has boundary, see [14]
and [15]. See also [1] as for a Carleman estimate in a bounded domain M with singular
weight function which was introduced in Fursikov and Imanuvilov [16]. Proof . Let (u,y)
satisfy the parabolic-hyperbolic system (5.3.1) and (5.3.2). Applying the first version of the
parabolic Carleman estimate (5.2.6) with ¢ = 1 to the second equation in (5.3.1), we obtain

v / (07 [Ayl* + 0 [Vyl* + 0 yl?) ¢ dv, dt < / [yl 200 dv i
Q Q

+/ |8tu|2628“’dvgdt+/ 0|0,y *¢ doy dt. (5.3.6)
Q o

Furthermore Theorem 3.5.8 yields
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C/ o (IVul® + [0ul* + o? [u]*) €2 dv, dt < / | ful? €25 dv, dt
Q Q

+/ ‘Agy
Q

Adding (5.3.7) and (5.3.6), we arrive at

262599 dVg dt + / o ‘aqu €2S<P dO'g dt. (537)

o
C [ oAl + o1V + o) + o Vul? + 0uf? + o uf? )2 v
Q
</(|fp|2+|fh|2)€2wdvgdt+/ | Agy|*e**? dv, dt
Q@ Q

+/ o(|0,ul® +10,y|*)e*? dog dt, (5.3.8)
o

provided that v > v, and s > s.(7).
By the second version of the parabolic Carleman estimate (5.2.33) with k = 1 and € = 1,
we have

0/ (|1Agy)> + o |Vyl* + o |y[?) emdvgdtg/7-1a|f,,|262wdvgdt
Q Q

+/’y10|3tu|2625‘”dvgdt+/ 710?10,y e*¢ doy dt. (5.3.9)

Q o
By (5.3.9) and (5.3.8), we find
c/ (yo M Agy|? + o [Vy[? +70° [y + o (|Vul? + |0uul? + o? [u]?))e*** dv, dt
Q
< [ G IRl 1l + 0 0 e v,
Q
+/ o (|0,ul” + 7710 |0,y[°) €7 dog dt, (5.3.10)
o

provided that v > ~, and s > s,(y). Thanks to the second large parameter -y, we can absorb
the term y~'o|0u|? into the left-hand side. Adding now (5.3.10) and (5.3.9), we obtain
(5.3.3).

This completes the proof of Theorem 5.3.14. O

5.4 Carleman estimate for thermoelasticity plate system

In this subsection we will prove Carleman estimate for a thermoelasticity plate system.
Let us consider a bounded and isotropic body occupying an open and bounded domain
M C R? with C* boundary M. Given T' > 0, we consider the following linear system of
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thermoelasticity plate which describes the small vibrations of a thin isotropic thermoelastic
plate in presence of exterior forces and heat sources

(1 — p(2)A) O2u(z,t) + A%u + aAy(z,t) = fi(z,t)in Q=M x (0,T)
Owy(z,t) — Ay(z,t) — aAdwu = f,p(x,t) in Q=Mx(0,T) (5.4.1)

w(z,t) = Au(z,t) =0, y(z,t) =0 on X =0Mx(0,7T).

By u and y we denote the vertical displacement and the temperature of the plate, respectively.
The coupling parameter a is assumed to be positive and the coefficient y(z) > 0 on M.
Furthermore we assume that v, satisfy (A.1)-(A.2)-(A.3) with respect to the metric g =
utrd.

Let (u, y) satisfy the linear coupled system (5.4.1) such that

y(z,0) = y(z,T) =0, du(z,0)=du(z,T)=0forall z € M, j=0,1. (5.4.2)
The following theorem is a Carleman estimate with a second larger parameter for the ther-

moelasticity plate system (5.4.1).

Theorem 5.4.15 There exist two constants v, > 0 and C' > 0 such that for any v > ~,,
there exists s, = s.(7y) > 0 such that the following estimate holds:

C/ ( |Ay|)? + 0% |Vy|* + ot |y)* + Z o?@1eD (02 [0%u)? + |0°Oul?) )eZs“ad:cdt
Q

laf<2

—I—/ o (02 |Aul? + |Adwu|* + |V (Au)[*) e**?dadt < / (Yo 1ol + 1) €2 dudt
Q Q
+ / o (62 |0,ul? + 0 9,0uul’ + |0, (Au)|> + 7 [9,y]*) e*Pdwdt  (5.4.3)
o

for any solution (u,y) € H?*(Q) x H*'(Q) to problem (5.4.1) satisfying (5.4.2) and any
S > S,.

In order to prove Theorem 5.4.15, we need a Carleman estimate for a scalar plate equation.

