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ON FATOU AND JULIA SETS OF FOLIATIONS

TARO ASUKE

Abstract. The Fatou–Julia decomposition is significant in the study of
iterations of holomorphic mappings. Such a decomposition can be also
considered for foliations in a unified manner [9], [10], [2], [3]. Although the
decomposition will be fundamental in the study, it is not easy to decide the
decomposition. In this article, we give a sufficient condition for open sets to
be contained in Fatou sets. We also discuss relations between Fatou–Julia
decompositions and minimal sets.

Introduction

The Fatou–Julia decomposition is significant in the study of iterations of

holomorphic mappings and semigroups generated by rational mappings. Such

decompositions are also possible for transversely holomorphic foliations of com-

plex codimension one in a unified manner [9], [10], [2], [3]. Dynamics of fo-

liations on Fatou sets are expected to be tame. For example, Fatou sets of

foliations are known to admit transverse invariant metrics [2, Theorem 4.21],

[3, Theorem 5.5]. However, as in the classical case, it is difficult to decide

Fatou sets. In this article, we give a criterion in terms of transverse invariant

metrics. The basic idea is to use a partial converse to the above-mentioned

result [2, Lemma 2.16], namely, if regular foliations of compact manifolds ad-

mit transverse invariant metrics, then Julia sets are empty, where we consider

Julia sets in the sense of [2]: if we consider Julia sets in the sense of [9] or

[10], then there are foliations which admits transverse invariant metrics and

of which the Fatou sets are empty [9, Example 8.6]. A simple example shows

that existence of transverse invariant metrics are not sufficient to find Fatou

sets (see Remark 3.10). We will introduce a notion of compact approximations

which is a slight generalization of approximations of open sets by compact sets

(Definition 3.6) and show the following

Theorem 3.9. Let F be a transversely holomorphic foliation of a compact

manifold M , of complex codimension one. Let U be an F-invariant open set.

Suppose that
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2 TARO ASUKE

1) There exists a transverse Hermitian metric on U invariant under the

holonomies and bounded from below.

2) The open set U is compactly approximated.

Then, U is contained in the Fatou set of F .

We will also show that both metrics and compact approximations are nec-

essary.

When studying foliations, minimal sets are significant. In the theory of

secondary characteristic classes for foliations, some similarities between min-

imal sets and Julia sets are known [2, Section 6]. We will discuss relations

between minimal sets and Julia sets from dynamical point of view.

This article is organized as follows. First we recall definitions of foliations

and their singularities. Next, we introduce Fatou and Julia sets after [3] in

Section 2. Relations between Fatou sets and transverse invariant metrics are

discussed in Section 3, where the main result will be shown. Finally, minimal

sets are discussed in Section 4.

We are grateful to M. Asaoka and J. Rebelo for discussions in preparing the

present article.

1. Foliations

Throughout this article, we work on the C∞ or holomorphic category. In

view of [6] and [1], we introduce the following

Definition 1.1 ([1], cf. [6]). Let M be a manifold. A partition F = {Lλ} of

M into immersed manifold is called a singular foliation of M if the following

condition is satisfied: for any p ∈M , there exists an open neighborhood Up of

p such that there is a finite number of vector fields, say X1, . . . , Xr, on Up such

that [Xi, Xj] ∈ 〈X1, . . . , Xr〉 and that TqLλ = 〈X1(q), . . . , Xr(q)〉 for q ∈ Up,
where 〈X1, . . . , Xr〉 is the submodule of sections to TM . The pair of such

vector fields X1, . . . , Xr is called a local generator of F . Submanifolds Lλ are

called the leaves of F . A leaf which contains p ∈ M is said to be the leaf

which passes p and denoted by Lp. If M is a complex manifold and if Xi’s are

holomorphic, then F is said to be holomorphic.

It is easy to show the following

Lemma 1.2. The mapping p 7→ dimLp is lower semi-continuous.

Definition 1.3. Let F be a foliation of M . The maximal value of {dimLp |
p ∈M} is said to be the dimension of F and denoted by dimF . If dimM = m,

then m− dimF is called the codimension of F and denoted by codimF . We
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set

SingF = {p ∈M | dimLp < dimF}.

The restriction of F to M \ SingF is called the regular part of F and denoted

by F reg. If SingF = ∅, then F is said to be regular or non-singular.

Definition 1.4. A foliation F of M is said to be transversely holomorphic if

F reg is transversely holomorphic. That is, F reg admits a transversal complex

structure invariant by holonomies.

A holomorphic foliation is a transversely holomorphic foliation. It is well-

known what we may assume that the complex codimension of SingF is greater

than one if F is holomorphic. We will assume this condition when holomorphic

foliations are considered.

