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ZERO WIDTH LIMIT OF THE HEAT EQUATION ON MOVING

THIN DOMAINS

TATSU-HIKO MIURA

Abstract. We study the behavior of a variational solution to the Neumann

type problem of the heat equation on a moving thin domain Ωε(t) that con-

verges to an evolving surface Γ(t) as the width of Ωε(t) goes to zero. We show
that, under suitable assumptions, the average in the normal direction of Γ(t)

of a variational solution to the heat equation converges weakly in a function

space on Γ(t) as the width of Ωε(t) goes to zero, and that the limit is a unique
variational solution to a limit equation on Γ(t), which is a new type of linear

diffusion equation involving the mean curvature and the normal velocity of
Γ(t). We also estimate the difference between variational solutions to the heat

equation on Ωε(t) and the limit equation on Γ(t).

1. Introduction

For t ∈ [0, T ], T > 0, let Ωε(t) be a moving thin domain in Rn, n ≥ 2, with width
of order ε > 0 that converges to an evolving closed hypersurface Γ(t) as ε→ 0. We
consider the Neumann type problem of the heat equation of the form

∂tu
ε −∆uε = 0 in Qε,T ,

∂νεu
ε + V Nε uε = 0 on ∂`Qε,T ,

uε(0) = uε0 in Ωε(0).

(Hε)

Here Qε,T :=
⋃
t∈(0,T ) Ωε(t) × {t}, ∂`Qε,T :=

⋃
t∈(0,T ) ∂Ωε(t) × {t}, and νε, V

N
ε

are the unit outward normal vector field of ∂Ωε(t) and the outer normal velocity of
∂Ωε(t), respectively. The term V Nε uε in the boundary condition is added so that the
total amount of heat

∫
Ωε(t)

uε dx is conserved, see the beginning of Section 3. Also,

if uε denotes the concentration of some chemicals, the boundary condition says that
chemicals do not move and flux is just caused by the motion of the boundary.

We are interested in the behavior of a solution uε to (Hε) as ε → 0. Our goal
is to characterize its limit as well as its convergence. Let us explain the simplest
case when Ωε(t) is the set of all points in Rn with distance less than ε from Γ(t)
so that the width of Ωε(t) is 2ε. Let ν be the unit outward normal vector field
of Γ(t) and VΓ = V NΓ ν + V TΓ be the velocity of Γ(t), where V NΓ and V TΓ are the
outer normal velocity of Γ(t) and a given tangential velocity. Then our main result
formally implies that, under suitable assumptions on the initial data uε0 of (Hε),
the limit v is a solution to

∂tv + V NΓ ν · ∇v − V NΓ Hv −∆Γ(t)v = 0 on ST .(1.1)
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Here ST :=
⋃
t∈(0,T ) Γ(t) × {t} and ∇ is the usual gradient in Rn. Also, H :=

−divΓ(t)ν and ∆Γ(t) := divΓ(t)∇Γ(t) are the mean curvature of Γ(t) and the Laplace-
Beltrami operator on Γ(t), where divΓ(t) and ∇Γ(t) are the surface divergence op-
erator and the tangential gradient on Γ(t), respectively (see Section 2 for their
definitions). We will give a heuristic derivation of the limit equation (1.1) in the
appendix. The equation (1.1) is equivalent to

∂•v + (divΓ(t)VΓ)v −∆Γ(t)v − divΓ(t)(vV
T
Γ ) = 0 on ST ,(1.2)

which we will actually derive in Section 6. Here ∂•v = ∂tv+V NΓ ν ·∇v+V TΓ ·∇Γ(t)v
denotes the material derivative of v. Note that the equation (1.1) is indepen-
dent of the tangential velocity V TΓ . In other words, the evolution of the limit v
is not affected by advection along Γ(t). Such a phenomenon does not occur in an
advection-diffusion equation widely studied in recent years [2–8,18,27]:

∂•v + (divΓ(t)VΓ)v −∆Γ(t)v = 0 on ST .(1.3)

This equation is derived from the conservation law such that, for an arbitrary
portion M(t) of Γ(t),

d

dt

∫
M(t)

v dHn−1 = −
∫
∂M(t)

q · µdHn−2

holds, where Hk is the k-dimensional Hausdorff measure for k ∈ N, µ is the co-
normal to the boundary ∂M(t), and q is the surface flux, see [3, Section 3] and [4,
Section 3.1] for details.

Partial differential equations on thin domains are studied over the years [11–15,
19–23,25,26], and many researchers deal with a nonmoving thin domain of the form

Ωε = {(x′, xn) ∈ Rn−1 × R | x′ ∈ ω, εg0(x′) < xn < εg1(x′)}, ε > 0,(1.4)

where ω is a domain in Rn−1 and g0, g1 are functions on ω. In their pioneer-
ing works [11, 12], Hale and Raugel compared the dynamics of reaction-diffusion
equations and damped wave equations on Ωε of the form (1.4) (with g0 = 0 and
slightly modified g1) and that of corresponding limit equations on ω by the scaling
argument. They transformed the equations on Ωε into scaled equations on a fixed
reference domain Ω0 = ω × (0, 1) by the change of variables, and formally derived
the limit equations on ω by letting ε→ 0 in the scaled equations on Ω0 and omit-
ting divergent terms. Then they compared the dynamics of the scaled equations on
Ω0 and that of the limit equations on ω by analyzing weighted bilinear forms that
appear in variational formulations of the scaled equations and the limit equations.
Their scaling argument is applicable to more general thin domains such as a thin
L-shaped domain [13] and a moving thin domain of the form (1.4) where g0 = 0
and g1 depends on time [22]. Prizzi and Rybakowski [20] generalized the scaling
argument in [11, 12] to study reaction-diffusion equations on a (nonmoving) thin
domain with holes around a lower dimensional domain. The generalized scaling
argument in [20] is also valid for a (nonmoving) thin domain with holes around
a lower dimensional manifold [19, 21]. We refer to [23] and references therein for
other examples of thin domains.

In contrast to the above papers, the limit hypersurface Γ(t) of our thin domain
Ωε(t) evolves. Such a situation has been considered only in the paper [7], which
deals with a diffuse interface model for the advection-diffusion equation (1.3). See
also [8] for numerical computations of the advection-diffusion equation (1.3) based
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on the diffuse interface model. In [7], however, the limit equation (1.3) on the
evolving surface is given and the equation on the moving thin domain involves a
weight function that vanishes on the boundary of the domain. Therefore, there is
no literature on initial-boundary value problems of partial differential equations on
moving thin domains around evolving surfaces whose limit equations are unknown
in advance, even in the case of the heat equation.

The difficulty caused by the evolution of the hypersurface Γ(t) is in transforming
equations on Ωε(t) and Γ(t) into equations on fixed (in time and width) domain
and hypersurface. In particular, transformations of differential operators on Γ(t)
into those on a fixed hypersurface is so complicated that we can hardly find a limit
equation on the fixed hypersurface and convert it into an equation on Γ(t), see [6]
for the actual transformations of differential operators.

To avoid this difficulty, we employ another method that does not require transfor-
mations of Ωε(t) and Γ(t). Let us explain our idea of derivation of a limit equation
on Γ(t). We start from a variational formulation of (Hε) (see (3.2)) that consists of
integrals over the noncylindrical domain Qε,T of a variational solution uε to (Hε)
and a test function defined on Qε,T . In this variational formulation, we take a test
function independent of the normal direction of Γ(t) and apply the co-area formula
(see (5.4)) and a weighted average operator Mε (see Definition 5.1) to get a varia-
tional formulation (with some residual terms) of the average Mεu

ε (see (6.1)) that
consists of integrals over the space-time manifold ST of Mεu

ε and a test function
defined on ST . Then we obtain a variational formulation of a limit equation on
Γ(t) (see (6.13)) by omitting the residual terms in the variational formulation of
Mεu

ε. Moreover, we prove that Mεu
ε converges weakly in a function space on ST

as ε → 0 and that the limit is a unique variational solution to the limit equation
(see Theorem 6.10), and estimate the L2(Qε,T )-norm of the difference between vari-
ational solutions to (Hε) and the limit equation (see Theorem 6.13). These weak
convergence result and estimate indicate that our limit equation on Γ(t) derived as
above is indeed the “limit” of (Hε),

In our derivation of a limit equation, Lemma 5.7 and Lemma 5.14 play an im-
portant role. In Lemma 5.7 we approximate an H1-bilinear form on Ωε(t) for each
t ∈ [0, T ] by that on Γ(t) with the tangential gradient of the average Mεu of a
function u on Ωε(t). The proof of Lemma 5.7 is based on simple representations
of the gradient in Rn and the tangential gradient on Γ(t) under a special local
coordinate system for each fixed point on Γ(t). On the other hand, Lemma 5.14
gives an integral formula that formally represents a relation between the weak time
derivative of a function u on Qε,T and the weak material derivative of its average
Mεu (in fact, we do not explicitly deal with the time derivative of u). Lemma
5.14 essentially follows from Lemma 5.12, which gives a relation between the time
derivative and the material derivative of functions defined on ST .

Average operators in the thin direction were originally introduced by Hale and
Raugel [11, 12], but they took the average of functions on the scaled domain Ω0 =
ω × (0, 1). Average operators on actual thin domains Ωε appears in the study
of the Navier-Stokes equations on three dimensional thin domains [14, 15, 25, 26].
Temam and Ziane [25,26] first employed them to study the global existence of strong
solutions to the Navier-Stokes equations for large initial data and external forces
and the behavior of solutions as ε→ 0 when Ωε is a three dimensional thin product
domain Ωε = ω×(0, ε) with a bounded domain ω in R2 and a thin spherical domain
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Ωε = {x ∈ R3 | a < |x| < (1 + ε)a} with a constant a > 0. In [14, 15], average
operators were employed to study the dynamics of the Navier-Stokes equations on
Ωε of the form (1.4). In particular, the authors of [15] compared the dynamics of the
Navier-Stokes equations with that of limit equations by estimating the difference of
the average of solutions to the Navier-Stokes equations and solutions to the limit
equations.

We point out that our weighted average operator given in Definition 5.1 is a
generalization of average operators given in [14,15,25] and that its weight function
is different from that of an average operator given in [26]. In fact, the weight func-
tion of our average operator is a Jacobian that appears when we change variables
of integrals over a tubular neighborhood of Γ(t) in terms of the normal coordinate
system around Γ(t). Our choice of the weighted function enables us to transform
easily a bilinear form on a function space on Qε,T including the weak time derivative
of a function u on Qε,T into a bilinear form on a function space on ST including the
weak material derivative of the average Mεu, see Lemma 5.14. We also note that,
contrary to our case, Kublik, Tanushev, and Tsai [16] employed the same Jacobian
and co-area formula to transform integrals over boundaries of domains into those
over their tubular neighborhoods. Based on this transformation, they proposed a
new approach to numerical computations of boundary integrals without explicit
parametrizations of boundaries and a simple formulation for constructing bound-
ary integral methods to solve Poisson’s equations. Their method of the numerical
computations of boundary integrals is also applicable to integrals over nonclosed
manifolds of higher codimension, such as curves in R3 with different endpoints, see
[17] for details.

Finally we mention variational formulations of partial differential equations on
evolving surfaces. There are several kinds of variational frameworks for equations
on evolving surfaces, mainly the advection-diffusion equation (1.3), see [3, 18, 27]
for example. In addition, Alphonse, Elliott, and Stinner [1,2] proposed an abstract
variational setting with evolving Hilbert spaces and applied it to some equations on
moving domains and evolving surfaces. Among these variational frameworks, we
adopt the one introduced by Olshanskii, Reusken, and Xu [18]. Their variational
formulation is imposed on function spaces on ST , which is suitable for our calcu-
lation of bilinear forms on function spaces on ST and Qε,T performed in Section 5
and Section 6.

This paper is organized as follows. In Section 2 we introduce notations related
to the evolving surface Γ(t) and define the moving thin domain Ωε(t). In Section
3 we define a variational solution to (Hε) and prove its existence and uniqueness.
We also derive an energy estimate of a variational solution to (Hε) with a constant
independent of ε. In Section 4 we define and investigate function spaces on ST
introduced in [18]. In Section 5 we define the weighted average operator Mε and
establish estimates and formulas related to Mε. In Section 6, we derive a limit
equation on Γ(t) of the form (1.2) via its variational formulation and prove our
main theorems (Theorem 6.10 and Theorem 6.13). In the appendix, we give a
heuristic derivation of the limit equation (1.1) when Ωε(t) is the set of all points in
Rn with distance less than ε from Γ(t).
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2. Evolving surfaces and moving thin domains

For each t ∈ [0, T ], let Γ(t) be a closed (that is, compact and without boundary),
connected and oriented smooth hypersurface in Rn. We set Γ0 := Γ(0) and define
a space-time manifold ST ⊂ Rn+1 as ST :=

⋃
t∈(0,T ) Γ(t) × {t}. We assume that

each point y on Γ(t) evolves with velocity VΓ(y, t), which is not necessarily normal
to Γ(t), and the velocity field VΓ : ST → Rn is smooth. Let Φ(·, t) : Γ0 → Γ(t) be
a flow map of VΓ, that is, Φ(·, t) is a diffeomorphism from Γ0 onto Γ(t) for each
t ∈ [0, T ] and satisfies

Φ(Y, 0) = Y,
∂Φ

∂t
(Y, t) = VΓ(Φ(Y, t), t) for all Y ∈ Γ0, t ∈ [0, T ].