5.4.1 Carleman estimate for the plate equation

In this subsection, we derive a global Carleman estimate for a solutions of the plate equation.
We consider the non-stationary plate equation

02w — p(x) Ad2w + A*w + Py(z,0)Aw + Py(z,0)w = f  in Q,

w(z,t) = Aw(z,t) =0 on %, 544

where P, and P, are first-order and second-order differential operators in z respectively and
f € L*(Q) is a source term.
The following Carleman estimate holds:
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Lemma 5.4.1 There exist two constants C > 0 and 7, > 0 such that for any v > ~, there
exists s, = s.(y) such that for all s > s, the following Carleman estimate holds:

Cv Z o22=1eD (62 9%w|? 4 |0 0yw|?)e* P dadt
Q|a<2
+ C/(03 |Aw|® + o |Adyw|® + o |V (Aw)[*)e**Pdadt < / |f|? e2**dadt
Q Q
4 2 2 2 2\ 2s¢p
+ / (o® [O,w|” + o |0,00w|” + 0 |0, (Aw)|")e**Pdwdt  (5.4.5)
o
for any solution w € H*(Q) to problem (5.4.3) satisfying d)w(z,0) = dw(x,T) = 0,
7 =0,1, and any s > s,.
Proof . Let us introduce the following new function z which is given by
z=w — pu(z)Aw. (5.4.6)
Then we have
Az = Aw — p(2) A%w — (Ap) Aw — 2V - V(Aw).

Moreover we have
022(x,t) = 0Pw(x,t) — p(x) Ad w(w, t).

Thus 7 satisfies the following second-order hyperbolic equation

0z (w,t) — ;Az + P(2,0)z = f(x,t) + Py(z,0)w in Q, (5.4.7)

where 151, ]52 are first-order and second-order differential operators in x respectively. The
Carleman estimate (Theorem 3.5.8) for the hyperbolic operator, yields

C/ (0 |V2]? + 0 0,z + 0 |2]?) e2¢dwdt < / |f|? X dadt
Q
+y / 0%w|? e***dadt + / 0|0, 2|° e*?dwdt. (5.4.8)
lo<2
On the other hand, since w solves the elliptic equation
—pu(r)Adw+w==z in Q,
the elliptic Carleman estimates (5.2.6) with € = 0, yields

e
Q

Z |0%w|* 4 02 |Vw|* 4 o |w|? | e2*?dxdt < C’/ o |2 2P dxdt
la|=2 Q

+C [ o o,w]? e*Pdwdt. (5.4.9)
o



M.Bell d and M.Y: to 5.4 — Carleman estimate for thermoelasticity plate system 95

Thus

C Z / |0%w|* e2*dxdt < / o |2 e*dadt +/ 0?10, w|* e?dwdt.  (5.4.10)
Q Q 2o

lo]<2

Therefore by (5.4.8), choosing s and -y large, we see that
/ (o |V2* + 010,22 + 0 |2[2) @ dedt < c/ [ €2 dadt
Q Q
+ O/ (a2 10,w]* + 7 [0, (Aw)[?) e*Pdwdt. (5.4.11)
o
Furthermore by (5.4.9) with k = 3, (5.4.11) and (5.4.8), we deduce

C’y/ 02( Z 10%w|* + 0% |Vw|* + o* |w|? )ezs“odxdt
Q

jof=2

+C / (0 |V(Aw)* + o |Adw|* 4 0% | Aw|?)e**Pdxdt
Q
< / |fI? e¥Pdadt +/ o |Opw|* e dxdt
Q Q
+ / (!0, w|* + 010, (Aw)|?) e**¥dwdt. (5.4.12)
Yo

Taking into account 0,z = Jyw — pA dyw, applying again the elliptic Carleman estimate
(5.2.6) with £ = 1 and using (5.4.11), we arrive at

C’y/@ ( Z 0% 0w|? + o*|VOw|* + o \5’tw|2)625“’dxdt

laf=2

§/0|8tz|262s"’da:dt+/ 0?10, 0w|” €2*? dwadt
Q 2o

<c / F2e2%dzdt + C | (020,w]? + 0|0, (Aw)P + 0210, 000]2)eX P dwdt. (5.4.13)
Q

o

Combining (5.4.12) and (5.4.13), we obtain (5.4.5).
This provides the desired conclusion to Lemma 5.4.1. g

5.4.2 Proof of the Carleman estimate for the thermoelasticity plate
system
Now we proceed to the proof of Theorem 5.4.15. Let (u, y) be a solution of the linear system

of the thermoelasticity plate equation (5.4.1). Applying the first version of the parabolic
Carleman estimate (5.2.1) with e = 1 to the second equation in (5.4.1), we obtain
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C’y/ (e Ay|* + o |Vy|* + o® [y[*) e**?dadt < / | £, €2 dxdt
Q Q
+ / | Adyul? e*dadt + / o |0,y ¥ dwdt. (5.4.14)
Q 2o