2. Fatou and Julia sets

We briefly recall the definition of the Fatou sets for foliations in the sense of

[3]. Let F be a transversely holomorphic foliation of a closed manifold M , of

complex codimension one. Let F reg be the regular part of F , namely, the re-

striction of F to M \SingF . Let T be a complete transversal for F reg, namely,

we assume that T meets every leaf of F reg (so that T is quite possibly discon-

nected). We may moreover assume that T is biholomorphic to a disjoint union

of discs in C, where the complex structure of T is induced by the transversal

holomorphic structure of F reg. Let Γ be the holonomy pseudogroup of F reg

on T . We have then a Fatou–Julia decomposition of T [3, Definitions 2.2

and 2.10]. Roughly speaking, the Fatou set is defined as follows. Let T be the

set of relatively compact open subsets of T . Let T ′ ∈ T and ΓT ′ the restriction

of Γ to T ′, namely, we set

ΓT ′ = {γ ∈ Γ | dom γ ⊂ T ′ and range γ ⊂ T ′},

where dom γ and range γ denote the domain and range of γ, respectively. Note

that ΓT ′ is a pseudogroup on T ′. An open connected subset U of T ′ is said to

be an F-open set if every germ of elements of ΓT ′ at a point in U is represented

by an element of T (not T ′ in general) defined on U , where the letter ‘F’ stands

for ‘Fatou’. We then define F ∗(ΓT ′) to be the union of F-open sets and J∗(ΓT ′)

its complement in T ′. Finally, the Julia set of (Γ, T ) is defined by

J(Γ ) =
⋃
T ′∈T

J∗(ΓT ′),

and F (Γ ) = T \ J(Γ ).
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Remark 2.1. The Fatou and Julia sets F (Γ ) and J(Γ ) in this article is re-

ferred as Fpg(Γ ) and Jpg(Γ ) in [3]. That is, we can consider pseudosemigroups

generated by pseudogroups, and F (Γ ) and J(Γ ) in [3] mention the Fatou and

Julia sets of Γ as pseudosemigroups. If the pseudogroup is compactly gener-

ated, then these coincide but in general not.

Definition 2.2 ([3, Definition 5.3]). The saturation of F (Γ ) is called the Fatou

set of F and denoted by F (F). The complement of F (F) in M is called the

Julia set of F and denoted by J(F).

Note that J(F) is the union on the saturation of J(Γ ) and SingF .

Definition 2.2 makes a sense. Indeed, we have the following

Lemma 2.3 ([3, Lemma 2.18]). Both F (Γ ) and J(Γ ) are invariant under Γ .

Definition 2.4. A subset X ⊂ M is said to be F -invariant if p ∈ X, then

Lp ⊂ X, where Lp denotes the leaf which contains p.

The following fundamental property is now clear from definitions.

Lemma 2.5. Both F (F) and J(F) are F-invariant.

The Fatou and Julia sets do not depend on the choice of realizations of ho-

lonomy pseudogroups. More precisely, there is a notion of equivalence between

pseudogroups. Roughly speaking, an equivalence from (Γ1, T1) to (Γ2, T2) is a

certain family of mappings from open sets of T1 to T2 which conjugates elem-

ents of Γ1 and Γ2. Pseudogroups (Γ1, T1) and (Γ2, T2) are equivalent if they

are associated with the same foliation. For the details of equivalence, we refer

readers to [10]. See also [3, Definition 1.22]. We have the following

Theorem 2.6 ([3, Theorem 2.19]). Let (Γ1, T1) and (Γ2, T2) be pseudogroups

and Φ: Γ1 → Γ2 an equivalence. Then, we have Φ(F (Γ1)) = F (Γ2) and

Φ(J(Γ1)) = J(Γ2).

Lemma 2.7. The Fatou and Julia sets F (F) and J(F) do not depend on the

choice of realizations of the holonomy pseudogroup of F reg.

Proof. By Theorem 2.6, the saturation of F (Γ ) is independent of the choice of

(Γ, T ). Therefore F (F) is also. �

Remark 2.8. The Fatou-Julia decomposition for foliations is firstly introduced

in [9] and refined in [10]. These definitions pay attention to deformations of

foliations while the definition in [3] follows a rather classical definition in terms

of normal families. It is known that the Julia sets in the sense of [9] and

[10] are contained in those of [3]. The inclusion can be either strict or not.
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Note also that a Fatou–Julia decomposition of singular foliations of a complex

surface with Poincaré type singularities are introduced in [9, Example 8.1]. The

Fatou–Julia decomposition given by Definition 2.2 of this article differs from

it in general. See 2) of Example 3.11.