We assume that Φ and its inverse Φ−1 are smooth on Γ0×[0, T ] and ST , respectively.
Due to this assumption, ST is a compact smooth manifold in Rn+1.

Let ν : ST → Rn be the unit outward normal vector field of Γ(t). The velocity
VΓ is decomposed into VΓ = V NΓ ν + V TΓ , where V NΓ : ST → R is the outer normal

velocity and V TΓ : ST → Rn is a tangential velocity field. Note that to describe the
geometric motion of Γ(t) it is sufficient to prescribe the normal velocity. However,
to describe a limit equation on Γ(t) we will derive in Section 6, we also need to
consider a tangential velocity, which represents advection along Γ(t).

For each t ∈ [0, T ], let d(·, t) be the signed distance function from Γ(t) that
increases the direction of the normal vector ν(·, t). By the smoothness (in space
and time) and compactness of Γ(t), there is an open set N(t) in Rn of the form
N(t) = {x ∈ Rn | −δ < d(x, t) < δ} for each t ∈ [0, T ], where δ > 0 is a constant
independent of t, that satisfies the following conditions.

• The signed distance function d is smooth on NT , where NT ⊂ Rn+1 is a
noncylindrical domain given by NT :=

⋃
t∈(0,T )N(t)× {t}.

• For each (x, t) ∈ NT , there is a unique point p(x, t) ∈ Γ(t) such that

x = p(x, t) + d(x, t)ν(p(x, t), t), ∇d(x, t) = ν(p(x, t), t).

The set N(t) is called a tubular neighborhood of Γ(t). Based on the above equality,
we extend the normal vector ν to NT by setting ν(x, t) := ∇d(x, t) for (x, t) ∈ NT .
Then, by the smoothness of d, the extended normal vector ν and the projection
mapping p are smooth on NT . Also, the normal velocity V NΓ of Γ(t) is given by

V NΓ = −∂td on ST .
Next, we give definitions of differential operators on evolving surfaces. For a

function v and a vector field F on ST , we define the tangential gradient of v and
the surface divergence of F as

∇Γ(t)v(y, t) := [In − ν(y, t)⊗ ν(y, t)]∇v(y, t),

divΓ(t)F (y, t) := trace[{In − ν(y, t)⊗ ν(y, t)}∇F (y, t)]

for (y, t) ∈ ST . Here In is the identity matrix of size n and ν ⊗ ν := (νiνj)i,j is the

tensor product of ν. Also, v and F are the constant extensions of v and F to the
normal direction of Γ(t) given by

v(x, t) := v(p(x, t), t), F (x, t) := F (p(x, t), t), (x, t) ∈ NT .

By definition, ν ·∇Γ(t)v = 0 holds. Hereafter we use the same notations for functions
and vector fields on Γ(t) with each fixed t ∈ [0, T ].
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Finally, we define a moving thin domain. Let g0 and g1 be smooth functions on
ST . We assume that there is a constant c > 0 such that

g(y, t) := g1(y, t)− g0(y, t) ≥ c for all (y, t) ∈ ST .(2.1)

Then we define a moving thin domain Ωε(t) ⊂ Rn as

Ωε(t) := {y + ρν(y, t) | y ∈ Γ(t), εg0(y, t) < ρ < εg1(y, t)}, t ∈ [0, T ], ε > 0

and a space-time noncylindrical domain Qε,T ⊂ Rn+1 as Qε,T :=
⋃
t∈(0,T ) Ωε(t) ×

{t}. Note that Ωε(t) does not necessarily include Γ(t), since we do not assume that
g0 is negative and g1 is positive. Since g0 and g1 are smooth and thus bounded on
the compact manifold ST , there is a positive number ε0 such that Ωε(t) ⊂ N(t) for
all ε ∈ (0, ε0) and t ∈ [0, T ]. Hereafter we assume that ε ∈ (0, ε0).

3. Heat equation on moving thin domains

In this section, we consider the initial-boundary problem (Hε) of the heat equa-
tion on the moving thin domain Ωε(t). First we show that the boundary condition
of (Hε) yields the conservation of heat. Suppose that uε satisfies the heat equation
in Qε,T . Then, by the Reynolds transport theorem and Green’s formula (see [9, Ap-
pendix C]), we have

d

dt

∫
Ωε(t)

uε dx =

∫
Ωε(t)

∂tu
ε dx+

∫
∂Ωε(t)

V Nε uε dHn−1

=

∫
Ωε(t)

∆uε dx+

∫
∂Ωε(t)

V Nε uε dHn−1 =

∫
∂Ωε(t)

(∂νεu
ε + V Nε uε) dHn−1.

Hence if uε additionally satisfies the boundary condition of (Hε), then we have
d
dt

∫
Ωε(t)

uε dx = 0 for all t ∈ (0, T ), that is, the total amount of heat
∫

Ωε(t)
uε dx is

conserved.
Next, we give a definition of a variational solution to (Hε). For each ε > 0, we

define a function space L2
H1(ε) on Qε,T and an inner product on L2

H1(ε) as

L2
H1(ε) := {u ∈ L2(Qε,T ) | ∇u ∈ L2(Qε,T )},(3.1)

(u1, u2)L2
H1(ε)

:=

∫ T

0

∫
Ωε(t)

(u1u2 +∇u1 · ∇u2) dx dt.

The space L2
H1(ε) is a Hilbert space endowed with the above inner product. Let

‖ · ‖L2
H1(ε)

denote the norm of L2
H1(ε) induced by the inner product (·, ·)L2

H1(ε)
.

Definition 3.1. Let uε0 ∈ L2(Ωε(0)). A function u ∈ L2
H1(ε) is said to be a

variational solution to the initial-boundary value problem (Hε) if it satisfies∫ T

0

∫
Ωε(t)

(−uε∂tw +∇uε · ∇w) dx dt−
∫

Ωε(0)

uε0w(0) dx = 0(3.2)

for all w ∈ C1(Qε,T ) with w(T ) = 0 in Ωε(T ).

The variational formulation (3.2) is derived as follows. Suppose that uε is a
classical solution to (Hε). We multiply both sides of the heat equation in Qε,T by
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an arbitrary function w ∈ C1(Qε,T ) with w(T ) = 0 in Ωε(T ) and integrate them
over Qε,T to get ∫ T

0

∫
Ωε(t)

(∂tu
ε −∆uε)w dxdt = 0.

We calculate the left-hand side of the above equality. By the Reynolds transport
theorem and the conditions uε(0) = uε0 in Ωε(0) and w(T ) = 0 in Ωε(T ), we have∫ T

0

∫
Ωε(t)

(∂tu
ε)w dxdt =

−
∫ T

0

∫
Ωε(t)

uε∂tw dxdt−
∫ T

0

∫
∂Ωε(t)

V Nε uεw dHn−1 dt−
∫

Ωε(0)

uε0w(0) dx.

On the other hand, by integration by parts,

−
∫

Ωε(t)

(∆uε)w dxdt =

∫
Ωε(t)

∇uε · ∇w dx−
∫
∂Ωε(t)

(∂νεu
ε)w dHn−1.

Hence it follows that∫ T

0

∫
Ωε(t)

(−uε∂tw +∇uε · ∇w) dx dt−
∫ T

0

∫
∂Ωε(t)

(∂νεu
ε + V Nε uε)w dHn−1 dt

−
∫

Ωε(0)

uε0w(0) dx = 0

and we obtain (3.2) by applying the boundary condition of (Hε) to the second term
of the left-hand side in the above equality.

Our goal in this section is to obtain a unique variational solution to (Hε) that
satisfies an energy estimate with a constant independent of ε. To this end, we
transform (3.2) into a variational formulation of some equation on a fixed (in time)
domain Ωε(0) with the aid of a suitable diffeomorphism between Ωε(0) and Ωε(t).

Lemma 3.2. For each t ∈ [0, T ], there exists a diffeomorphism Ψε(·, t) : Ωε(0) →
Ωε(t) with its inverse Ψ−1

ε (·, t) : Ωε(t) → Ωε(0) such that Ψε and Ψ−1
ε are smooth

on Ωε(0) × [0, T ] and Qε,T , respectively, and Ψε(·, 0) is the identity mapping on
Ωε(0). Moreover, there exists a constant c > 0 independent of ε such that

|∂αX∂kt Ψε(X, t)| ≤ c, |∂αx ∂kt Ψ−1
ε (x, t)| ≤ c(3.3)

for all (X, t) ∈ Ωε(0)× (0, T ), (x, t) ∈ Qε,T , and |α|+ k ≤ 2, k = 0, 1, 2.

Proof. We observe that for each X ∈ Ωε(0) there is a unique θ ∈ (0, 1) such that

X = p(X, 0) + ε{(1− θ)g0(p(X, 0), 0) + θg1(p(X, 0), 0)}ν(p(X, 0), 0),(3.4)

that is, X divides the line segment A0A1 internally in the ratio θ : 1− θ, where

Ai := p(X, 0) + εgi(p(X, 0), 0)ν(p(X, 0), 0), i = 0, 1.

Then, it is natural to define Ψε(X, t) ∈ Ωε(t) as

(3.5) Ψε(X, t) := Φ(p(X, 0), t)

+ ε{(1− θ)g0(Φ(p(X, 0), t), t) + θg1(Φ(p(X, 0), t), t)}ν(Φ(p(X, 0), t), t),
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that is, Ψε(X, t) divides the line segment B0B1 internally in the ratio θ : 1 − θ,
where

Bi := Φ(p(X, 0), t) + εgi(Φ(p(X, 0), t), t)ν(Φ(p(X, 0), t), t), i = 0, 1.

To eliminate θ in (3.5), we take the inner product of both sides of (3.4) and
ν(p(X, 0), 0). Then

{X − p(X, 0)} · ν(p(X, 0), 0) = ε{(1− θ)g0(p(X, 0), 0) + θg1(p(X, 0), 0)}.

Since {X − p(X, 0)} · ν(p(X, 0), 0) = d(X, 0) and g1 − g0 = g > 0, it follows that

θ =
d(X, 0)− εg0(p(X, 0), 0)

εg(p(X, 0), 0)
.

Hence, by substituting this for θ in (3.5), we obtain

Ψε(X, t) = Φ(p(X, 0), t) + {d(X, 0)φ1(X, t) + εφ2(X, t)}ν(Φ(p(X, 0), t), t)(3.6)

for X ∈ Ωε(0) and t ∈ [0, T ], where

φ1(X, t) :=
g(Φ(p(X, 0), t), t)

g(p(X, 0), 0)
,

φ2(X, t) := g0(Φ(p(X, 0), t), t)− φ1(X, t)g0(p(X, 0), 0).

Similarly we define a mapping Ψ−1
ε as

(3.7) Ψ−1
ε (x, t) :=

Φ−1(p(x, t), t) + {d(x, t)φ3(x, t) + εφ4(x, t)}ν(Φ−1(p(x, t), t), 0)

for (x, t) ∈ Qε,T , where

φ3(x, t) :=
g(Φ−1(p(x, t), t), 0)

g(p(x, t), t)
,

φ4(x, t) := g0(Φ−1(p(x, t), t), 0)− φ3(x, t)g0(p(x, t), t).

By definition, Ψε(·, t) : Ωε(0) → Ωε(t) is a bijection with its inverse Ψ−1
ε : Ωε(t) →

Ωε(0) for each t ∈ [0, T ]. Also, since Φ(·, 0) is the identity mapping on Γ0, we have
φ1(X, 0) = 1, φ2(X, 0) = 0 and thus

Ψε(X, 0) = p(X, 0) + d(X, 0)ν(p(X, 0), 0) = X for all X ∈ Ωε(0),

that is, Ψε(·, 0) is the identity mapping on Ωε(0). Due to the smoothness of Φ, Φ−1,
d, p, g0, and g1, the right-hand sides of (3.6) and (3.7) are smooth on the compact

sets N(0)× [0, T ] and NT , respectively, and thus bounded independently of ε along

their derivatives. From this fact and the inclusion Ωε(t) ⊂ N(t) for each t ∈ [0, T ],

it follows that Ψε and Ψ−1
ε are smooth on Ωε(0) × [0, T ] and Qε,T , respectively,

and that the inequality (3.2) holds with a constant c > 0 independent of ε. In
particular, Ψε(·, t) : Ωε(0)→ Ωε(t) is a diffeomorpfism for each t ∈ [0, T ]. �

Let Ψε and Ψ−1
ε be mappings given by Lemma 3.2. In (3.2), we set

Uε(X, t) := uε(Ψε(X, t), t), W (X, t) := w(Ψε(X, t), t)
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for (X, t) ∈ Ωε(0) × (0, T ). Then, by the change of variables x = Ψε(X, t), we
transform (3.2) into

(3.8)

∫ T

0

{−(Uε(t), Jε(t)∂tW (t))L2 + (Aε(t)∇Uε(t)− Uε(t)Bε(t),∇W (t))L2} dt

− (uε0,W (0))L2 = 0.

Here (·, ·)L2 denotes the inner product of L2(Ωε(0)) and

Jε(X, t) := |det∇Ψε(X, t)| ∈ R,

Aε(X, t) := Jε(X, t)∇Ψ−1
ε (Ψε(X, t), t)[∇Ψ−1

ε (Ψε(X, t), t)]
T ∈ Rn×n,

Bε(X, t) := Jε(X, t)∂tΨ
−1
ε (Ψε(X, t), t) ∈ Rn

for (X, t) ∈ Ωε(0)× (0, T ), where

∇Ψ−1
ε :=

∂1(Ψ−1
ε )1 . . . ∂n(Ψ−1

ε )1

...
. . .