By the Carleman estimate (5.4.5) for the plate equation, we have

C / ( D 0@l (02 [07uf + 10 0pul*) + (0° | Aul* + o | Adul* + o [V (Au)|?) )ewdmt
Q

laf<2

< / | /ol 2P dadt + / | Ay|? e**dadt
Q Q
+ / (o 0,ul” + o° 0,0l + o |8V(Au)|2) e**?dwdt. (5.4.15)
2o
Adding (5.4.14) and (5.4.15), we find that

v Z o?@=1eD (62 |9%u|? + |0°0,ul*) e**?dadt
@ jal<2

+/ (0| Auf* + 0 | ABuf* + o [V(Au)[?) @ dudt
Q
+ 7/ (e Ay + o |Vy|* + o® [y|*) e**¢dudt
Q
< C/ (1ol + 1 £o]?) €2 ddt + C’/ | Ay|* e2°dxdt
Q Q
+ / (o* [0, ul* + 0%10,0uu]” + 0 |0,(Au) > + 0 [9,y]°) e*?dwdt, (5.4.16)
o

provided that v > v, and s > s.(7).
By the second version of the parabolic Carleman estimate (5.2.33) with k = 1 and € = 1,
we have

C/ (|1Ay[* + o? [Vy|* + o* |y[*) e*?dadt < / Y7o |f,? e**Pdudt
Q Q
+/ Lo |Adwul? €**¢ dudt +/ 70?0, y]? ¥ Pdwdt. (5.4.17)
Q 2o

Inserting (5.4.17) into (5.4.16), thanks to the second large parameter -y, we see
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Y

/ Z g22=leD) (0® |0%u|* + |8“8tu|2) X dxdt
Q

o] <2

+/ (63| Auf® + o |Adwu|* + o |V (Au)|?) e***dxdt

Q

+/ (|Ay|2 + o2 |Vy)* + o \y|2) e**?dxdt < C/ (|fb\2 +~7 o |fp|2) e*Pdxdt
Q Q

+ / (a*10,ul* + 0% 10,00u)? + 7 [0, (Au) |* + 02 |0,y[*) e**Pdwdt. (5.4.18)
o

This completes the proof of Theorem 5.4.15.

5.5 Carleman estimate for thermoelasticity system with
residual stress

In this subsection we will prove a Carleman estimate for the thermoelasticity system with
residual stress. Let us consider an isotropic and homogeneous thermoelastic body occupying
an open and bounded domain M of R?® with C* boundary I = M. Given T' > 0, we
consider the following problem for the linear system of thermoelasticity with residual stress:

O2u(z,t) — Ayaeu(z, ) + aVy(x,t) = f.(x,t)in Q=M x (0,7),
6.5.1)
aty(x7t> - Ay($7t) + adiv atu = fp(xvt) in Qa

where the coupling parameter a is assumed to be positive constant and u = (uy, ug, uz)”
denotes the displacement at the location = and the time ¢, and y = y(z, t), the temperature,
is a scalar function, f, € L*(Q) is a heat source and f, € (L*(0,7; H'(M)))?, and A, \r
is the elliptic second-order linear differential operator given by

Aurev(@) = p(x)Av(z) + (u(z) + A(z)) (Vdivv(z))
+ (divv(z)) VA(@) + (Vv + (VVv)") Vu(z) + V- (Vv)r), 2 € M (5.5.2)
for v = (vy, v, v3)T

[(VV)r]j, = Z(aﬂ}j)rkﬂa
=1

and r(z) = (rji(x));x € C*(M) is a residual stress tensor such that r;; = r; on M (e.g.,
Man [48]), V - r is a vector with the j-th component given by

5 or
ik
W'%ZZ 5xjk'
k=1

Here we assume that the density in the first equation in (5.5.1) and the thermal coefficients
in the second equation in (5.5.1) are normalized to be one. We will assume that the Lamé
parameters p1, A € C*(M) satisfy
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w(z) >0, Maz)+2u(z) >0, r e M. (5.5.3)
We denote by g; and g the two metric tensors given by
gt = (0 + i)y 82 = (204 N) G +15n) 51

where 0, = 1if j = k and d;;, = 0if j # k. Here we assume that there exists a positive
function ¢ satisfying the assumptions (A.1) and (A.2) with respect to the metrics g; and g.
The following theorem is a Carleman estimate with a second larger parameter for the ther-
moelasticity system (5.5.1):

Theorem 5.5.16 There exist two constants v, > 0 and C' > 0 such that for any v > -, there
exists s, = s.(7) > 0 such that the following estimate holds:

/ (( Z 10%y|* + 2 |Vy|? + o* |y\2) + o (|divopu]” + |V, u)* + o2 [u]?) )ezs"”dxdt
Q —
|a|=2

< C/ (Yo I + 7 + |VE[?) e2¢dadt
Q

for any solution (u, y) € (C3°(Q))? x C5°(Q) to problem (5.5.1) and any s > s..