We need the following

Definition 2.9 ([10, 1.3] cf. [3, Definition 3.1]). A pseudogroup (Γ, T ) is

compactly generated if there is a relatively compact open set T ′ of T , and a

finite collection of elements {γ1, . . . , γr} of Γ of which the domains and the

ranges are contained in T ′ such that

1) the family {γ1, . . . , γr} generates ΓT ′ , where ΓT ′ is the restriction of Γ

to T ′.

2) for each γi, there exists an element γ̃i of Γ such that dom γ̃i contains

the closure of dom γi and that γ̃i|dom γi = γi.

3) the inclusion of T ′ into T induces an equivalence from ΓT ′ to Γ .

(ΓT ′ , T ′) is called a reduction of (Γ, T ).

It is known that if (Γ, T ) is compactly generated and if (Γ ′, T ′) is equivalent

to (Γ, T ), then (Γ ′, T ′) is also compactly generated.

Example 2.10. If (Γ, T ) is a holonomy pseudogroup associated with a regular

foliation of a closed manifold M , then (Γ, T ) is compactly generated. Also, if

F is a complex foliation of a complex surface and if every singularity of F is of

Poincaré type, then the holonomy pseudogroup of F reg is compactly generated.

A basic example of such kind is given by a vector field
n∑
i=1

λizi
∂

∂zi
such that

the convex hull of {λ1, . . . , λn} does not contain the origin.

3. Fatou sets and transverse metrics

The following is known.

Theorem 3.1 ([3, Theorem 5.5], [2, Theorem 4.21]). The Fatou set F (F)

admits a transverse Hermitian metric transversely of class CLip
loc . If in addition

Γ is compactly generated, then there is such a metric transversely of class Cω.

We will show a partial converse to Theorem 3.1 to find Fatou sets.

Definition 3.2. Let U ⊂ C be an open set. Let h1 and h2 be Hermitian

metrics on U . We say that h1 ≥ ch2 if h1(v, v) ≥ ch2(v, v) holds for any

v ∈ TU , where c ∈ R. We say that h1 and h2 are equivalent if 1
c
h1 ≤ h2 ≤ ch1

holds for some c ≥ 1.
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Definition 3.3. Let U be a complex manifold and we fix a Hermitian metric,

say h0, on U . A Hermitian metric h on U is said to be bounded from below if

there exists c > 0 such that h ≥ ch0 holds on U .

In general, there is no canonical choice of h0 so that we introduce the fol-

lowing

Assumption 3.4. Let F be a transversely holomorphic foliation of M , and

(Γ, T ) the holonomy pseudogroup of F reg. We fix a Hermitian metric g on M

and a realization of (Γ, T ) by choosing a complete transversal for F reg. Then

let h0 be the restriction of g to T .

Remark 3.5. If M is compact, then h0 obtained as above are mutually equiva-

lent. There are several cases where we have a natural choice of g and hence h0
as above. For example, if M = CP n, then we can choose g as the Fubini–Study

metric. If M = T 2n = Cn/Γ, where Γ is a lattice isomorphic to Z2n, then it

is natural to g as the one induced from the standard Hermitian metric on Cn.

In what follows, we consider the Fubini–Study metric when foliations of CP 2

are discussed.

Definition 3.6. Let U be an open subset of M \SingF . A family {Kn}n∈N of

closed subset of U is called a compact approximation if the following conditions

are satisfied, namely,

i) Each Kn is a closed subset of U with boundary of class C1, and Kn ( U .

ii) Each Kn is either saturated by the leaves of F reg or ∂K is transversal

to F reg.

iii) The holonomy pseudogroup of the foliation obtained by restricting F reg

to Kn is compactly generated.

iv) For each n, we have Kn ⊂ IntKn+1, where IntKn+1 denotes the interior

of Kn+1.

v) We have U =
⋃
n∈NKn.

We say also that U is compactly approximated by {Kn}n∈N.

In practice, the index n may begin by an arbitrary integer.

Remark 3.7. There are some typical cases where the condition iii) in Defin-

ition 3.6 is satisfied:

1) Each Kn is compact.

2) For each n, ∂Kn is tangent to F and there exists a compact subset, say

K ′n, of Kn with the following properties:

i) ∂K ′n \ ∂Kn is of class C1 and transversal to F .

ii) The restriction of F to Kn \ IntK ′n is a product foliation.
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We will actually make use of this fact in Example 3.11.

We give some basic examples of compact approximations.

Example 3.8. Let (z, w) be the standard coordinates for C2. Let ω = µwdz−
λzdw, where λ, µ ∈ C \ {0}. We set α = λ/µ and denote by Fα the foliation

of C2 defined by ω.