...
∂1(Ψ−1

ε )n . . . ∂n(Ψ−1
ε )n

 for Ψ−1
ε =

(Ψ−1
ε )1

...
(Ψ−1

ε )n


and [∇Ψ−1

ε ]T denotes the transpose matrix of ∇Ψ−1
ε . Since w(T ) = 0 in Ωε(T )

and Ψε(·, 0) is the identity mapping on Ωε(0), we have W (T ) = 0 and Jε(0) = 1 in
Ωε(0). Thus, by integration by parts with respect to t, we further transform (3.8)
into

(3.9)

∫ T

0

{(H1)′〈∂tUε(t), Jε(t)W (t)〉H1 + (Uε(t),W (t)∂tJ
ε(t))L2

+ (Aε(t)∇Uε(t)− Uε(t)Bε(t),∇W (t))L2} dt = 0.

Here (H1)′〈·, ·〉H1 is the duality product between H1(Ωε(0)) and its dual space

(H1(Ωε(0)))′.

Theorem 3.3. For every uε0 ∈ L2(Ωε(0)), there exists a unique function

Uε ∈ L∞(0, T ;L2(Ωε(0))) ∩ L2(0, T ;H1(Ωε(0)))

with ∂tU
ε ∈ L2(0, T ; (H1(Ωε(0)))′)

that satisfies (3.9) for all W ∈ L2(0, T ;H1(Ωε(0))) and Uε(0) = uε0 in L2(Ωε(0)).
Moreover, there exists a constant c > 0 independent of uε0, Uε, and ε such that

sup
t∈(0,T )

‖Uε(t)‖2L2(Ωε(0)) +

∫ T

0

‖∇Uε(t)‖2L2(Ωε(0)) dt ≤ c‖u
ε
0‖2L2(Ωε(0)).(3.10)

Proof. For i, j = 1, . . . , n, let Aεij be the (i, j)-entry of Aε and Bεi be the i-th
component of Bε. Suppose that there is a positive constant C independent of ε
such that

C−1 ≤ Jε(X, t) ≤ C,(3.11)

|∇Jε(X, t)| ≤ C, |∂tJε(X, t)| ≤ C, |Aεij(X, t)| ≤ C, |Bεi (X, t)| ≤ C,(3.12)

Aε(X, t)ζ · ζ ≥ C|ζ|2(3.13)

for all (X, t) ∈ Ωε(0) × (0, T ), ζ ∈ Rn, and i, j = 1, . . . , n. Then the theorem is
proved by a standard Galerkin method and Gronwall argument, see [9, Section 7.1]
for details. In particular, the constant c in (3.10) depends only on the above C and
thus it is independent of ε.
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Let us prove the inequalities (3.11), (3.12), and (3.13). The inequality (3.12)
and the right-hand inequality of (3.11) immediately follow from (3.3). From the
identity ∇Ψ−1

ε (Ψε(X, t), t)∇Ψε(X, t) = In, it follows that

|det∇Ψ−1
ε (Ψε(X, t), t)|Jε(X, t) = 1, [∇Ψε(X, t)]

T [∇Ψ−1
ε (Ψε(X, t), t)]

T = In

for all (X, t) ∈ Ωε(0) × (0, T ). The first equality yields the left-hand inequality of
(3.11) because |det∇Ψ−1

ε | is bounded on Qε,T independently of ε by (3.3). More-
over, the above equality and (3.3) imply that, for all (X, t) ∈ Ωε(0) × (0, T ) and
ζ ∈ Rn,

|ζ|2 = |[∇Ψε(X, t)]
T [∇Ψ−1

ε (Ψε(X, t), t)]
T ζ|2

≤ c|[∇Ψ−1
ε (Ψε(X, t), t)]

T ζ|2

= c{∇Ψ−1
ε (Ψε(X, t), t)[∇Ψ−1

ε (Ψε(X, t), t)]
T ζ} · ζ

= c|det∇Ψ−1
ε (Ψε(X, t), t)|Aε(X, t)ζ · ζ ≤ cAε(X, t)ζ · ζ

with a constant c > 0 independent of ε. Thus (3.13) follows. �

Now we can show the existence and uniqueness of a variational solution to (Hε)
and its energy estimate with a constant independent of ε.

Theorem 3.4. For every uε0 ∈ L2(Ωε(0)), there exists a unique variational solution
uε to (Hε). Moreover, uε satisfies that uε(0) = uε0 in L2(Ωε(0)) and

sup
t∈(0,T )

‖uε(t)‖2L2(Ωε(t)) +

∫ T

0

‖∇uε(t)‖2L2(Ωε(t)) dt ≤ c‖u
ε
0‖2L2(Ωε(0))(3.14)

with a constant c > 0 independent of uε0, uε, and ε.

Proof. For each uε0 ∈ L2(Ωε(0)), let Uε be a unique function given by Theorem 3.3
and we set

uε(x, t) := Uε(Ψ−1
ε (x, t), t), (x, t) ∈ Qε,T .

Since Ψε(·, 0) is the identity mapping on Ωε(0) by Lemma 3.2 and Uε(0) = uε0 in
L2(Ωε(0)) by Theorem 3.3, we have uε(0) = uε0 in L2(Ωε(0)). Let us show that uε

satisfies (3.2) for all w ∈ C1(Qε,T ) with w(T ) = 0 in Ωε(T ). Since Ψε is smooth on

Ωε(0)× [0, T ], a function

W (X, t) := w(Ψε(X, t), t), (X, t) ∈ Ωε(0)× [0, T ]

is in C1(Ωε(0)× [0, T ]) and satisfies W (T ) = 0 in Ωε(0). Hence we can substitute
it for W in (3.9) and integrate by parts with respect to t to get (3.8). By changing
variables X = Ψ−1

ε (x, t) in (3.8), we obtain (3.2).
Next we prove the energy estimate (3.14). By the change of variables x =

Ψε(X, t) we have∫
Ωε(t)

|uε(x, t)|2 dx =

∫
Ωε(0)

|Uε(X, t)|2|det∇Ψε(X, t)| dX

and∫
Ωε(t)

|∇uε(x, t)|2 dx =∫
Ωε(0)

|[∇Ψ−1
ε (Ψε(X, t), t)]

T∇Uε(X, t)|2|det∇Ψε(X, t)| dX
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for all t ∈ [0, T ]. Hence the inequality (3.3) yields

‖uε(t)‖2L2(Ωε(t)) ≤ c‖U
ε(t)‖2L2(Ωε(0)), ‖∇uε(t)‖2L2(Ωε(t)) ≤ c‖∇U

ε(t)‖2L2(Ωε(0))

with a constant c > 0 independent of ε. By this inequality and (3.10), we obtain
(3.14) and thus u ∈ L2

H1(ε). Hence uε is a variational solution to (Hε).

Finally, the uniqueness of a variational solution to (Hε) follows from that of a
function given by Theorem 3.3. The proof is complete. �

Remark 3.5. Let uε be a unique variational solution to (Hε) with initial data
uε0 ∈ L2(Ωε(0)). Then, it immediately follows from (3.14) that

‖uε‖L2
H1(ε)

≤ c‖uε0‖L2(Ωε(0)),(3.15)

where c > 0 is a constant independent of uε0, uε, and ε. We will use this inequality
in Section 6.

4. Basic function spaces on evolving surfaces

In this section, we define and investigate function spaces on the space-time man-
ifold ST introduced by Olshanskii, Reusken and Xu [18]. These spaces will give
an appropriate variational formulation of a limit equation on Γ(t) we will derive in
Section 6. All results in this section are originally obtained in [18] when n = 3. We
shall extend them for general n ≥ 2.

For each fixed T > 0, we define a function space HT and an inner product on
HT as

HT := {v ∈ L2(ST ) | ∇Γ(t)v ∈ L2(ST )},(4.1)

(v1, v2)HT
:=

∫ T

0

∫
Γ(t)

{v1(y, t)v2(y, t) +∇Γ(t)v1(y, t) · ∇Γ(t)v2(y, t)} dHn−1(y) dt.

This inner product induces the norm ‖ · ‖HT
that is equivalent to the one induced

by the inner product
∫
ST
{v1(σ)v2(σ) +∇Γ(t)v1(σ) · ∇Γ(t)v2(σ)} dHn(σ), since the

identity∫ T

0

∫
Γ(t)

f(y, t) dHn−1(y) dt =

∫
ST

f(σ){1 + (VΓ · ν)2}−1/2 dHn(σ)

holds and VΓ is bounded on ST . If T1 < T2, then HT2 is continuously embedded
into HT1 just by restricting elements of HT2 on ST1 .

Next we define an auxiliary space. Let H(Γ0) := {V ∈ L2(Γ0) | ∇Γ0
V ∈ L2(Γ0)}

with the inner product (V1, V2)H1(Γ0) :=
∫

Γ0
(V1V2 +∇Γ0

V1 · ∇Γ0
V2) dHn−1, where

∇Γ0 is the tangential gradient on Γ0. Then we define a Hilbert space ĤT as

ĤT := L2(0, T ;H1(Γ0)), (V1, V2)ĤT
:=

∫ T

0

(V1(t), V2(t))H1(Γ0) dt

and let ‖ · ‖ĤT
denote the norm of ĤT induced by the inner product (·, ·)ĤT

.

For a function V on Γ0 × (0, T ), we define a function v = LV on ST as

v(y, t) := V (Φ−1(y, t), t), (y, t) ∈ ST .(4.2)

Also, for a function v on ST , we define a function V = L−1v on Γ0 × (0, T ) as

V (Y, t) := v(Φ(Y, t), t), (Y, t) ∈ Γ0 × (0, T ).
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Clearly L and L−1 are linear mappings and satisfy L−1(LV ) = V and L(L−1v) = v
for all functions V on Γ0 × (0, T ) and v on ST .

Lemma 4.1. The linear mapping L given by (4.2) defines a homeomorphism be-

tween ĤT and HT .

Proof. Let V be a function on Γ0 × (0, T ) and v := LV . We shall show that there
are constants c1, c2 > 0 independent of V and v such that

c1‖V (t)‖L2(Γ0) ≤ ‖v(t)‖L2(Γ(t)) ≤ c2‖V (t)‖L2(Γ0),(4.3)

c1‖∇Γ0
V (t)‖L2(Γ0) ≤ ‖∇Γ(t)v(t)‖L2(Γ(t)) ≤ c2‖∇Γ0

V (t)‖L2(Γ0)(4.4)

for all t ∈ (0, T ). These inequalities imply that c′1‖V ‖ĤT
≤ ‖v‖HT

≤ c′2‖V ‖ĤT

for some constants c′1, c
′
2 > 0 independent of V and v, which means that L is a

homeomorphism between ĤT and HT .
Since Γ0 is compact, we can take a finite family {Uk}Nk=1 of bounded open sets

of Rn−1 and smooth local parametrizations µk0 : Uk → Γ0, k = 1, . . . , N , such that
{µk0(Uk)}Nk=1 is an open covering of Γ0. For each t ∈ [0, T ], we define mappings
µkt : Uk → Γ(t) as µkt (s) := Φ(µk0(s), t). Then µkt is a smooth local parametrization
of Γ(t) for each k and {µkt (Uk)}Nk=1 is an open covering of Γ(t). Also, let {ψk0}Nk=1 be
a partition of unity of Γ0 subordinate to the covering {µk0(Uk)}Nk=1 and {ψkt }Nk=1 be
a family of functions given by ψkt := ψk0 ◦ µk0 ◦ (µkt )−1. Then {ψkt }Nk=1 is a partition
of unity of Γ(t) subordinate to the covering {µkt (Uk)}Nk=1.

Using these local parametrizations and partitions of unity, it is sufficient for (4.3)
and (4.4) to show that, for each k, there are constants ck1 , c

k
2 > 0 such that

ck1

∫
µk
0 (Qk)

|V (t)|2 dHn−1 ≤
∫
µk
t (Qk)

|v(t)|2 dHn−1 ≤ ck2
∫
µk
0 (Qk)

|V (t)|2 dHn−1(4.5)

and

(4.6) ck1

∫
µk
0 (Qk)

|∇Γ0
V (t)|2 dHn−1 ≤

∫
µk
t (Qk)

|∇Γ(t)v(t)|2 dHn−1

≤ ck2
∫
µk
0 (Qk)

|∇Γ0
V (t)|2 dHn−1

for all t ∈ (0, T ) and all functions V supported in µk0(Qk) × (0, T ). Here Qk ⊂
Rn−1 is a compact subset of Uk such that suppψk0 ⊂ µk0(Qk). Note that in
this case suppψkt ⊂ µkt (Qk) holds for all t ∈ [0, T ] and v = LV is supported in⋃
t∈(0,T ) µ

k
t (Qk)× {t}.