Remark 3 For the case where ¢ = 0 in (5.5.1), that is, u and y are not coupled, see Isakov
and Kim [30], [31]. If M has no boundary, we can prove the theorem for all (u,y) €

(€=(@)" x €=(Q).

In order to prove Theorem 5.5.16, we use a Carleman estimates with a second large
parameter for the Lamé system with residual stress.
5.5.1 Carleman estimate for the Lamé system with residual stress

In this subsection, we derive a Carleman estimate for a solutions of the hyperbolic elasticity
system with residual stress.
We consider the three dimensional isotropic non-stationary Lamé system with residual stress

8fv(x,t) — Aprviz,t) =f(z,t) in Q, (5.5.4)

where £ € [L2(0, T; H'(2))]’ is a source term.
From Theorem 3.5.8 we derive the following Carleman estimate.

Lemma 5.5.1 There exist two constants v, > 0 and C > 0 such that for any v > -, there
exists s, = s.(y) > 0 such that the following estimate holds:

/ (0(|Vauv]® + [Var(divv) [ + [V (curl v)|*) + o ([v]* + |divv[* + |curl v[?)) e**?dxdt
Q
< o/ (If” + | VE]?) e*?dzdt
Q

for any solution v € (C5°(Q))? to problem (5.5.4) and any s > s,.
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Proof . Let v = divv and w = curl v. We apply curl and div to (5.5.4) and obtain

v — A, v + A (v,v) =f,

3
O — Agyv + (v, v, w) = divf + Z V (rjk) - 0;0kVv,

J,k=1

3
Ofw — A w + o3(v,v,w) = curl f + Z V (rjk) X 0;0kVv,
jk=1

where .27; are linear differential operators of the first order with bounded coefficients in M.
Consequently, by the Carleman estimate (Theorem 3.5.8) with second large parameter, we
see that for any v > ~, and s > s,, we have

C/ (o(|Vauv]* + [ Vauv ] + [ Vo w?) + o (Jo* + [v[* + [w]?)) e**dadt
Q

< / (IE* + |div(F)|* + [curl (£)[*) **dadt + | Y / |0%v|* e*dadt | . (5.5.5)
Q Q

lof=2

On the other hand, by the elliptic Carleman estimate (5.2.33) with & = 1 and ¢ = 0, we
obtain

C Z /|(9§‘v|2 e*?dydt < / (|AV] + 0 |Vv[* + o [v[?) e**?dzdt
la=2"@ @
< C’yl/ o |AV]? e¥¢dadt < C’yl/ o (|Vo]* + |[Vw[*) e*?dzdt, (5.5.6)
Q Q

where we have used the formula Av = Vv — curl w. Now, combining (5.5.6) and (5.5.5),
thanks to the second large parameter v, we complete the proof of Lemma 5.5.1. O

5.5.2 Proof of the Carleman estimate for the thermoelasticity

Now we complete the proof of Theorem 5.5.16. Let (u, y) be a solution of the linear system
of the thermoelasticity (5.5.1). Applying the first version of the parabolic Carleman estimate
(5.2.6), we obtain

cy/ (070 Y 107y + o [Tyl + 0% [y e dudt
Q

=2

< /Q|fp|2 eQS”dxdt+/€2|div8tu|2625“’dxdt. (5.5.7)

By Lemma 5.5.1, we have
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C /Q (o |divoul* + o |V, ul? + o®|ul?)e**?ddt < /Q (I£.]* + |VE)[?) e*¢dwdt
—|-/Q(|Vy|2—|— > 0%y e* P dadt. (5.5.8)
lo]=2
Adding (5.5.7) and (5.5.8), we obtain
C/Q (7(0‘1 Z |0%y > +0 | Vy|*+0° |y|2>+0|div8tu|2+a |V ul*+0° |u|2>62‘*"’dxdt
la|=2

S/Q(|fp|2+|fe|2+er|2) e**?dxdt + QZ 0%y|2e**%dxdt, (5.5.9)
|a|=2

provided that v > ~, and s > s,(7).
By the second version of the parabolic Carleman estimate (5.2.33) with £ = 1, we have

Cw/Q ( Z 10%y|* + o2 |[Vy|* + o |y|2)62”dxdt

|a|=2
< / o |f,|” ePdxdt + / o |divoul® e*?dadt. (5.5.10)
Q Q

Inserting (5.5.10) into (5.5.9), thanks to the second large parameter v, we find

/ (( Z 0%y + o2 |Vy|* 4 o |y|2) + o |[divoul’ + ¢ |V, ul? + o® |u|2)6235‘7dxdt
Q

lof=2

SC/ (VLo |fol” + 16 + |VEP) e2?dadt.
Q

This completes the proof of Theorem 5.5.16.