1) Suppose that α 6∈ R≤0. Let Kn = {(z, w) ∈ C2 | |z|2 + |w|2 ≥ 1/n2} for

n ≥ 1. Then, {Kn}n≥1 is a compact approximation of C2 \ {(0, 0)} =

M \ SingFα such that ∂Kn is transversal to Fα for each n.

2) Suppose that α ∈ R<0. Let f(z, w) = |z||w|−α. If we set Kn = {(z, w) ∈
C2 | f(z, w) ≥ 1/n} for n ≥ 1, then {Kn} is a compact approximation

of U such that ∂Kn is tangent to Fα for each n.

3) In general, suppose that dimM = 2 and that SingF is a finite set. If

moreover each singularity is of Poincaré type, then M \ SingF admits

a compact approximation. Indeed, we fix a metric on M and set Kn =

{p ∈ M | dist(p, SingF) ≥ 1/n}. If N ∈ N is large enough, then

{Kn}n≥N is a compact approximation of M \ SingF . For example, if

α 6∈ R in the case 1), then Fα is extended to CP 2 with SingFα = {[0 :

0 : 1], [0 : 1 : 0], [1 : 0 : 0]}, where [z0 : z1 : z2] denotes the standard

homogeneous coordinates. A compact approximation for CP 2 \ SingFα
is given by settingKn = CP 2\({{[z0 : z1 : 1] | |z0|2+|z1|2 < 1/n2}∪{[z0 :

1 : z2] | |z0|2 + |z2|2 < 1/n2} ∪ {[1 : z1 : z2] | |z1|2 + |z2|2 < 1/n2}).

Now we will show the following

Theorem 3.9. Let F be a transversely holomorphic foliation of a compact

manifold M , of complex codimension one. Let U be an F-invariant open set.

Suppose that

1) There exists a transverse Hermitian metric on U invariant under the

holonomies and bounded from below.

2) The open set U admits a compact approximation.

Then, U is contained in the Fatou set of F .

Proof. Let (Γ, T ) be the holonomy pseudogroup of F reg. The proof is basically

parallel to the case where Γ is compactly generated, we need however addi-

tional observations. We denote by T the set of relatively compact subsets of

T . Let T ′ = {T ′i} ∈ T and ΓT ′ the restriction of Γ to T ′, where T ′i denotes

the connected components of T ′. Let {Kn} be a compact approximation of

U . We will show that Kn ∩ T ′ ⊂ F ∗(ΓT ′) for any n. Once this is estab-

lished, U ∩ T ′ ⊂ F ∗(ΓT ′) so that U ∩ J∗(ΓT ′) = ∅ for any T ′. It follows that
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U∩
(⋃

T ′∈T J
∗(ΓT ′)

)
= ∅. Since U is open, U∩J(Γ ) = U∩

⋃
T ′∈T J

∗(ΓT ′) = ∅.

This will complete the proof. In what follows, we assume for simplicity that T

is contained in C and is equipped with the standard Hermitian metric which

we denote by h0. We may moreover assume that T is a disjoint union of rela-

tively compact discs. We do not lose generality because M is compact so that

Hermitian metrics on T are equivalent (see Remark 3.5).

Let now h be a transverse Hermitian metric on U as in the statement. We

denote by Γn the holonomy pseudogroup of F|Kn associated with Kn ∩ T ′.
As T ′ is relatively compact, we can find a finite set {γi} of generators of Γn.

Therefore, there are δ > 0 and C > 0 such that the germ of any γi at a point,

say p, in Kn ∩ T ′ is represented by an element of Γ , actually of Γn+1, defined

on the δ-ball Bδ(p) ⊂ T centered at p and |(γ′i)p| ≤ C. Note that we may

assume that C ≥ 1. On the other hand, we have the following, namely, let

B′δ(p) be the δ-ball with respect to h centered at p. By the assumption, h is

bounded from below so that we have h ≥ c2h0 for some c > 0. We have then

∀ p ∈ Kn ∩ T ′, ∀ δ > 0, B′δ(p) ⊂ T ′ ⇒ B′δ(p) ⊂ Bδ/c(p).