For simplicity, we fix each k = 1, . . . , N and omit it. Let gt = (gt,ij)i,j be a
matrix given by

gt,ij(s) :=
∂µt
∂si

(s) · ∂µt
∂sj

(s), (s, t) ∈ U × [0, T ], i, j = 1, . . . , n− 1,(4.7)

and g−1
t = (gijt )ij be the inverse matrix of gt. By the definition of the integral over

hypersurfaces,∫
µ0(Q)

|V (Y, t)|2 dHn−1 =

∫
Q

|V (µ0(s), t)|2
√

det g0(s) ds,∫
µt(Q)

|v(y, t)|2 dHn−1 =

∫
Q

|v(µt(s), t)|2
√

det gt(s) ds.
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Since
√

det gt(s) is continuous and does not vanish as a function of (s, t) on the
compact set Q× [0, T ], there is a constant c > 0 such that

c−1 ≤
√

det gt(s) ≤ c for all (s, t) ∈ Q× [0, T ].(4.8)

Moreover, by the definition of L and µt,

v(µt(s), t) = V (Φ−1(µt(s), t), t) = V (Φ−1(Φ(µ0(s), t), t), t) = V (µ0(s), t)(4.9)

for all (s, t) ∈ U × [0, T ]. Hence (4.5) follows. Similarly, by (4.8) and the equality∫
µ0(Q)

|∇Γ0
V (Y, t)|2 dHn−1 =

∫
Q

|∇Γ0
V (µ0(s), t)|2

√
det g0(s) ds,∫

µt(Q)

|∇Γ(t)v(y, t)|2 dHn−1 =

∫
Q

|∇Γ(t)v(µt(s), t)|2
√

det gt(s) ds,

it is sufficient for (4.6) to show that there are constants c1, c2 > 0 such that

c1|∇Γ0
V (µ0(s), t)|2 ≤ |∇Γ(t)v(µt(s), t)|2 ≤ c2|∇Γ0

V (µ0(s), t)|2(4.10)

for all (s, t) ∈ Q × [0, T ]. The tangential gradients ∇Γ0V and ∇Γ(t)v are locally
expressed as (see [5, Section 2.1 and Section 2.2] for example)

∇Γ0
V (µ0(s), t) =

n−1∑
i,j=1

gij0 (s)
∂

∂sj
(V (µ0(s), t))

∂µ0

∂si
(s),

∇Γ(t)v(µt(s), t) =

n−1∑
i,j=1

gijt (s)
∂

∂sj
(v(µt(s), t))

∂µt
∂si

(s)

for (s, t) ∈ U × [0, T ] and their Euclidean norms are

|∇Γ0
V (µ0(s), t)|2 =

n−1∑
i,j=1

gij0 (s)
∂

∂si
(V (µ0(s), t))

∂

∂sj
(V (µ0(s), t)),

|∇Γ(t)v(µt(s), t)|2 =

n−1∑
i,j=1

gijt (s)
∂

∂si
(v(µt(s), t))

∂

∂sj
(v(µt(s), t)).

Then, by (4.9), it is sufficient for (4.10) to show that there are constants c1, c2 > 0
such that

c1g
−1
0 (s)a · a ≤ g−1

t (s)a · a ≤ c2g−1
0 (s)a · a(4.11)

for all (s, t, a) ∈ Q× [0, T ]×Rn−1. To this end, we consider a real-valued function

F (s, t, a) := g−1
t (s)a · a, (s, t, a) ∈ Q× [0, T ]× Rn−1.

It is continuous on Q×[0, T ]×Rn−1 and satisfies F (s, t, a) = b·gt(s)b = |B(s, t, b)|2,

where b = (b1, . . . , bn−1) := g−1
t (s)a and B :=

∑n−1
i=1 bi∂µt/∂si(s). Since b 6= 0 for

a 6= 0, it follows that B 6= 0 and thus F (s, t, a) 6= 0 for a 6= 0. In particular, F
is continuous and does not vanish on the compact set Q × [0, T ] × Sn−2, where
Sn−2 is the unit sphere of Rn−1. Hence there is a constant c > 0 such that
c−1 ≤ F (s, t, a) ≤ c for all (s, t, a) ∈ Q× [0, T ]× Sn−2 and thus

c−1|a|2 ≤ g−1
t (s)a · a ≤ c|a|2 for all (s, t, a) ∈ Q× [0, T ]× Rn−1.

This inequality yields (4.11) and thus (4.10) follows. Hence we obtain the inequality
(4.6) and the proof is complete. �
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Let C1
0 (ST ) be the space of all functions in C1(ST ) with compact support in ST .

That is, each function in C1
0 (ST ) vanishes near t = 0 and t = T .

Lemma 4.2. The space HT is a Hilbert space and C1
0 (ST ) is dense in HT .

Proof. Since ĤT is a Hilbert space, Lemma 4.1 implies that HT is a Hilbert space.

Also, since C1
0 (Γ0×(0, T )) is dense in ĤT (see [18, Lemma 3.1]) and C1

0 (ST ) includes
L[C1

0 (Γ0 × (0, T ))], Lemma 4.1 again implies that C1
0 (ST ) is dense in HT . �

The space HT is continuously embedded into L2(ST ). Moreover, HT is dense
in L2(ST ) since it includes a dense subspace C1

0 (ST ) of L2(ST ). Hence we have
continuous and dense embeddings HT ↪→ L2(ST ) ↪→ H ′T , where H ′T is the dual
space of HT .

For v ∈ C1(ST ), we define its (strong) material derivative ∂•v as

∂•v(Φ(Y, t), t) :=
d

dt
(v(Φ(Y, t), t)), (Y, t) ∈ Γ0 × (0, T ).(4.12)

From the Leibniz formula (see [3, Lemma 2.2])

d

dt

∫
Γ(t)

v dHn−1 =

∫
Γ(t)

(∂•v + v divΓ(t)VΓ) dHn−1, v ∈ C1(ST ),

we have the integration by parts identity

(4.13)

∫ T

0

∫
Γ(t)

(v2∂
•v1 + v1∂

•v2 + v1v2 divΓ(t)VΓ) dHn−1 dt

=

∫
Γ(T )

v1(T )v2(T ) dHn−1 −
∫

Γ(0)

v1(0)v2(0) dHn−1

for all v1, v2 ∈ C1(ST ). Based on this identity, we define the weak material deriva-
tive of v ∈ HT as a functional ∂•v such that

〈∂•v, ψ〉T := −
∫ T

0

∫
Γ(t)

(v ∂•ψ + vψ divΓ(t)VΓ) dHn−1 dt, ϕ ∈ C1
0 (ST ).(4.14)

If v ∈ C1(ST ), then its weak material derivative agrees with the strong one. We set

‖∂•v‖HT
:= sup

ϕ∈C1
0 (ST )\{0}

〈∂•v, ϕ〉T
‖ϕ‖HT

, v ∈ HT .

If ‖∂•v‖HT
is finite for some v ∈ HT , then ∂•v can be extended to a bounded linear

functional on HT because C1
0 (ST ) is dense in HT (see Lemma 4.2). In this case, we

say that ∂•v is in H ′T and we define a function space WT and its norm as

WT := {v ∈ HT | ∂•v ∈ H ′T }, ‖v‖WT
:=
(
‖v‖2HT

+ ‖∂•v‖2H′
T

)1/2

.(4.15)

For T1 < T2, the space WT2
is continuously embedded into WT1

since C1
0 (ST1

) ⊂
C1

0 (ST2) and HT2 is continuously embedded into HT1 .
To investigate the property of WT , we define an auxiliary Hilbert space and its

norm as

ŴT := {V ∈ ĤT | ∂tV ∈ Ĥ ′T }, ‖V ‖
ŴT

:=
(
‖V ‖2

ĤT
+ ‖∂tV ‖2Ĥ′

T

)1/2

.
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Here Ĥ ′T is the dual space of ĤT and ∂tV is the weak time derivative of V ∈ ĤT

defined as

[∂tV,Ψ]T := −
∫ T

0

∫
Γ0

V ∂tΨ dHn−1 dt, Ψ ∈ C1
0 (Γ0 × (0, T )),

and we say ∂tV ∈ Ĥ ′T if ‖∂tV ‖Ĥ′
T

:= supΨ∈C1
0 (Γ0×(0,T ))\{0}[∂tV,Ψ]T /‖Ψ‖ĤT

is

finite.

Lemma 4.3. The linear mapping L given by (4.2) defines a homeomorphism be-

tween ŴT and WT .

Proof. (1) As in the proof of Lemma 3.3 in [18], we need certain integral transforma-
tion formulas to prove the lemma. Let U ⊂ Rn−1 be an open set and µ0 : U → Γ0 be
a smooth local parametrization of Γ0. Then, as in the proof of Lemma 4.1, a map-
ping µt : U → Γ(t) given by µt(s) := Φ(µ0(s), t) is a smooth local parametrization
of Γ(t) for each t ∈ [0, T ]. We define functions Λ and λ as

Λ(µ0(s), t) :=

√
det gt(s)

det g0(s)
, λ(µt(s), t) :=

√
det g0(s)

det gt(s)
, (s, t) ∈ U × [0, T ],

where the matrix gt = (gt,ij)ij is given by (4.7). We can show that Λ(µ0(s), t) and
λ(µt(s), t) = λ(Φ(µ0(s), t), t) are independent of the choice of a local parametriza-
tion µ0. From this fact and the smoothness assumption on Φ, the functions Λ
and λ are well-defined and smooth on the compact manifolds Γ0 × [0, T ] and ST ,
respectively. In particular, they are bounded on Γ0× [0, T ] and ST along with their
derivatives.

Using these functions, the local parametrizations µkt : Uk → Γ(t) and the parti-
tion of unity {ψkt }Nk=1 of Γ(t) subordinate to the covering {µkt (Uk)}Nk=1 given in the
proof in Lemma 4.1, we obtain integral transformation formulas∫

Γ(t)

v(y, t) dHn−1 =

∫
Γ0

V (Y, t)Λ(Y, t) dHn−1,(4.16) ∫
Γ0

V (Y, t) dHn−1 =

∫
Γ(t)

v(y, t)λ(y, t) dHn−1(4.17)

for all functions V on Γ0 × (0, T ) and all t ∈ (0, T ), where v := LV .

(2) Now let us prove the lemma. Let V ∈ ŴT and v := LV . Then Lemma
4.1 implies that v ∈ HT and ‖v‖HT

≤ c‖V ‖ĤT
. For every ψ ∈ C1

0 (ST ), we have

Ψ := L−1ψ ∈ C1
0 (Γ0×(0, T )) and ∂•ψ(y, t) = ∂tΨ(Y, t) for y = Φ(Y, t). Thus (4.16)

yields

〈∂•v, ψ〉T = −
∫ T

0

∫
Γ(t)

(v ∂•ψ + vψ divΓ(t)VΓ) dHn−1 dt

= −
∫ T

0

∫
Γ0

(V ∂tΨ + VΨF )Λ dHn−1 dt,

where F := L−1(divΓ(t)VΓ) ∈ C∞(Γ0 × [0, T ]). Since ΨΛ ∈ C1
0 (Γ0 × (0, T )),

−
∫ T

0

∫
Γ0

V Λ ∂tΨ dHn−1 dt = [∂tV,ΨΛ]T +

∫ T

0

∫
Γ0

VΨ ∂tΛ dHn−1 dt
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by the definition of the weak time derivative ∂tV . Thus it follows that

|〈∂•v, ψ〉T | =

∣∣∣∣∣[∂tV,ΨΛ]T +

∫ T

0

∫
Γ0

(VΨ ∂tΛ− VΨΛF ) dHn−1 dt

∣∣∣∣∣
≤ c(‖∂tV ‖Ĥ′

T
‖ΨΛ‖ĤT

+ ‖V ‖ĤT
‖Ψ‖ĤT

) ≤ c‖V ‖
ŴT
‖ψ‖HT

with a constant c > 0 independent of V and ψ, because F and Λ are bounded
on Γ0 × (0, T ) along with their derivatives. Hence we have v = LV ∈ WT and

‖v‖WT
≤ c‖V ‖

ŴT
for all V ∈ ŴT .

Similarly, by (4.17) and the smoothness of λ on ST we can show that V := L−1v

is in ŴT and ‖V ‖
ŴT
≤ c‖v‖WT

holds for all v ∈WT . Hence L is a homeomorphism

between ŴT and WT . �

Lemma 4.4. The space WT is a Hilbert space and C1(ST ) is dense in WT . More-
over, the trace operator v 7→ v(t) from C1(ST ) into L2(Γ(t)) for each t ∈ [0, T ] can
be extended to a bounded linear operator from WT to L2(Γ(t)) and there exists a
constant c > 0 such that

max
t∈[0,T ]

‖v(t)‖L2(Γ(t)) ≤ c‖v‖WT

for all v ∈WT .

Proof. Since ŴT is a Hilbert space, Lemma 4.3 implies that WT is a Hilbert space.
For the rest of the proof, see [18, Theorem 3.6]. �

Finally we show an integration by parts formula which we will use in Section 6.

Lemma 4.5. For all v1, v2 ∈WT , we have

(4.18) 〈∂•v1, v2〉T + 〈∂•v2, v1〉T +

∫ T

0

∫
Γ(t)

v1v2 divΓ(t)VΓ dHn−1 dt

=

∫
Γ(T )

v1(T )v2(T ) dHn−1 −
∫

Γ0

v1(0)v2(0) dHn−1.

Note that, by Lemma 4.4, vi(0) and vi(T ), i = 1, 2, are well-defined as functions
in L2(Γ0) and L2(Γ(T )), respectively.

Proof. For v ∈ C1(ST ), its weak material derivative agrees with the strong one.
Thus we have

〈∂•v, ψ〉T =

∫ T

0

∫
Γ(t)

(∂•v)ψ dHn−1 dt, ϕ ∈ C1
0 (ST ).