6

Global Carleman estimate for the
Laplace-Beltrami operator with an extra
elliptic variable and applications

6.1 Introduction

We formulate our Carleman estimate. Let n > 2 and (M, g) be an n-dimensional compact
Riemannian manifold with smooth boundary 0. M and smooth metric g. All manifolds under
consideration will be assumed smooth (which means C*) and oriented. We denote by A,
the Laplace-Beltrami operator associated to the metric g. In local coordinates, A, is given

by
L0
. detgg/®— ) . 6.1.1
A = \/detg ;1 ]< 88 axk> ( )

Here (g7*) is the inverse of the metric g = {g;;.} and det g = det(g;y.).
Let us consider the following second-order elliptic operator:

P(x,7;0) = 0% + Ay + Pi(x,7;0), (6.1.2)

where Py (z,7;0) is a first-order partial operator with coefficients in L= (R x M).

This partial differential operator is of elliptic type in a non-smooth manifold R x M
and require an independent proof (cf. Lemma 5.2.1 with ¢ = 0). The operator (6.1.2) is
important when we study the unique continuation for the hyperbolic equation 97 — A, by
the Fourier-Bros-lagolnitzer transform. As related works, we refer to [5], [6], [49], [50],
[51].

Throughout this chapter, we use the following notations:

z,§) = Z g (2)&&, T EM, &, . & ER. (6.1.3)
7,k=1

Given two symbols p and ¢ we define their Poisson bracket by

Op0dq Opdq " [ Op Oq Op dq
Loy PP GPYd — =), 14
@@ = 5.5, ~ 5.7 ; ( 5%, 50, B, %) (6.1.4)

In order to state our Carleman estimate with boundary observation, we need to introduce
the following assumptions.
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Assumption (A.1): We assume that there exists a positive function 9 : M — R which
possesses no critical points on M:

min |V9(z)|* > 0. (6.1.5)
zeM

Assumption (A.2): Under assumption (A.1), let a subboundary Iy C O M satisfy
{x € OM; (V¥,v(x)) >0} C I.

Let us define

Q=Mx(-T.T), Yg=Tyx (-T,T), X =002x(-T,T)

and
Y(z,7) =9(x) = B+ By, 0<pB, Bo>0. (6.1.6)

We choose a parameter 3y such that the function ¢ given by (6.1.6) is positive. We define
the weight function ¢ : M xR — R by p(z,7) = e"¥@7) where v > 0 is a second large
parameter and set

0 =57,

where s is a real number. Let us introduce the following notation:

Hy(Q) = {u € H(~T,T; L*(M)) N L*(—T,T; Hy(M)); du(-,£T) =0, j = 0,1} .
(6.1.7)
The following global Carleman estimate with boundary observation is our first main result:
Theorem 6.1.1 There exist three positive constants 7y, s, and C' such that, for any v > ~,
and any s > s, the following inequality holds:

o1 /Q (7 D 10y P + ([ Fy(a, 7P + 10ry(e, 7))+ 0 [yler, 7)) 2 dvg dr

|a|=2

o |0,yl* €*? doydr (6.1.8)

o

< /~ |(83 + A)y(x, 7')|262‘w dv, dr + /
Q

foranyy € HQ(Q) such that &y (z,+T) =0, j = 0,1, in M and y(z,7) = 0 on Y. Here
and henceforth, if M has no boundary, then the Dirichlet boundary condition y = 0 on X' is
not necessary.

6.2 Proof of Theorem 6.1.1

In this section we complete the proof of Theorem 6.1.1. We will divide the proof into three
steps.
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6.2.1 Change of variables

For s > 0, let us introduce the new functions z(z,7) = e*?y(z, 7) and h,, = e*?hg, where
ho = (=02 — A,)y. The standard approach for the proof (6.1.8) starts from the observation

(=02 — Ag)y(z,7) = &L, (1,2, D)2(z,7), (6.2.1)
where
Ly (1,2, D)z(x,T)
= =02z — Az + 5 (v (020 + Agt) 0 + 2 (10:0 + VY [*) 0) 2
+257p (0:90-2 + (Vi V2)) — 5292 (|- + | Vo?) 2. (6.2.2)
We set
Az(z,7)+ Bz(x,7) = hey(z,7) (6.2.3)
= ho(z,7) = (0 (020 + Agv) + 90 (10-4]” + Vo)) 2,
where
Az(z,7) = =022 — Agz — o (|09 + |VY|?) 2 (6.2.4)
and
Bz(x,t) =20 (0;40-2 + (Vy,Vz)). (6.2.5)