We now set δ′ = δc/2C. By decreasing δ′ if necessary, we assume that Bδ′(p) ⊂
U . We claim then that the germ of any element of Γn at any p ∈ Kn ∩ T ′
is represented by an element of Γn+1 defined on B′δ′(p). This is shown as

follows. Let Γn(k) be the subset of Γn which consists of elements presented by

composition of at most k generators, where Γn(0) is generated by {idKn∩T ′},
and let Γn(k)p be the set of germs at p of elements of Γn(k). We have Γn =⋃+∞
k=0 Γn(k). If γp ∈ Γn(1)p, then B′δ′(p) ⊂ Bδ/2C(p) ⊂ Bδ(p) so that the claim

holds. Assume by induction that γp ∈ Γn(k)p is represented by an element

of Γn+1 defined on B′δ′(p). Let ζp ∈ Γn(k + 1)p. Then, ζp is represented by

an element of Γn of the form γi ◦ γ, where γ ∈ Γn(k)p and γi is one of the

generators. We may assume that γ is well-defined on B′δ′(p) as an element of

Γn+1. We have γ(B′δ′(p)) = B′δ′(γ(p)) ⊂ Bδ/2C(γ(p)) ⊂ Bδ(γ(p)) because γ is

an isometry on U . As γ(p) ∈ T ′, γi is well-defined on B′δ′(γ(p)) as an element

of Γn+1. It follows that γi ◦ γ is also well-defined on B′δ′(p) as an element of

Γn+1. Since T is assumed to be a disjoint union of relatively compact discs in

C, the family

Γn+1(U) = {γ ∈ Γn+1 | dom γ = U, γ(U) ∩ T ′ 6= ∅}

which consists of elements of Γn+1 obtained by extension as above, is a normal

family. This directly verifies that B′δ′(p) has the property (wF) [3]. Let now

γ ∈ Γn and dom γ ⊂ B′δ′(p). Since γ(B′δ′(p)) = B′δ′(γ(p)), range γ itself is again

a wF-open sets. Thus B′δ′(p) is an F-open set so that p ∈ F ∗(ΓT ′). �
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Remark 3.10. 1) The fact that a wF-open set is an F-open set always

holds if Γ is a pseudogroup. These will differ if we study pseudosemi-

groups. See [3] for the details.

2) The induction in the proof is taken from the proof of [8, Lemme 2.2].

3) If Γ is compactly generated, then we can choose T ′ in the above proof

so that (ΓT ′ , T ′) is equivalent to (Γ, T ) and that the arguments can be

simplified.

Example 3.11 (cf. Example 3.8 and [3, Example 5.11]). Let ω = µydx−λxdy
be a holomorphic 1-form on C2, where λ, µ 6= 0. We set α = λ/µ and let Fα
be the foliation of C2 defined by ω. We denote by Gα the natural extension

of Fα to CP 2. Let [z0 : z1 : z2] be the standard homogeneous coordinates for

CP 2, where x = z0/z2 and y = z1/z2. We set a = z0/z1, b = z2/z1 if z1 6= 0,

and u = z1/z0, v = z2/z0 if z0 6= 0. We set C2(x, y) = {[x : y : 1] ∈ CP 2}.
Similarly we define C2(a, b) and C2(u, v).

1) Suppose that α 6∈ R. Let U = CP 2 \ {z0z1z2 = 0}. It is known that the

Fatou set F (Gα) is equal to U . We define f : CP 2 → R by

f([z0 : z1 : z2]) =
|z0|2|z1|2|z2|2

(|z0|2 + |z1|2 + |z2|2)3
.

We have

f(x, y) =
|x|2|y|2

(1 + |x|2 + |y|2)3

and

∂f

∂x
(x, y) =

x̄|y|2(1− 2|y|2 + |z|2)
(1 + |x|2 + |y|2)4

,

∂f

∂y
(x, y) =

ȳ|x|2(1− 2|z|2 + |w|2)
(1 + |x|2 + |y|2)4

.

Let, for n ≥ 28,

Kn =

{
[z0 : z1 : z2] ∈ CP 2 | f([z0 : z1 : z2]) ≥

1

n

}
.

Note that Kn is a compact subset contained in U . This can be seen

by for example by the fact that (1, 1) is the unique maximum of the

function (t, s) 7→ (ts)/(1 + t + s)3, where t, s > 0. We will show that

∂Kn is transversal to Gα. If we restrict ourselves to U ∩ C2(x, y) =

{(x, y) ⊂ CP 2 | xy 6= 0}, then by Lemma 3.14 below, ∂Kn is transversal

to Fα if and only if

(3.12) λ(1− 2|x|2 + |y|2) + µ(1− 2|y|2 + |x|2) 6= 0.
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Suppose the contrary and let α = µ/λ = a+
√
−1b, where a, b ∈ R. By

the assumption b 6= 0 so that the equalities

(1 + a) + (−2 + a)|x|2 + (1− 2a)|y|2 = 0,

1− 2|y|2 + |x|2 = 0

hold by (3.12). It follows that 3 − 3|y|2 = 0 and further that |x| =

|y| = 1. As f(1, 1) = 1/27, we never have (|x|, |y|) = (1, 1) for (x, y) ∈
∂Kn ∩ C2(x, y). Since Kn is contained in C2(x, y), we see that ∂Kn is

transversal to Gα. Therefore {Kn}n≥28 is a compact approximation of

U . We now set ω′ = 1
λ
dz
z
− 1

µ
dw
w

. Then, dω′ = 0 and ω′ also defines Gα on

U . Therefore, an invariant metric on U is defined by setting h = ω′⊗ω′.
The metric h is bounded from below so that U is contained in the Fatou

set of Gα. In this case, it is also known that F (Fα) = U∩C2. The family

{Kn}n≥28 is a compact approximation of U ∩ C2 with respect to Fα.