Moreover, since C1
0 (ST ) is dense in HT (see Lemma 4.2), the above equality holds

for all ψ ∈ HT and thus (4.18) follows from (4.13) when v1, v2 ∈ C1(ST ). Since
C1(ST ) is dense in WT (see Lemma 4.3), the density argument shows that (4.18)
holds for general v1, v2 ∈WT . �
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5. Average operator

5.1. Definition and basic properties of the average operator. For (y, t) ∈
ST , let κ1(y, t), . . . , κn−1(y, t) be the principal curvatures of Γ(t) at y (see [10,
Section 14.6]). Since ST is smooth and compact, κ1, . . . , κn−1 are smooth and
bounded along their derivatives on ST . We define a function J on ST × (−δ, δ) as

J(y, t, ρ) :=

n−1∏
i=1

{1− ρκi(y, t)}, (y, t) ∈ ST , ρ ∈ (−δ, δ).

Here δ > 0 is a half of the width of the tubular neighborhood N(t) of Γ(t), which
is independent of t ∈ [0, T ] (see Section 2). Since κ1, . . . , κn−1 are smooth on ST ,
the function J is smooth on ST × (−δ, δ). By taking δ sufficiently small, we may
assume that there is a constant c > 0 such that

c−1 ≤ 1− ρκi(y, t) ≤ c for all (y, t) ∈ ST , ρ ∈ (−δ, δ), i = 1, . . . , n− 1,(5.1)

and thus

c−1 ≤ J(y, t, ρ) ≤ c for all (y, t) ∈ ST , ρ ∈ (−δ, δ).(5.2)

Moreover, since J(y, t, ρ) is of the form

J(y, t, ρ) = 1 + ρ

n−1∑
i=1

κi(y, t) + ρ2P (κ1(y, t), . . . , κn−1(y, t), ρ),

where P (z) is a polynomial in z = (z1, . . . , zn) ∈ Rn, it follows that

|1− J(y, t, ρ)| ≤ cε, |∇Γ(t)J(y, t, ρ)| ≤ cε,
∣∣∣∣∂J∂ρ (y, t, ρ)

∣∣∣∣ ≤ c(5.3)

for all (y, t) ∈ ST and ρ ∈ (εg0(y, t), εg1(y, t)) with a constant c > 0 independent of
ε. Using the function J , we have the co-area formula of the form (see [10, Section
14.6]) ∫

Ωε(t)

u(x) dx =

∫
Γ(t)

∫ εg1(y,t)

εg0(y,t)

u(y + ρν(y, t))J(y, t, ρ) dρ dHn−1(5.4)

for a function u on Ωε(t) with each fixed t ∈ [0, T ]. Based on this formula, we define
a weighted average operator Mε as follows.

Definition 5.1. For a function u on Qε,T , we define its weighted average Mεu as

Mεu(y, t) :=
1

εg(y, t)

∫ εg1(y,t)

εg0(y,t)

u(y + ρν(y, t), t)J(y, t, ρ) dρ, (y, t) ∈ ST .(5.5)

We use the same notation Mεu for the average of a function u on Ωε(t) with each
fixed t ∈ [0, T ].

For simplicity, we identify a function u on Qε,T with a function u given by

u(y, t, ρ) := u(y + ρν(y, t), t), (y, t) ∈ ST , ρ ∈ (εg0(y, t), εg1(y, t))

and use similar identification for functions on Ωε(t) with each fixed t ∈ [0, T ].
Moreover, we omit variables unless we need to specify them. For example, the
co-area formula (5.4) is referred to as∫

Ωε(t)

u dx =

∫
Γ(t)

∫ εg1

εg0

uJ dρ dHn−1.
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Throughout the rest of this subsection and the next subsection, we fix an arbitrary
t ∈ [0, T ] and omit it. For example, we refer to Γ(t) as Γ. Also, let c denote a
general constant independent of t.

Lemma 5.2. If v ∈ L2(Γ), then its extension v to the normal direction of Γ is in
L2(Ωε) and

‖v‖L2(Ωε) ≤ cε1/2‖v‖L2(Γ)(5.6)

with a constant c > 0 independent of ε.

Proof. By the co-area formula (5.4) and (5.2),

‖v‖L2(Ωε) =

(∫
Γ

∫ εg0

εg1

|v|2J dρ dHn−1

)1/2

≤ c
(∫

Γ

εg|v|2 dHn−1

)1/2

≤ cε1/2‖v‖L2(Γ). �

Lemma 5.3. If u ∈ L2(Ωε), then Mεu ∈ L2(Γ) and

‖Mεu‖L2(Γ) ≤ cε−1/2‖u‖L2(Ωε)(5.7)

with a constant c > 0 independent of ε.

Proof. By Hölder’s inequality, (5.2), (2.1), and the co-area formula (5.4),∫
Γ

|Mεu|2 dHn−1 ≤
∫

Γ

(εg)−2

(∫ εg1

εg0

J dρ

)(∫ εg1

εg0

|u|2J dρ
)
dHn−1

≤ c
∫

Γ

(εg)−1

∫ εg1

εg0

|u|2J dρ dHn−1 ≤ cε−1

∫
Ωε

|u|2 dx.

Thus (5.7) follows. �

Lemma 5.4. There exists a constant c > 0 independent of ε such that∥∥∥u−Mεu
∥∥∥
L2(Ωε)

≤ cε‖u‖H1(Ωε)(5.8)

for all u ∈ H1(Ωε).

Proof. For y ∈ Γ and ρ ∈ (εg0(y), εg1(y)), we set

I1(y, ρ) =
1

εg(y)

∫ εg1(y)

εg0(y)

{u(y, ρ)− u(y, r)} dr,

I2(y) =
1

εg(y)

∫ εg1(y)

εg0(y)

u(y, r){1− J(y, r)} dr.

Then we have u(y, ρ)−Mεu(y) = I1(y, ρ) + I2(y). Let us estimate I1 and I2. Since

|u(y, ρ)− u(y, r)| =
∣∣∣∣∫ ρ

r

d

dη
(u(y + ην(y))) dη

∣∣∣∣
=

∣∣∣∣∫ ρ

r

ν(y) · ∇u(y + ην(y)) dη

∣∣∣∣ ≤ ∫ εg1(y)

εg0(y)

|∇u(y, η)| dη
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for all ρ, r ∈ (εg0(y), εg1(y)) and the right-hand side of the above inequality is
independent of r,

|I1(y, ρ)| ≤
∫ εg1(y)

εg0(y)

|∇u(y, η)| dη.

On the other hand, by (2.1) and (5.3) we have

|I2(y)| ≤ c
∫ εg1(y)

εg0(y)

|u(y, r)| dr.

These inequalities and Hölder’s inequality yield

|u(y, ρ)−Mεu(y)| ≤ |I1(y, ρ)|+ |I2(y)| ≤ c
∫ εg1(y)

εg0(y)

(|u(y, r)|+ |∇u(y, r)|) dr

≤ c

(
εg(y)

∫ εg1(y)

εg0(y)

(|u(y, r)|2 + |∇u(y, r)|2) dr

)1/2

.

Here the last term is independent of ρ. Hence by the co-area formula (5.4) and
(5.2) we obtain∥∥∥u−Mεu

∥∥∥2

L2(Ωε)
=

∫
Γ

∫ εg1(y)

εg0(y)

|u(y, ρ)−Mεu(y)|2J(y, ρ) dρ dHn−1

≤ c
∫

Γ

{εg(y)}2
∫ εg1(y)

εg0(y)

(|u(y, r)|2 + |∇u(y, r)|2) dr dHn−1

≤ cε2

∫
Γ

∫ εg1(y)

εg0(y)

(|u(y, r)|2 + |∇u(y, r)|2)J(y, r) dρ dHn−1

= cε2‖u‖2H1(Ωε).

Thus (5.8) follows. �

5.2. Tangential gradients of the average operator. Let µ : U → Γ be a local
parametrization of Γ with an open set U in Rn−1. We set

g(s) = (gij(s))i,j :=

(
∂µ

∂si
(s) · ∂µ

∂sj
(s)

)
i,j

, s ∈ U.

Then, the tangential gradient of a function v on Γ is locally expressed as

∇Γv(y) =

n−1∑
i,j=1

gij(s)
∂ṽ

∂sj
(s)

∂µ

∂si
(s), y = µ(s) ∈ µ(U),(5.9)

where ṽ(s) := v(µ(s)) and g−1 = (gij)i,j denotes the inverse matrix of g. Also,
we define a mapping M : U × (−δ, δ) → N as M(s, ρ) := µ(s) + ρν(µ(s)) for
(s, ρ) ∈ U × (−δ, δ) and set

G(s, ρ) = (Gij(s, ρ))i,j :=

(
∂M

∂si
(s, ρ) · ∂M

∂sj
(s, ρ)

)
i,j

, (s, ρ) ∈ U × (−δ, δ),
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where sn := ρ. Then the gradient (in Rn) of a function u on N is locally expressed
as

(5.10) ∇u(x) =

n∑
i,j=1

Gij(s, ρ)
∂ũ

∂sj
(s, ρ)

∂M

∂si
(s, ρ),

x = M(s, ρ) ∈M(U × (−δ, δ)),

where ũ(s, ρ) := u(M(s, ρ)) and G−1 = (Gij)i,j is the inverse matrix of G.
Let v be a function on Γ and v be its extension to the normal direction of Γ.

Then, their local representations ṽ := v ◦ µ and ṽ := v ◦M satisfy

ṽ(s, ρ) = v(p(M(s, ρ))) = v(µ(s)) = ṽ(s), (s, ρ) ∈ U × (−δ, δ).
Hereafter we use this fact without mention.

Lemma 5.5. If v ∈ H1(Γ), then v ∈ H1(Ωε) and

‖∇v‖L2(Ωε) ≤ cε1/2‖∇Γv‖L2(Γ),
∥∥∥∇v −∇Γv

∥∥∥
L2(Ωε)

≤ cε3/2‖∇Γv‖L2(Γ)(5.11)

with a constant c > 0 independent of ε.

Proof. Suppose that for all y ∈ Γ and ρ ∈ (εg0(y), εg1(y)) we have

|∇v(y, ρ)| ≤ c|∇Γv(y)|, |∇v(y, ρ)−∇Γv(y)| ≤ cε|∇Γv(y)|.(5.12)

Then (5.11) follows from the co-area formula (5.4) and (5.2), (5.12) as in the proof
of Lemma 5.2. Let us show (5.12). We fix each y ∈ Γ and set κi := κi(y) for
i = 1, . . . , n − 1. By a translation and rotation of coordinates, we may assume
y = 0 and take a local parametrization µ : U → Γ of the form µ(s) = (s, f(s)),
where U is an open set in Rn−1 containing the origin and f : U → R is a smooth
function satisfying

f(0) = 0, ∇′f(0) = 0, (∇′)2f(0) = diag[κ1, . . . , κn−1],(5.13)

see [10, Section 14.6]. Here ∇′f is the gradient of f with respect to s ∈ Rn−1 and
(∇′)2f is the Hessian matrix of f . In this case, we have ν(y) = ν(µ(0)) = en and

∂µ

∂si
(0) = ei,

∂

∂si

(
ν(µ(s))

)∣∣∣
s=0

= −κiei, i = 1, . . . , n− 1,(5.14)

where {ei}ni=1 is the standard basis of Rn. Moreover, the above equality yields

∂M

∂si
(0, ρ) = (1− ρκi)ei, i = 1, . . . , n− 1,

∂M

∂ρ
(0, ρ) = ν(µ(0)) = en.(5.15)

Hence we have g(0) = In, G(0, ρ) = diag[1− ρκ1, . . . , 1− ρκn−1, 1], and

g−1(0) = In, G−1(0, ρ) = diag[(1− ρκ1)−1, . . . , (1− ρκn−1)−1, 1].(5.16)

Applying (5.14), (5.15) and (5.16) to (5.9) and (5.10) with u = v, we obtain

∇Γv(y) =

n−1∑
i=1

∂ṽ

∂si
(0)ei, ∇v(y, ρ) =

n−1∑
i−1

(1− ρκi)−1 ∂ṽ

∂si
(0)ei

and thus (5.1) implies that

|∇v(y, ρ)|2 =

n−1∑
i=1

(1− ρκi)−2

(
∂ṽ

∂si
(0)

)2

≤ c
n−1∑
i=1

(
∂ṽ

∂si
(0)

)2

= |∇Γv(y)|2
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with a constant c > 0 independent of y, ρ, and ε. Moreover, by (5.1) we have

|(1− ρκi)−1 − 1| =
∣∣∣∣∫ ρ

0

d

dr

(
(1− rκi)−1

)
dr

∣∣∣∣
≤ ε|κi| max

k=0,1
|gk(y)| sup

r∈(−δ,δ)
|1− rκi|−2 ≤ cε

for all ρ ∈ (εg0(y), εg1(y)) and i = 1, . . . , n− 1 with a constant c > 0 independent
of y, ε and thus

|∇ϕ(y, ρ)−∇Γϕ(y)|2 =

n−1∑
i=1

{(1− ρκi)−1 − 1}2
(
∂ṽ

∂si
(0)

)2

≤ cε2|∇Γϕ(y)|2.