With the previous notation, we have
2 2 2
Hhs,'yHL?(@) = ||AZHL2(Q) + ||BZ||L2(Q) +2(Az, Bz)p@) . (6.2.6)

Next we will make the computations of 2 (Az, Bz) 12(0)- We will first look for lower bounds
for (Az, Bz) 2 g)- We decompose (Az, Bz) 1 g) = K1 + K3 with

Ki=— /@ (02 + A,) = (20 (a,waTz + (Vg vgz>g)> dvydr
Ky = -2 /Q o (10:0F +19,0 ) 2 (0:00.2 + (Ve V42), ) dvgdr. (627)
We first deal with XCs. For the term Ko, integration by parts in z yields
Ky = —2/@03 (10:9) + |VO*) 2 (8,40, 2 + (VI, Vz)) dvg dr
- _/@Oj (10,62 + [V92) (0,00, (|212) + (V9,V (|2[%))) dvgdr
_ 37/@03 (10,62 + [VI)* |2 dv dr
+2/@03 (024 |0,4) + D*p(VY, V) |2|* dv, dr

+/~03 (10 + |VO?) (02 + AY) |2]? dv dr. (6.2.8)
Q
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We now turn to the term /C;. We also have
Ky = —2 / 0 (82 + A) 2 (0,40, = + (V9,V2)) dv, dr
Q
=-2 /N 0022 (0,40,2 + (V9,V2)) dvg dr
Q

-2 /~ 0 gz (0;90, 2 + (VO,Vz)) dvgdr

=Kn f/Clz, (6.2.9)
where
/cllz—/@oaTwaT(@zF) dvng+/©0<V19,V(|6Tz|2)> dvg dr
+2’y/é(7871/187z (V,Vz) dvgdr
zfy/ 0,7 02| dvgd7+/05’21/}8 2|* dv,dr
—7/@0|V19 |0, 2| dvng—/@aAg@/J 10,2| dv, dr
+2W/©087¢372 (VY,Vz) dvg dr. (6.2.10)
Furthermore

Kio=-2 [ 0A;2((0;2)0-0 + (Vz, V) dvgdr
Q
= 27/~0 (V,V2) ((0;2)0:¢ + (Vz, V) dvedr
Q

12 [ 0 (V2 (0,V20,0)) dvydr +2 / 0 (V2,V ((V2, V) dvydr
Q

00,z ((0-2)0) + (Vz, V) dogdr}

=
o

Il
[\
3
<0\ )

(Vz, V) (0,400, 2) dvgdr + 2y /~ o [(Ve), V2)|* dvgdr
Q

0
+/@ 5 (IV2l) deng7+2/@0<VZ,V<<WW>>> dvgdr

9 { /2 0(0,2) ((8,2)0506 + (Vz, V) dang} . 6.2.11)

S

Applying Theorem 1.4.1 with Z = V z, we obtain

(Vz,V((Vz,Vih))) = Vz ((Vz, Vi)
= (Dy.Vz, V¢) + (Vz,Dg, Vi)
=D (V2,Vz2) + D2 (Vz, V). (6.2.12)
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Moreover
(Vo V (IV2[)) = Vv (V2 V)
= (Dvaz, VZ> + <VZ, Dv¢v2>
=2D?%2(Vz, V).
Hence
(Vz,V ((Vz, V) = D} (Vz,Vz) + % (Vv (IV2])). (6.2.13)
Therefore

Ko = 27 /~ o (V) V2) (0:4)(0,2) dvgdr + 27 ﬁ o |(V, V2)|? dvgdr
Q Q

77/~0|Vz|2 10,4 dvydr — /~<7|Vz|2 21 dvgdr
Q Q

+2/~0'D21/)(VZ,VZ) dvgdr — 'y/
Q

Q
- /~ o (V,v) |0,z dogdr. (6.2.14)
b

o |Vz|* |Vy|? dvng—/~U|Vz|2Ag@/Jdvng
Q

Collecting (6.2.14) and (6.2.10), we obtain

Ki=2y /~ 0 (00,2 + (VV,V2))? dvy dr
Q

_7/~o— (10,62 + [VO?) (10,22 + [V2]?) dvgdr
Q
_/~a (02 + Ag) (1027 + [V2|?) dvgdr
Q
+2/~a(a$w 10-2|* + D* (Vz,V2)) dvgdr
Q