2) If α ∈ R, then the Fatou–Julia decomposition of F (Fα) and that of

F (Gα) are known to be different [3, Example 5.11]. This is also seen by

Theorem 3.9.

i) First we study Fα.

a) Assume that α > 0. Then, F (Fα) = C2 \ {(0, 0)} and a trans-

verse invariant metric, say h, on F (Fα) is given by h = ηα⊗ηα,

where

ηα =
αydx− xdy

|x|α+1 + |y|(α+1)/α
.

Note that h is bounded from below. If we set Kn = {(x, y) ∈
C2 | 1/n ≤ |x|2 + |y|2 ≤ n}, then {Kn}n≥1 is a compact approx-

imation of C2 \ {(0, 0)}.
b) Assume that α < 0. Then, F (Fα) = C2 \{(x, y) ∈ C2 | xy = 0}

and a transverse invariant metric h on F (Fα) is given by h =

να ⊗ να, where

να = α
dx

x
− dy

y
.

The metric h is bounded from below. A compact approximation

of F (Fα) is given by {Kn} with Kn = {(x, y) ∈ C2 | 1/n ≤
|x||y| ≤ n}.

ii) Next we study Gα.

a) Assume that α > 0. By exchanging z0 and z1 if necessary, we

may assume that 0 < α < 1. We have F (Gα) = CP 2 \ {[z0 : z1 :

z2] ∈ CP 2 | z1z2 = 0}. Note that we have F (Gα) ∩ C(x, y) =

{(x, y) ∈ C2 | y 6= 0} while we have F (Fα) = C2 \ {(0, 0)}.



ON FATOU AND JULIA SETS OF FOLIATIONS 11

This is because Gα is isomorphic to Fα/(α−1) on C2(a, b) and to

F1/(1−α) on C2(u, v). As 0 < α < 1, we have α/(α − 1) < 0 so

that we are in the same situation as in the case i)-b). Namely,

the singularity (0, 0) on C2(a, b) is of Siegel type (not of Poincaré

type) so that the both a-axis and b-axis are contained in the

Julia set J(Gα) of Gα. Therefore the y-axis and the u-axis are

contained in J(Gα). It follows that J(Fα) 6= C2 ∩ J(Gα). Note

that this shows that the Julia sets in the sense of Definition 2.2

and those of [9, Example 8.1] are different in general. Let

γα =
αydx− xdy
|x|k(|x|αl + |y|l)

,

where k + αl = 1 + α. We have

|γα| =
|αbda− (α− 1)adb|

|a|k|b|3−k−l(|a|αl|b|(1−α)l + 1)

=
|(1− α)udv − vdu|
|v|3−k−l(|u|l + |v|(1−α)l)

.

Then, h = γα ⊗ γα gives an invariant metric on F (Gα). If we

set k = l = 1, then h is bounded from below. A compact ap-

proximation of F (Gα) is given by {Kn}n≥1 with Kn = {[z0 : z1 :

z2] | |z0|1−α|z2|α ≥ |z1|/n}. We have Kn ∩ C2(x, y) = {(x, y) |
|x|1−α ≥ |y|/n} and Kn ∩ C2(a, b) = {(a, b) | |a|1−α|b|α ≥ 1/n}.

b) If α = 1, then G1 is transversal to the line at infinity {[z0 : z1 :

0]} and Sing G1 = {[0 : 0 : 1]}. We have F (G1) = CP 2 \ {[0 : 0 :

1]}. Note that F (F1) = F (G1) ∩ C(x, y). If we set

Kn = {[z0 : z1 : z2] | |z0|2 + |z1|2 ≥ 1/n|z2|}
= {(x, y) ∈ C(x, y) | |x|2 + |y|2 ≥ 1/n} ∪ {[z0 : z1 : 0]},

then {Kn}n≥1 is a compact approximation of CP 2 \{[0 : 0 : 1]}.
An invariant metric on CP 2 \ {[0 : 0 : 1]} is given by η1 ⊗ η1.

c) If α < 0, then [0 : 1 : 0] and [1 : 0 : 0] are of Poincaré type so

that we have the case a) again.