Hence (5.12) follows and the proof is complete. �

Let u be a function on Ωε and Mεu be its wighted average. For an open set
U ⊂ Rn−1 and a local parametrization µ : U → Γ, the local representation of Mεu
is given by

M̃εu(s) =
1

εg̃(s)

∫ εg̃1(s)

εg̃0(s)

ũ(s, ρ)J̃(s, ρ) dρ, s ∈ U,(5.17)

where M̃εu(s) = Mεu(µ(s)), ũ(s, ρ) = u(M(s, ρ)), and

J̃(s, ρ) := J(µ(s), ρ) =

n−1∏
i=1

{1− ρκi(µ(s))}.(5.18)

Let us calculate the derivatives of M̃εu.

Lemma 5.6. Let u ∈ H1(Ωε). Then

(5.19)
∂M̃εu

∂si
(s) =

1

εg̃(s)

∫ εg̃1(s)

εg̃0(s)

{
∂ũ

∂si
(s, ρ)J̃(s, ρ) + ũ(s, ρ)

∂J̃

∂si
(s, ρ)

}
dρ

+
1

εg̃(s)

∫ εg̃1(s)

εg̃0(s)

{
∂ũ

∂ρ
(s, ρ)J̃(s, ρ) + ũ(s, ρ)

∂J̃

∂ρ
(s, ρ)

}
χi(s, ρ) dρ

for all s ∈ U and i = 1, . . . , n− 1, where

χi(s, ρ) :=
1

g̃(s)

{
(ρ− εg̃0(s))

∂g̃1

∂si
(s) + (εg̃1(s)− ρ)

∂g̃0

∂si
(s)

}
.(5.20)

Proof. For simplicity, we set ∂i = ∂/∂si and ∂ρ = ∂/∂ρ. For each i = 1, . . . , n− 1,
we differentiate both sides of (5.17) with respect to si to get

∂iM̃εu =
I

εg̃
− ∂ig̃

ε(g̃)2

∫ εg̃1

εg̃0

ũJ̃ dρ+
1

εg̃

∫ εg̃1

εg̃0

{(∂iũ)J̃ + ũ(∂iJ̃)} dρ,(5.21)

where I = I(s) is given by

I(s) := ε∂ig̃1(s)ũ(s, εg̃1(s))J̃(s, εg̃1(s))− ε∂ig̃0(s)ũ(s, εg̃0(s))J̃(s, εg̃0(s)).

Since I =
[
ũ(ρ)J̃(ρ)χi(ρ)

]εg̃1
ρ=εg̃0

=
∫ εg̃1
εg̃0

∂ρ(ũJ̃χi) dρ and ∂ρχi = ∂ig̃/g̃, we have

I

εg̃
=

∂ig̃

ε(g̃)2

∫ εg̃1

εg̃0

ũJ̃ dρ+
1

εg̃

∫ εg̃1

εg̃0

{(∂ρũ)J̃ + ũ(∂ρJ̃)}χi dρ.(5.22)

Substituting (5.22) for (5.21), we obtain (5.19). �
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Using the above lemma, we approximate an H1-bilinear form on Ωε by that on
Γ with the tangential gradient of the average operator.

Lemma 5.7. For u ∈ C∞(Ωε) ∩H1(Ωε) and ϕ ∈ H1(Γ), let

I1
ε (u, ϕ) :=

∫
Ωε

∇u · ∇ϕdx− ε
∫

Γ

g∇ΓMεu · ∇ΓϕdHn−1.(5.23)

Then, there exists a constant c > 0 independent of u, ϕ and ε such that

|I1
ε (u, ϕ)| ≤ cε3/2‖u‖H1(Ωε)‖∇Γϕ‖L2(Γ).(5.24)

Remark 5.8. The bilinear form I1
ε (u, ϕ) is well-defined for u ∈ C∞(Ωε)∩H1(Ωε)

and ϕ ∈ H1(Γ), since ϕ ∈ H1(Ωε) by Lemma 5.5 and Mεu is smooth on Γ and
thus in H1(Γ) by the compactness of Γ. We will observe later that I1

ε (u, ϕ) is
well-defined and (5.24) holds for all u ∈ H1(Ωε) and ϕ ∈ H1(Γ), see Remark 5.10.

Proof. As in the proof of Lemma 5.6, we set ∂i = ∂/∂si and ∂ρ = ∂/∂ρ. For y ∈ Γ,
we set

I(y) :=

∫ εg1(y)

εg0(y)

∇u(y, ρ) · ∇ϕ(y, ρ)J(y, ρ) dρ− εg(y)∇ΓMεu(y) · ∇Γϕ(y).

Suppose that there is a constant c > 0 independent of ε such that

|I(y)| ≤ cε|∇Γϕ(y)|
∫ εg1(y)

εg0(y)

(|u(y, ρ)|+ |∇u(y, ρ)|) dρ(5.25)

for all y ∈ Γ. Then, by the co-area formula (5.4), (5.25), Hölder’s inequality, and
(5.2) we have

|I1
ε (u, ϕ)| =

∣∣∣∣∫
Γ

I(y) dHn−1

∣∣∣∣ ≤ cε ∫
Γ

|∇Γϕ|
∫ εg1

εg0

(|u|+ |∇u|) dρ dHn−1

≤ cε
(∫

Γ

|∇Γϕ|2 dHn−1

)1/2{∫
Γ

(∫ εg1

εg0

(|u|+ |∇u|) dρ
)2

dHn−1

}1/2

≤ cε‖∇Γϕ‖L2(Γ)

(∫
Γ

εg

∫ εg1

εg0

(|u|2 + |∇u|2)J dρ dHn−1

)1/2

≤ cε3/2‖∇Γϕ‖L2(Γ)‖u‖H1(Ωε).

Thus (5.24) holds. Let us prove (5.25). As in the proof of Lemma 5.5, we fix each
y ∈ Γ. By a translation and rotation of coordinates, we may assume y = 0 and
take a local parametrization µ : U → Γ of the form µ(s) = (s, f(s)) with an open
set U ⊂ Rn−1 containing the origin and a smooth function f : U → R satisfying
(5.13). Then, by (5.14), (5.15), and (5.16) we have

∇u(y, ρ) =

n−1∑
i=1

(1− ρκi)−1∂iũ(0, ρ)ei + ∂ρũ(0, ρ)en,

∇ΓMεu(y) =

n−1∑
i=1

∂iM̃εu(0)ei,

∇ϕ(y, ρ) =

n−1∑
i=1

(1− ρκi)−1∂iϕ̃(0)ei, ∇Γϕ(y) =

n−1∑
i=1

∂iϕ̃(0)ei,
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where {ei}ni=1 is the standard basis of Rn and κi := κi(y), i = 1, . . . , n−1. Hereafter
we omit the variables ρ and s = 0 unless we need to specify them. The above
equality yields

∇u(y, ρ) · ∇ϕ(y, ρ) =

n−1∑
i=1

(1− ρκi)−2∂iũ ∂iϕ̃,(5.26)

εg(y)∇ΓMεu(y) · ∇Γϕ(y) =

n−1∑
i=1

εg̃
(
∂iM̃εu

)
∂iϕ̃.

Moreover, (5.19) implies that

εg̃
(
∂iM̃εu

)
=

∫ εg̃1

εg̃0

{(∂iũ)J̃ + ũ(∂iJ̃) + (∂ρũ)J̃χi + ũ(∂ρJ̃)χi} dρ,

where χi is given by (5.20), and thus

εg(y)∇ΓMεu(y) · ∇Γϕ(y) =

∫ εg̃1

εg̃0

J̃

n−1∑
i=1

∂iũ ∂iϕ̃ dρ

+

∫ εg̃1

εg̃0

ũ

n−1∑
i=1

∂iJ̃ ∂iϕ̃ dρ+

∫ εg̃1

εg̃0

{(∂ρũ)J̃ + ũ(∂ρJ̃)}
n−1∑
i=1

χi ∂iϕ̃ dρ.

From this equality and (5.26), we obtain I(y) = I1 + I2 + I3 with

I1 =

∫ εg̃1

εg̃0

J̃

n−1∑
i=1

{(1− ρκi)−2 − 1}∂iũ ∂iϕ̃ dρ,

I2 =

∫ εg̃1

εg̃0

ũ

n−1∑
i=1

∂iJ̃ ∂iϕ̃ dρ, I3 =

∫ εg̃1

εg̃0

{(∂ρũ)J̃ + ũ(∂ρJ̃)}
n−1∑
i=1

χi ∂iϕ̃ dρ.

Let us estimate these integrals. By the definition of J̃ (see (5.18)), we have

∇ΓJ(y, ρ) =

n−1∑
i=1

∂iJ̃(0, ρ)ei,

n−1∑
i=1

∂iJ̃(0, ρ)∂iϕ̃(0) = ∇ΓJ(y, ρ) · ∇Γϕ(y).

Hence I2 is of the form

I2 =

∫ εg1(y)

εg0(y)

u(y, ρ)∇ΓJ(y, ρ) · ∇Γϕ(y) dρ

and by applying (5.3) to the right-hand side we obtain

|I2| ≤ cε|∇Γϕ(y)|
∫ εg1(y)

εg0(y)

|u(y, ρ)| dρ.(5.27)

Next we estimate I3. By the definition of ũ, J̃ , and χi (see (5.18) and (5.20)),

∂ρũ(0, ρ) = ν(y) · ∇u(y, ρ), ∂ρJ̃(0, ρ) = ∂ρJ(y, ρ),

n−1∑
i=1

χi(0, ρ)∂iϕ̃(0) =
1

g(y)
{(ρ− εg0(y))∇Γg1(y) + (εg1(y)− ρ)∇Γg0(y)} · ∇Γϕ(y).
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Hence I3 is of the form

I3 =

∫ εg1(y)

εg0(y)

χε(y, ρ) · ∇Γϕ(y){ν(y) · ∇u(y, ρ)J(y, ρ) + u(y, ρ)∂ρJ(y, ρ)} dρ,

where χε(y, ρ) := {(ρ− εg0(y))∇Γg1(y) + (εg1(y)− ρ)∇Γg0(y)}/g(y). Since ∇Γg0,
∇Γg1 are bounded and g1 − g0 = g, there is a constant c > 0 independent of y and
ε such that

|χε(y, ρ)| ≤ |∇Γg0(y)|+ |∇Γg1(y)|
g(y)

{(ρ− εg0(y)) + (εg1(y)− ρ)} ≤ cε

for all ρ ∈ (εg0(y), εg1(y)). From this inequality and (5.2), (5.3), we obtain

|I3| ≤ cε|∇Γϕ(y)|
∫ εg1(y)

εg0(y)

(|u(y, ρ)|+ |∇u(y, ρ)|) dρ.(5.28)

Let us estimate I1. For all ρ ∈ (εg0(y), εg1(y)) and i = 1, . . . , n− 1, we have

|(1− ρκi)−2 − 1| =
∣∣∣∣∫ ρ

0

d

dr
((1− rκi)−2) dr

∣∣∣∣
≤ 2ε|κi| max

k=0,1
|gk(y)| sup

r∈(−δ,δ)
|1− rκi|−3 ≤ cε

with a constant c > 0 independent of y and ε. Here the last inequality follows from
(5.1). This inequality together with Hölder’s inequality and (5.1) implies that∣∣∣∣∣

n−1∑
i=1

{(1− ρκi)−2 − 1}∂iũ ∂iϕ̃

∣∣∣∣∣ ≤ cε
(
n−1∑
i=1

(∂iũ)2

)1/2(n−1∑
i=1

(∂iϕ̃)2

)1/2

≤ cε

(
n−1∑
i=1

(1− ρκi)−2(∂iũ)2

)1/2(n−1∑
i=1

(∂iϕ̃)2

)1/2

≤ cε|∇u(y, ρ)||∇Γϕ(y)|

with some constant c > 0 independent of y, ρ, and ε. Hence we obtain

|I1| ≤ cε|∇Γϕ(y)|
∫ εg1(y)

εg0(y)

|∇u(y, ρ)|J dρ(5.29)

≤ cε|∇Γϕ(y)|
∫ εg1(y)

εg0(y)

|∇u(y, ρ)| dρ,

where we used (5.2) in the second inequality. Finally, the inequality (5.25) follows
from (5.27), (5.28), and (5.29). The proof is complete. �

The above lemma gives an estimate for the L2(Γ)-norm of ∇ΓMεu.

Lemma 5.9. If u ∈ H1(Ωε), then Mεu ∈ H1(Γ) and

‖∇ΓMεu‖L2(Γ) ≤ cε−1/2‖u‖H1(Ωε)(5.30)

with a constant c > 0 independent of ε.

Proof. First, we show (5.30) for all u ∈ C∞(Ωε) ∩H1(Ωε). For such u, its average
Mεu is smooth on Γ and thus in H1(Γ) by the compactness of Γ. We substitute
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Mεu for ϕ in (5.23), (5.24) to get∫
Γ

g|∇ΓMεu|2 dHn−1 = ε−1

(∫
Ωε

∇u · ∇Mεu dx− I1
ε (u,Mεu)

)
,

|I1
ε (u,Mεu)| ≤ cε3/2‖u‖H1(Ωε)‖∇ΓMεu‖L2(Γ).