—[a<vw,u>|ayz|2 do dr. (6.2.15)
X

6.2.2 Interior estimate

From (6.2.15) and (6.2.8), we have
(Az, B2) 125, = K1 + Ky

:37/@3 (10,012 + [V9P2)? |2 dvgd7+27[a(87¢872+ (V2 V9)|)? dv, dr
Q Q

- ’}//~O' (|(7Tz|2 + |Vz|2) (\&1/42 + |V19|2) dvgdr + Q1(z,0;2,Vz)
Q

= [[a|auz|2 (VO,v) dogdr|, (6.2.16)
X
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where Q;(z, Vz) satisfies
1Q1(2,0,2,Vz)| < C </~0 (10,2]> + |V2[*) dvgdr + [03 127 dv, dT) . (6.217)
Q Q
Multiply (6.2.3) by voz (|0,4|* + |[V4|*) and integrate by parts, and we obtain

v[02(|8T¢|2+ VO by (2, 7) dvngzvﬁaz(|6Tw|2+ V9[2) (B=) dv, dr

Q Q

— ’)//NO'Z (10:0]° + [VO?) (92 + Ag) zdvydr — 7/~03 12> (10-¢]* + |V19|2)2 dvg dr
Q Q

= 7/02 (|(9Tw|2 + |V19|2) (Bz) dv, dT+’7/~O' (|(9Tz|2 + |Vz|2) (|87-1/J|2 + |V19\2) dvgdr
Q Q

+ VQ/NU (0-00,2 + (V9,V2)) (100 + |VV|?) zdvg dr
Q

+ 2y [ 0z (0,900,202 + D*) (Vi), Vz)) dvgdr
Q
31,12 2 2)2
—’y/Na 2|7 (|0 + [VI)P)” dvgdr. (6.2.18)
Q
Hence
27/~03 12* (|10-0]” + |V19\2)2 dvgdr = 2’}//~J (10,2 + |V2*) (|- + |[VI?) dvgdr
Q Q
+205(z,0,2,Vz), (6.2.19)

where Qs (z, 0,2, V2) satisfies

|Qs(2,0,2,V2)| < C (72[02 |2? dv, d7+3717/~a (10:2> + |V 2[*) dvng>
Q Q
1 2 1 2
— ||B = 2.2
b B2+ L | (6:220)

and we have used ¢ > 1in Q.
As a consequence

(Az,B2) 25 =7 /a (100 + [V9P)° |2 dvgdr+2y / 0 (0:00:2 + (Vz, VD)) dvydr
Q Q
+ 7/~0 (10,2 + V") (j0-) + |VO?) dvgdr — {/~ o |0,2|* (VV,v) doy dr
Q z
+ Qi(z,0-2,V2) +20Qs(2,0-2,Vz). (6.2.21)

Now, combining (6.2.21), (6.2.20) and (6.2.17), we have
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2(Az,Bz) +2 {/~ o |0,2|* (VV,v) do, dT:| > 27/~03 (10,9 + |V19|2)2 |2|? dv, dr
z Q

+27/~a (10:2]> + |V2*) (|0-0° + | VI?) dvgdr
Q
-C (/ o (|872|2 + |Vz\2) dvgdr +/ o |2* dv, dT)
Q Q
—C (72/~02 |2|? dv, dr + s‘lfy/~a (10,2]* + |V2[*) dv, dT)
Q Q

1
B =2 |
(6.2.22)

Now, since V¥ # 0 on M, we conclude that for any s > s, and v > ~,, we obtain
2(Az,Bz)+2 {/~ o |0,2|* (VV,v) do, dr}
b

1
> Cy (/~ o |2* dvydr + /Na (102 + V=) dvgdr> ~1 IB2|* = 2 || hsryl® .
Q Q
(6.2.23)

Thus we have also

lhoslP+ | [ 012 (90.0) dogar] >
¢ (Vﬁ (0% |22 + 0 (10,2 + |V2?)) dvgdr + || B2 + |Az||2) . (6.2.24)
Q

6.2.3 Completion of the proof

Next we will estimate |(0? + A)z|. Since
2 2 2 4 2 22 12 .
|Az|* > C (02 + Ag)z|” — o* (10,0 + |VI[))" |2[* in Q, (6.2.25)

by ¢ > 1 and (6.2.24) we obtain
cw/ffl 162 + Ag)z(, )| dudr < ||Az||2+07/~03|z|2 dv, dr
Q Q

§C<||hm||2+/~a|8yz|2(V19-1/) dagd7>. (6.2.26)
X

By (6.2.26), (6.2.24) and Assumption (A.2), we deduce
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[sq||* + [/~0|8,,z|2 (VD - v) dvgdr] >
b
C’y/ (03 |2(x,7)]> + o(|0-2(z, 7))* + |Vz(z,7)|?) + 07 ‘(33 + Ag)z(x, 7')‘2) dvg dr.