Remark 3.13. We need both a metric and a compact approximation in The-

orem 3.9. Let Fα be as in Example 3.11.

1) If α 6∈ R, then C2 \ {(0, 0)} admits a compact approximation with re-

spect to Fα however there are no invariant metrics on U . Indeed, the

dynamics along the z-axis and the w-axis are contracting-repelling.

2) If α = −1, then C2 \ {(0, 0)} admits an invariant metric. Indeed, if we

set η′ = ydx + xdy, when η′ ⊗ η′ gives an invariant metric. However,
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C2\{(0, 0)} does not admit a compact approximation. Indeed, if {Kn} is

a compact approximation, then the restriction of F reg to Kn is compactly

generated so that it cannot contain the x-axis and y-axis at the same

time. Note that η′ ⊗ η′ is not bounded from below.

3) Let again α = −1, and set η′ = ydx + xdy. If we set U = {(x, y) ∈
C2 | y 6= 0}, then U admits a compact approximation {Kn}, where

Kn = {(x, y) ∈ C2 | |x| ≥ 1/n}. The metric η′⊗η′ is certainly invariant

but not bounded from below. As the y-axis is contained in J(F−1), U is

not contained in F (F−1).

The following lemma is well-known but we give a proof for completeness.

Lemma 3.14. Let U ⊂ Cn be an open subset and g : U → R a smooth function.

Let M = g−1(c), where c ∈ g(U) is assumed to be a regular value. Finally let

X =
n∑
i=1

fi
∂

∂zi
be a holomorphic vector field on U , where (z1, . . . , zn) are the

standard coordinates for Cn. Then, X is transversal to M at p ∈ M if and

only if
n∑
i=1

fi(p)
∂g

∂zi
(p) 6= 0

holds, where X is said to be transversal to M at p if and only if the integral

curve of X and M transversally intersects at p.

Proof. First note the X and M is transversal at p if and only if X is not

tangent to M for the dimensional reason. We identify Cn with R2n and equip

Cn with the standard Euclidean metric. Let xi, yi be the real and imagi-

nary parts of zi, respectively. Then, the normal direction of TpM is given by
n∑
i=1

(
∂g

∂xi
(p)

∂

∂xi p
+
∂g

∂yj
(p)

∂

∂yi p

)
. On the other hand, the tangent space of the

integral curve of X at p is spanned by
n∑
i=1

(
ai(p)

∂

∂xi p
+ bi(p)

∂

∂yi p

)
and

n∑
i=1

(
−bi(p)

∂

∂xi p
+ ai(p)

∂

∂yi p

)
.

Therefore, X(p) is tangent to TpM if and only if the both
n∑
i=1

(
ai(p)

∂g

∂xi
(p) + bi(p)

∂g

∂yi
(p)

)
= 0,

n∑
i=1

(
−bi(p)

∂g

∂xi
(p) + ai(p)

∂g

∂yi
(p)

)
= 0
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hold. This is equivalent to

n∑
i=1

fi(p)
∂g

∂zi
(p)

=
1

2

n∑
i=1

(
ai(p)

∂g

∂xi
(p) + bi(p)

∂g

∂yi
(p)

)
+

√
−1

2

n∑
i=1

(
bi(p)

∂g

∂xi
(p)− ai(p)

∂g

∂yi
(p)

)
= 0. �

4. Julia sets and minimal sets

We recall the following classical

Definition 4.1. Let F be a foliation of a manifold M . A subset M of M is

said to be minimal if

1) M is non-empty and closed.

2) M is minimal with respect to inclusions.

3) M is saturated by leaves of F , namely, if p ∈ M , then the leaf which

passes p is contained in M .

Definition 4.2. Let M be a minimal set.

1) We say that M is trivial if it consists of a point in SingF .

2) We say that M is proper if it consists of a closed leaf of F reg.

3) We say that M is exceptional if it is non-trivial, non-proper and not

equal to the whole M .

Remark 4.3. Let M be a minimal set.

1) If F is singular, then M cannot be equal to M .

2) It is well-known that foliations of CP n do not admit closed leaf in F reg

(cf. [5, Theorem 2]). Therefore, non-trivial minimal sets of CP n are

exceptional.

3) The classification of minimal sets in Definition 4.2 is known to work well

for real codimension-one regular foliations [7]. On the other hand, even

in the complex codimension-one case, it is not sufficient. For example,

let us consider a suspension of an action of a torsion-free Kleinian group

on CP 1. In this case, M is contained in J(F) which coincides with the

suspension of the limit set [2]. On the other hand, let F be a foliation

of S3 ⊂ C2 induced from the flow of a vector field z
∂

∂z
+ αw

∂

∂w
with

α ∈ R>0. Then, F is always transversely Hermitian (cf. 2) of Ex-

ample 3.11). Suppose that α 6∈ Q and let L be a leaf which does not

belongs to the Hopf link. Then, closure of L form a minimal set which
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is diffeomorphic to a 2-torus as a submanifold of S3. This means that

exceptional minimal sets should be more precised.