Hence, by (2.1), Hölder’s inequality and (5.11) we obtain

‖∇ΓMεu‖2L2(Γ) ≤
∫

Γ

g|∇ΓMεu|2 dHn−1

≤ ε−1

(
‖∇u‖L2(Ωε)

∥∥∥∇Mεu
∥∥∥
L2(Ωε)

+ |I1
ε (u,Mεu)|

)
≤ cε−1(ε1/2 + ε3/2)‖u‖H1(Ωε)‖∇ΓMεu‖L2(Γ)

≤ cε−1/2‖u‖H1(Ωε)‖∇ΓMεu‖L2(Γ)

and thus (5.30) follows when u ∈ C∞(Ωε)∩H1(Ωε). Since Ωε is bounded, C∞(Ωε)∩
H1(Ωε) is dense in H1(Ωε), see [9, Section 5.3.2] for the proof. Hence the density
argument together with Lemma 5.3 yields that Mεu ∈ H1(Γ) and (5.30) holds for
all u ∈ H1(Ωε). �

Remark 5.10. By Lemma 5.5 and Lemma 5.9, the bilinear form I1
ε (u, ϕ) given

by (5.23) is well-defined for all u ∈ H1(Ωε) and ϕ ∈ H1(Γ). Moreover, since
C∞(Ωε) ∩ H1(Ωε) is dense in H1(Ωε), the density argument implies that (5.24)
also holds for all u ∈ H1(Ωε) and ϕ ∈ H1(Γ).

5.3. Material derivatives of the average operator. Now let us return to the
evolving surface Γ(t). Recall the function spaces L2

H1(ε) and HT given by (3.1) and

(4.1), respectively. By the results in the previous two subsections, we can show
that the average operator Mε defines a bounded linear operator from LH1(ε) into
HT .

Lemma 5.11. If u ∈ L2
H1(ε), then Mεu ∈ HT and

‖Mεu‖HT
≤ cε−1/2‖u‖L2

H1(ε)
(5.31)

with a constant c > 0 independent of ε.

Proof. Let u ∈ L2
H1(ε). By (5.7) and (5.30), there is a constant independent of ε

such that

‖Mεu(t)‖L2(Γ(t)) ≤ cε−1/2‖u(t)‖L2(Ωε(t)),

‖∇Γ(t)Mεu(t)‖L2(Γ(t)) ≤ cε−1/2‖u(t)‖H1(Ωε(t))

for all t ∈ (0, T ). Hence (5.31) follows. �

By the above lemma, we can consider the weak material derivative of Mεu ∈ HT

for u ∈ L2
H1(ε).

Lemma 5.12. Let ϕ ∈ C1(ST ) and ϕ be its extension to the normal direction of
Γ(t). Then

∂•ϕ(p(x, t), t) = ∂tϕ(x, t) + {VΓ(p(x, t), t) + a(x, t)} · ∇ϕ(x, t)(5.32)
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holds for all (x, t) ∈ NT with a vector field a : NT → Rn given by

a(x, t) := d(x, t){∂tν(p(x, t), t) +∇ν(p(x, t), t)VΓ(p(x, t), t)}.(5.33)

Here ∇ν := (∂νi/∂xj)i,j is the gradient matrix of ν.

Proof. We define a mapping Ψ as

Ψ(X, t) := Φ(p(X, 0), t) + d(X, 0)ν(Φ(p(X, 0), t), t)(5.34)

for (X, t) ∈ N(0) × (0, T ). For each t ∈ [0, T ], since every x ∈ N(t) is represented
as x = y + ρν(y, t) with unique y = p(x, t) ∈ Γ(t) and ρ = d(x, t) ∈ (−δ, δ),
where δ > 0 is a constant independent of t, the mapping Ψ(·, t) : N(0)→ N(t) is a
bijection whose inverse Φ−1(·, t) : N(t)→ N(0) is given by

Ψ−1(x, t) := Φ−1(p(x, t), t) + d(x, t)ν(Φ−1(p(x, t), t), 0), (x, t) ∈ NT .(5.35)

Let ϕ ∈ C1(ST ). Then it follows from (5.34) and the definition of ϕ that

ϕ(Ψ(X, t), t) = ϕ(p(Ψ(X, t), t), t) = ϕ(Φ(p(X, 0), t), t), (X, t) ∈ N(0)× (0, T ).

We differentiate both sides of the above equality with respect to t. By the definition
of the material derivative of ϕ ∈ C1(ST ) (see (4.12)), we have

d

dt
(ϕ(Φ(p(X, 0), t), t)) = ∂•ϕ(Φ(p(X, 0), t), t).

On the other hand, from (5.34) we have ∂tΨ(X, t) = ∂tΦ(p(X, 0), t)+A(X, t), where

A(X, t) := d(X, 0){∂tν(Φ(p(X, 0), t), t) +∇ν(Φ(p(X, 0), t), t)∂tΦ(p(X, 0), t)}.
Hence we obtain

∂•ϕ(Φ(p(X, 0), t), t) =

∂tϕ(Ψ(X, t), t) + {∂tΦ(p(X, 0), t) +A(X, t)} · ∇ϕ(Ψ(X, t), t).

Moreover, since Φ(p(X, 0), t) = p(Ψ(X, t), t) for all (X, t) ∈ N(0)× (0, T ) by (5.34),
and ∂tΦ(Y, t) = VΓ(Φ(Y, t), t) for all (Y, t) ∈ Γ0 × (0, T ), it follows that

∂•ϕ(p(Ψ(X, t), t), t) =

∂tϕ(Ψ(X, t), t) + {VΓ(p(Ψ(X, t), t), t) +A(X, t)} · ∇ϕ(Ψ(X, t), t)

for all (X, t) ∈ N(0)× (0, T ). The above equality implies that

∂•ϕ(p(x, t), t) = ∂tϕ(x, t) + {VΓ(p(x, t), t) +A(Ψ−1(x, t), t)} · ∇ϕ(x, t)

for all (x, t) ∈ NT , since Ψ(·, t) : N(0)→ N(t) is a bijection for each t ∈ [0, T ]. Here
the vector field A(Ψ−1(x, t), t) is of the form

A(Ψ−1(x, t), t) = d(Ψ−1(x, t), 0){∂tν(p(x, t), t) +∇ν(p(x, t), t)VΓ(p(x, t), t)}.

This is exactly the vector field a(x, t) given by (5.33) since d(Ψ−1(x, t), 0) = d(x, t)
holds by (5.35). Hence (5.32) follows. �

Remark 5.13. Let ϕ ∈ C1(ST ). Since p(y, t) = y and d(y, t) = 0 for all (y, t) ∈ ST ,
we have

∂•ϕ = ∂tϕ+ VΓ · ∇ϕ = ∂tϕ+ V NΓ ν · ∇ϕ+ V TΓ · ∇Γ(t)ϕ on ST

by Lemma 5.12. Here the last equality follows from the fact that V TΓ is tangent to
Γ(t). Based on this equality, the material derivative operator acting on functions
on Γ(t) is formally represented as ∂• = ∂t + VΓ · ∇ = ∂t + V NΓ ν · ∇+ V TΓ · ∇Γ(t).
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Using the above lemma, we derive an integral formula related to the weak time
derivative of a function u ∈ L2

H1(ε) and the weak material derivative of its average

Mεu ∈ HT .

Lemma 5.14. Let u ∈ L2
H1(ε) and ϕ ∈ C1

0 (ST ). Then we have

(5.36)

∫ T

0

∫
Ωε(t)

u ∂tϕdx dt =

− ε〈∂•Mεu, gϕ〉T − ε
∫ T

0

∫
Γ(t)

(∂•g + g divΓ(t)VΓ)(Mεu)ϕdHn−1 dt

− ε
∫ T

0

∫
Γ(t)

g(Mεu)V TΓ · ∇Γ(t)ϕdHn−1 dt+ I2
ε (u, ϕ;T ).

Here I2
ε (u, ϕ;T ) is a residual term that satisfies

|I2
ε (u, ϕ;T )| ≤ cε3/2

∫ T

0

‖u(t)‖L2(Ωε(t))‖∇Γ(t)ϕ(t)‖L2(Γ(t)) dt(5.37)

with a constant c > 0 independent of u, ϕ, and ε.

Note that the tangential velocity V TΓ appears instead of the total velocity VΓ in
the third term of the right-hand side of (5.36), see Remark 5.15 below.

Proof. By (5.32), we have ∂•ϕ = ∂tϕ+ (VΓ + a) · ∇ϕ on NT , where a is the vector
field on NT given by (5.33). Hence if we set

I2
ε (u, ϕ;T ) := −

∫ T

0

∫
Ωε(t)

u
{
a · ∇ϕ+ VΓ ·

(
∇ϕ−∇Γ(t)ϕ

)}
dx dt,

then we have

(5.38)

∫ T

0

∫
Ωε(t)

u ∂tϕdx dt =∫ T

0

∫
Ωε(t)

u
(
∂•ϕ− VΓ · ∇Γ(t)ϕ

)
dx dt+ I2

ε (u, ϕ;T ).

Let us compute the first term of the right-hand side of (5.38). From the co-area
formula (5.4) and the definition of the weighted average Mεu (see (5.5)),

∫ T

0

∫
Ωε(t)

u(x, t)∂•ϕ(x, t) dx dt

=

∫ T

0

∫
Γ(t)

∫ εg1(y,t)

εg0(y,t)

u(y, t, ρ)∂•ϕ(y, t)J(y, t, ρ) dρ dHn−1 dt

= ε

∫ T

0

∫
Γ(t)

g(y, t)Mεu(y, t)∂•ϕ(y, t) dHn−1 dt.



28 T.-H. MIURA

On the other hand, by the definition of the weak material derivative of Mεu ∈ HT

(see (4.14)),

〈∂•Mεu, gϕ〉T = −
∫ T

0

∫
Γ(t)

{(Mεu)∂•(gϕ) + (Mεu)gϕdivΓ(t)VΓ} dHn−1 dt

= −
∫ T

0

∫
Γ(t)

{(∂•g + g divΓ(t)VΓ)(Mεu)ϕ+ g(Mεu)∂•ϕ} dHn−1 dt.

Thus it follows that

(5.39)

∫ T

0

∫
Ωε(t)

u ∂•ϕdx dt =

− ε〈∂•Mεu, gϕ〉T − ε
∫ T

0

∫
Γ(t)

(∂•g + g divΓ(t)VΓ)(Mεu)ϕdHn−1 dt.

Next, since VΓ is of the form VΓ = V NΓ ν + V TΓ and ∇Γ(t)ϕ is tangent to Γ(t), we

have VΓ · ∇Γ(t)ϕ = V TΓ · ∇Γ(t)ϕ on ST . This equality together with the co-area
formula (5.4) yields∫

Ωε(t)

u(x, t)VΓ(x, t) · ∇Γ(t)ϕ(x, t) dx

=

∫
Γ(t)

∫ εg1(y,t)

εg0(y,t)

u(y, t, ρ)VΓ(y, t) · ∇Γ(t)ϕ(y, t)J(y, t, ρ) dρ dHn−1

= ε

∫
Γ(t)

g(y, t)Mεu(y, t)V TΓ (y, t) · ∇Γ(t)ϕ(y, t) dHn−1

for all t ∈ (0, T ) and thus∫ T

0

∫
Ωε(t)

u
(
VΓ · ∇Γ(t)ϕ

)
dx dt = ε

∫ T

0

∫
Γ(t)

g(Mεu)V TΓ · ∇Γ(t)ϕdHn−1 dt.(5.40)

Substituting (5.39) and (5.40) for (5.38), we obtain the equality (5.36).
Let us show the inequality (5.37). In (5.33), the first-order derivatives of ν

are bounded on NT and VΓ is bounded on ST . Hence there is a constant c > 0
independent of ε such that

|a(x, t)| ≤ c|d(x, t)| ≤ cεmax
i=1,2

sup
(y,t)∈ST

|gi(y, t)| ≤ cε

for all (x, t) ∈ Qε,T . By this inequality, Hölder’s inequality, and (5.11) we obtain

|I2
ε (u, ϕ;T )|

≤ c
∫ T

0

‖u(t)‖L2(Ωε(t))

(
ε‖∇ϕ(t)‖L2(Ωε(t)) +

∥∥∥∇ϕ(t)−∇Γ(t)ϕ(t)
∥∥∥
L2(Ωε(t))

)
dt

≤ cε3/2

∫ T

0

‖u(t)‖L2(Ωε(t))‖∇Γ(t)ϕ(t)‖L2(Γ(t)) dt.

Thus (5.37) holds. �
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Remark 5.15. Let Γ ⊂ Rn be a closed, compact, connected, and oriented smooth
hypersurface. Then, since ∂Γ = ∅, the integral formula (see [24, Section 7.2])∫

Γ

divΓV dHn−1 = −
∫

Γ

(V · ν)H dHn−1

holds for smooth vector fields V : Γ → Rn. Here ν is the unit outward normal
vector of Γ and H := −divΓν is the mean curvature of Γ. This formula yields the
equality ∫

Γ

V · ∇ΓϕdHn−1 = −
∫

Γ

{divΓV + (V · ν)H}ϕdHn−1

for smooth functions ϕ on Γ. In this equality we decompose V = V Nν+V T into the
normal component V N := V · ν and the tangential component V T := V − (V · ν)ν.
Then, since ν · ∇Γϕ = 0 and

divΓ(V Nν) = ∇ΓV
N · ν + V NdivΓν = 0 + V N · (−H) = −(V · ν)H,

we obtain a usual integration by parts formula∫
Γ

V T · ∇ΓϕdHn−1 = −
∫

Γ

ϕdivΓV
T dHn−1,(5.41)

which we will use to recover a limit equation on Γ(t) from its variational formulation.
This is the reason to use the tangential velocity V TΓ in (5.36) instead of the total
velocity VΓ of Γ(t).