Q
(6.2.27)

The final step is to add integral of Z |0%y(z, 7)|? to the right-hand side of (6.2.27). This
|a|=2
can be made by the following computation

2
(O2+2,)(07122) = 07 D24+ A) 2 (Lo (0 + V) = S0 @2+ A ) 2
— o V20,2040 + (V2, V). (6.2.28)

We deduce from (6.2.28) and the elliptic estimates that

cy /@ 0°(0722)|” dvy dr (6.2.29)

laf=2

<ﬁ(afl|83+Agz|2+03|z|2+a(|afz|2+|v,z|2)) dv, dr,
Q

where we have used z = 0 on 9Q).
On the other hand, we can find

ey /@ o710 dv, dr (6.2.30)

|a|=2

< Z/~|8°‘(01/2z)|2 dvgdt+/(03|z|2+o(|aTz|2+|Vz|2) dv, dr.
=27 ¢ @

By (6.2.29) and (6.2.30), we obtain

vy /~ o102 dvy dr (6.2.31)
Q

=2

< 7/@ (071 |(02 + Ag)z|2 +0° 22+ 0(]0,2° + |VZ|2)) dvg dr.

Substituting z(z, 7) = e**y(x, 7) and noting (6.2.27), we can complete the proof of (6.3.1).

6.3 Interpolation inequality

By Theorem 6.1.1, we can prove the following estimate of solution in M x (—=T'/2,T/2) to
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Pu+ Agu+ Pu=f inMx (=T/2,T/2)
and
u=0 ondM x (=T/2,T/2)

by Neumann data on fo. This estimate is useful for establishing estimates for inverse prob-
lems by combining Fourier-Gros-lagolnitzer transform.

Lemma 6.3.1 Let Qg = Mx (=T/2,T/2). Then there exist constants C' > 0 and j1 € (0,1)
such that the following estimate holds:

H _
el < € (102 + A) tllaigy + 10ilsy) Il €30

for any u € Hl(@) w(z,7) =0o0n Y and the right-hand side of (6.3.1) is finite.

Proof . First we choose the parameter 5 = (7 such that

T2
A" max(z) < —, (6.3.2)
zeM 4
and let By > 0 satisfy
Bo > ﬂTQ

Let x € C*(R) be a cut-off function defined by
[ Lif 7] < %
x(r) = {Oif 7| > oL,

For any u € H%(Q) satisfying u(z,7) = 0 for (z,7) € X, we set y(z,7) = x(T)u(z, t).
Applying Theorem 6.1.1, we obtain

C'y/a (0_1 Z |8au(m,T)\2+0(|Vgu(:1c,T)\z+|37u(:z,7)]2)+03 |u(:p,7)\2)623*" dvg dr
0 |a|=2

< [ (02 + Ag)y(z, 7)[?e*¢ dvy dT + /~ o |0ul’ €% doydr. (6.3.3)
Q

o

Moreover we have
/@ [(02 + Ag)y(z, 7)|2e** dvg dr < C’/@ [(02 + Ag)u(z, 7)[*e*? dvy dr

—l—/~ N (|u(:z:,7')|2 + |8TU(I7T)|2) e25¢ dvgdr, (6.3.4)
Q

\Q1

where Q1 = M x (—=3T/4,3T/4). Then
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CH /~ (U(|Vu(x, 7')|2 + |0ru(z, T>|2) +o° |u(z, T)|2>625“’ dvg dr

Qo
<c / 182 + Agu(w, )2 dvy dr + /  (Jule, P+ 10,ulz, 7)) % dvy dr
Q Q\Q1
+ / o |0,ul’ e doy dr. (6.3.5)
o
Since f
min_p(z,7) > e Bo=PT2/4) = g,
(z,7)EQo
and
max _ (z,7) < M@wem I@)=PIT*/16) < V(Bo—B5T2/16) = g, ¢,
(I)T)GQ\QI

we have

cete [ ([Fute,n)ff + uute, ) + futa, 1)) dv, dr
Qo

< Ces ( /~ 162 + Agu(e, 7)[2 dvy dr + /m o Ol 2% do, d7>
Q

Xo

L g2s /~\N (Ju(z, )| + |0pu(z, 7)) dvgdr. (6.3.6)
Q\Q1

Then

C/N ( |Vu(z, 7')|2 + |0ru(z, T)|2 + |u(zz;,7)|2> dvg dr
Qo

< CePs </~ (02 + Ag)u(w, 7)|* dvy dT + /~ o |9,ul® €% do, dT>
Q

o

+€2d5/~ N (|U(Z,7’)|2 + |a’_u(x’7-)‘2> dvgdr, (6.3.7)
Q\Q1

where d = dy — dy > 0. Minimizing in s, we obatin (6.3.1). O
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