If foliations of CP n are considered, then it is known that an exceptional

minimal set contains a hyperbolic holonomy [4, Théorème]. That is, there is

a loop on a leaf contained in the minimal set such that associated holonomy,

in other words, the first return map or the Poincaré map, is of modulus not

equal to one.

This implies the following

Theorem 4.4. The Fatou set of a foliation of CP n, of codimension one, does

not contain any exceptional minimal sets.

Proof. The Fatou set admits an invariant transverse Hermitian metric by The-

orem 3.1. By [5, Theorem 2], we can find a hyperbolic holonomy in the Fatou

set. This is impossible because the holonomy should be an isometry for the

transverse Hermitian metric. �

Note that foliations of CP 2 have unique minimal sets [5, Theorem 1]. Such

a minimal sets are contained in the Julia sets by Theorem 4.4.

An immediate consequence is the following

Proposition 4.5. Let F be a foliation of CP 2 and CP 2 = F (F) ∪ J(F) the

Fatou–Julia decomposition. Then,

1) We have J(F) = SingF , and F admits no exceptional minimal set.

2) We have SingF ( J(F) ( CP 2. If F admits an exceptional minimal

set, say M , then either M ⊂ ∂F (F)\SingF or M ⊂ J(F)\ (∂F (F)∪
SingF). In the latter case, the closure of any leaf in ∂F (F) meets

SingF .

3) We have CP 2 = J(F). If F admits an exceptional minimal set, say M ,

then M ⊂ J(F) \ SingF .

Proof. Let M be an exceptional minimal set, which is contained in J(F) \
SingF by Theorem 4.4. Therefore, if J(F) = SingF then such an M does

not exist. Suppose that SingF ( J(F). If F (F) 6= ∅, then ∂F (F) ⊂ J(F)

is a non-empty invariant closed subset. If ∂F (F) = SingF , then we have

F (F) = CP 2 \ SingF because SingF consists of points. This implies that

J(F) = SingF and contradicts the assumption. Since M is unique, M is

contained in exactly one of ∂F (F) or J(F) \ ∂F (F). Suppose that M ⊂
J(F) \ ∂F (F) and L be a leaf in ∂F (F). If ∂L 6= ∅, then it contains a

minimal set, which should be trivial. Therefore ∂L ⊂ SingF . The remaining

possibility is the last case. �
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We introduce the following in view of [4, IV].

Definition 4.6. Let M be a complex manifold and F a holomorphic foliation

of M , of codimension one. We say that F satisfies the condition (H) if there

exists a meromorphic 1-form on M which is not identically zero and which

defines F .

Definition 4.7. We denote by Singω the union of zeroes and poles of ω.

Note that SingF ⊂ Singω.

In a quite particular case, we can find a large Fatou set. Suppose that F
satisfies the condition (H) and that ω has no zeroes. This occurs for example

on M = CP 2, or almost equivalently, on C2. Let ω = Pdx+Qdy a polynomial

1-form on C2. If we set ω′ = dx
Q

+ dy
P

, then ω′ also defines F on C2 \ Pole(ω′),

where Pole(ω′) = {(x, y) ∈ C2 | P (x, y) = 0 or Q(x, y) = 0}. Then ω′ has no

zeroes.

Assume still that ω has no zeroes. If moreover we can find a compact

approximation of M \ Pole(ω), then we have the following

Theorem 4.8. Let F be a holomorphic foliation of a compact complex man-

ifold M , of codimension one. Suppose that F satisfies the condition (H) and

let ω be a meromorphic 1-form which defines F . Suppose that the following

conditions are satisfied:

1) The 1-form ω is closed and has no zeroes.

2) The complement M \ Pole(ω) admits a compact approximation.

Then we have F (F) ⊃M \ Pole(ω).

Proof. Let h = ω ⊗ ω and U = M \ Pole(ω). As dω = 0, h determines an

invariant Hermitian metric on U . Moreover, singularities of h are poles so that

h is bounded from below. Then by Theorem 3.9, U is contained in the Fatou

set of F . �

Note that as ω is closed, there are no exceptional minimal sets. The assertion

F (F) ⊃M \Pole(ω) can be seen as a reproduction of this fact by Theorem 4.4.

Note also that a typical example is a linear foliation of CP 2 discussed in

Example 3.11.
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