6. Convergence and characterization of the limit

6.1. Variational formulations of the average of solutions to the heat equa-
tion. Let us return to the initial-boundary value problem (Hε) of the heat equation.
By Theorem 3.4, for every uε0 ∈ L2(Ωε(0)) there is a unique variational solution
uε ∈ L2

H1(ε) to (Hε).

Let Mε be the average operator defined in Definition 5.1. Our goal in this
subsection is to derive a variational formulation of Mεu

ε.

Lemma 6.1. Let uε0 ∈ L2(Ωε(0)) and uε ∈ L2
H1(ε) be a unique variational solution

to (Hε) given by Theorem 3.4. Then, Mεu
ε ∈ HT and it satisfies

(6.1) 〈∂•Mεu
ε, gϕ〉T +

∫ T

0

∫
Γ(t)

(∂•g + g divΓ(t)VΓ)(Mεu
ε)ϕdHn−1 dt

+

∫ T

0

∫
Γ(t)

g{∇Γ(t)Mεu
ε + (Mεu

ε)V TΓ } · ∇Γ(t)ϕdHn−1 dt = Iε(u
ε, ϕ;T )

for all ϕ ∈ C1
0 (ST ). Here Iε(u

ε, ϕ;T ) is a residual term that satisfies

|Iε(uε, ϕ;T )| ≤ cε1/2

∫ T

0

‖uε(t)‖H1(Ωε(t))‖∇Γ(t)ϕ(t)‖L2(Γ(t)) dt(6.2)

with a constant c > 0 independent of uε, ϕ, and ε.

Proof. Since uε ∈ L2
H1(ε), we have Mεu

ε ∈ HT by Lemma 5.11. For each ϕ ∈
C1

0 (ST ), its extension ϕ is in C1(Qε,T ) and satisfies ϕ(0) = 0 in Ωε(0) and ϕ(T ) = 0
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in Ωε(T ). Thus, by substituting ϕ for w in the variational formulation (3.2) we
obtain ∫ T

0

∫
Ωε(t)

(−uε∂tϕ+∇uε · ∇ϕ) dx dt = 0.(6.3)

Moreover, from Lemma 5.7 and Lemma 5.14 we have

(6.4)

∫ T

0

∫
Ωε(t)

∇uε · ∇ϕdx dt =

ε

∫ T

0

∫
Γ(t)

g∇Γ(t)Mεu
ε · ∇Γ(t)ϕdHn−1 dt+ I1

ε (uε, ϕ;T )

and

(6.5)

∫ T

0

∫
Ωε(t)

uε∂tϕdx dt =

− ε〈∂•Mεu
ε, gϕ〉T − ε

∫ T

0

∫
Γ(t)

(∂•g + g divΓ(t)VΓ)(Mεu
ε)ϕdHn−1 dt

− ε
∫ T

0

∫
Γ(t)

g(Mεu
ε)V TΓ · ∇Γ(t)ϕdHn−1 dt+ I2

ε (uε, ϕ;T ),

where I1
ε (uε, ϕ;T ) and I2

ε (uε, ϕ;T ) satisfy

|Ikε (uε, ϕ;T )| ≤ cε3/2

∫ T

0

‖uε(t)‖H1(Ωε(t))‖∇Γ(t)ϕ(t)‖L2(Γ(t)) dt, k = 1, 2,(6.6)

with some constant c > 0 independent of ε. Hence, by substituting (6.4) and (6.5)
for (6.3) and dividing both sides by ε, we obtain (6.1) with the residual term

Iε(u
ε, ϕ;T ) := ε−1

{
I2
ε (uε, ϕ;T )− I1

ε (uε, ϕ;T )
}
,

which satisfies (6.2) because I1
ε (uε, ϕ;T ) and I2

ε (uε, ϕ;T ) satisfy (6.6). �

6.2. Estimates for the average Mεu
ε in the space WT . In this subsection, we

estimate Mεu
ε in the Hilbert space WT given by (4.15).

Lemma 6.2. Let uε0 ∈ L2(Ωε(0)) and uε ∈ L2
H1(ε) be a unique variational solution

to (Hε) given by Theorem 3.4. Then, Mεu
ε ∈WT and there exists a constant c > 0

independent of uε and ε such that

‖∂•Mεu
ε‖H′

T
≤ c
(
‖Mεu

ε‖HT
+ ε1/2‖uε‖L2

H1(ε)

)
.(6.7)

Proof. Let ϕ be an arbitrary function in C1
0 (ST ). By substituting g−1ϕ ∈ C1

0 (ST )
for ϕ in (6.1), we obtain 〈∂•Mεu

ε, ϕ〉T = I(uε, ϕ) + Iε(u
ε, g−1ϕ;T ), where

I(uε, ϕ) :=

∫ T

0

∫
Γ(t)

{g−1(V TΓ · ∇Γ(t)g − ∂•g)− divΓ(t)VΓ}(Mεu
ε)ϕdHn−1 dt

−
∫ T

0

∫
Γ(t)

{∇Γ(t)Mεu
ε + (Mεu

ε)V TΓ } · ∇Γ(t)ϕdHn−1 dt

+

∫ T

0

∫
Γ(t)

g−1(∇Γ(t)g · ∇Γ(t)Mεu
ε)ϕdHn−1 dt.
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Since g and VΓ are smooth on ST , they are bounded on ST along with their deriva-
tives. Moreover, g−1 and V TΓ are bounded on ST . Thus we have

|I(uε, ϕ)| ≤ c‖Mεu
ε‖HT

‖ϕ‖HT

with a constant c > 0 independent of uε, ϕ, and ε. Also, by (6.2),

|Iε(uε, g−1ϕ;T )|

≤ cε1/2

∫ T

0

‖uε(t)‖H1(Ωε(t))‖∇Γ(t)(g
−1ϕ)(t)‖L2(Γ(t)) dt

≤ cε1/2

∫ T

0

‖uε(t)‖H1(Ωε(t))

(
‖ϕ(t)‖L2(Γ(t)) + ‖∇Γ(t)ϕ(t)‖L2(Γ(t))

)
dt

≤ cε1/2‖uε‖L2
H1(ε)
‖ϕ‖HT

with some c > 0 independent of uε, ϕ, and ε. Hence we obtain

|〈∂•Mεu
ε, ϕ〉T | ≤ |I(uε, ϕ)|+ |Iε(uε, g−1ϕ;T )|

≤ c
(
‖Mεu

ε‖HT
+ ε1/2‖uε‖L2

H1(ε)

)
‖ϕ‖HT

for all ϕ ∈ C1
0 (ST ), which implies that Mεu

ε ∈WT and the inequality (6.7). �

Remark 6.3. Since Mεu
ε ∈ WT and C1

0 (ST ) is dense in HT (see Lemma 4.2),
the equality (6.1) also holds for all ϕ ∈ HT . On the other hand, since WT1

is
continuously embedded into WT2 when T1 > T2, we have Mεu

ε ∈ Wτ for each
τ ∈ [0, T ]. Hence (6.1) and (6.2) with T replaced by each τ ∈ [0, T ] are also valid
for all ϕ ∈ Hτ .

Lemma 6.4. Let uε0, uε be as in Lemma 6.2. Then there exists a constant c > 0
independent of uε0, uε, and ε such that the energy estimate

(6.8) ‖Mεu
ε(τ)‖2L2(Γ(τ)) +

∫ τ

0

‖∇Γ(t)Mεu
ε(t)‖2L2(Γ(t)) dt

≤ c
(
‖Mεu

ε
0‖2L2(Γ0) + ε‖uε0‖2L2(Ωε(0))

)
holds for all τ ∈ [0, T ].

Proof. As we mentioned in Remark 6.3, the equality (6.1) holds with T replaced
by each τ ∈ [0, T ]. Hence, by substituting g−1Mεu

ε ∈ Hτ for ϕ in (6.1) with T
replaced by τ , we obtain

〈∂•Mεu
ε,Mεu

ε〉τ +

∫ τ

0

‖∇Γ(t)Mεu
ε(t)‖2L2(Γ(t)) dt

+

∫ τ

0

∫
Γ(t)

{g−1(∂•g − V TΓ · ∇Γ(t)g) + divΓ(t)VΓ}|Mεu
ε|2 dHn−1 dt

+

∫ τ

0

∫
Γ(t)

Mεu
ε(V TΓ − g−1∇Γ(t)g) · ∇Γ(t)Mεu

ε dHn−1 dt

= Iε(u
ε, g−1Mεu

ε; τ).
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Moreover, from (4.18) with T replaced by τ ,

〈∂•Mεu
ε,Mεu

ε〉τ = −1

2

∫ τ

0

∫
Γ(t)

|Mεu
ε|2 divΓ(t)VΓ dHn−1 dt

+
1

2
‖Mεu

ε(τ)‖2L2(Γ(τ)) −
1

2
‖Mεu

ε(0)‖2L2(Γ0).

Applying this equality and the relation uε(0) = uε0 in L2(Ωε(0)) (see Theorem 3.4)
to the above equality, we have

(6.9)
1

2
‖Mεu

ε(τ)‖2L2(Γ(τ)) +

∫ τ

0

‖∇Γ(t)Mεu
ε(t)‖2L2(Γ(t)) dt

=
1

2
‖Mεu

ε
0‖2L2(Γ0) + I1(τ) + I2(τ) + Iε(u

ε, g−1Mεu
ε; τ),

where

I1(τ) := −1

2

∫ τ

0

∫
Γ(t)

{2g−1(∂•g − V TΓ · ∇Γ(t)g) + divΓ(t)VΓ}|Mεu
ε|2 dHn−1 dt,

I2(τ) := −
∫ τ

0

∫
Γ(t)

Mεu
ε(V TΓ − g−1∇Γ(t)g) · ∇Γ(t)Mεu

ε dHn−1 dt.

Since g and VΓ are smooth on ST , they are bounded on ST along with their deriva-
tives. Also, g−1 and V TΓ are bounded on ST . Thus it follows that

|I1(τ)| ≤ c
∫ τ

0

‖Mεu
ε(t)‖2L2(Γ(t)) dt,

|I2(τ)| ≤ c
∫ τ

0

‖Mεu
ε(t)‖L2(Γ(t))‖∇Γ(t)Mεu

ε(t)‖L2(Γ(t)) dt.

(6.10)

On the other hand, the inequality (6.2) with T replaced by τ yields

(6.11) |Iε(uε, g−1Mεu
ε; τ)|

≤ cε1/2

∫ τ

0

‖uε(t)‖H1(Ωε(t))‖∇Γ(t)(g
−1Mεu

ε)(t)‖L2(Γ(t)) dt

≤ cε1/2

∫ τ

0

‖uε(t)‖H1(Ωε(t))

(
‖Mεu

ε(t)‖L2(Γ(t)) + ‖∇Γ(t)Mεu
ε(t)‖L2(Γ(t))

)
dt.

Thus, by applying (6.10) and (6.11) to (6.9), we obtain

1

2
‖Mεu

ε(τ)‖2L2(Γ(τ)) +

∫ τ

0

‖∇Γ(t)Mεu
ε(t)‖2L2(Γ(t)) dt

≤ 1

2
‖Mεu

ε
0‖2L2(Γ0) +

1

2

∫ τ

0

‖∇Γ(t)Mεu
ε(t)‖2L2(Γ(t)) dt

+ c

∫ τ

0

(
‖Mεu

ε(t)‖2L2(Γ(t)) + ε‖uε(t)‖2H1(Ωε(t))

)
dt.

We multiply both sides by two and subtract
∫ τ

0
‖∇Γ(t)Mεu

ε(t)‖2L2(Γ(t)) dt to get

‖Mεu
ε(τ)‖2L2(Γ(τ)) +

∫ τ

0

‖∇Γ(t)Mεu
ε(t)‖2L2(Γ(t)) dt

≤ ‖Mεu
ε
0‖2L2(Γ0) + c

∫ τ

0

(
‖Mεu

ε(t)‖2L2(Γ(t)) + ε‖uε(t)‖2H1(Ωε(t))

)
dt.
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Hence Gronwall’s inequality implies

‖Mεu
ε(τ)‖2L2(Γ(t)) +

∫ τ

0

‖∇Γ(t)Mεu
ε(t)‖2L2(Γ(t)) dt

≤ c
(
‖Mεu

ε
0‖2L2(Γ0) + ε‖uε‖2L2

H1(ε)

)
for all τ ∈ [0, T ], and we obtain (6.8) by applying (3.15) to the second term of the
right-hand side of the above inequality. �

Lemma 6.5. Let uε0, uε be as in Lemma 6.2. Then there exists a constant c > 0
independent of uε0, uε, and ε such that

‖Mεu
ε‖WT

≤ c
(
‖Mεu

ε
0‖L2(Γ0) + ε1/2‖uε0‖L2(Ωε(0))

)
.(6.12)

Proof. It follows from (6.8) that

‖Mεu
ε‖HT

≤ c
(
‖Mεu

ε
0‖L2(Γ0) + ε1/2‖uε0‖L2(Ωε(0))

)
.

Moreover, by applying this inequality and (3.15) to (6.7) we have

‖∂•Mεu
ε‖H′

T
≤ c
(
‖Mεu

ε‖HT
+ ε1/2‖uε‖L2

H1(ε)

)
≤ c
(
‖Mεu

ε
0‖L2(Γ0) + ε1/2‖uε0‖L2(Ωε(0))

)
.

Thus we obtain (6.12). �

6.3. Limit equation on evolving surfaces and weak convergence of Mεu
ε.

Assume that Iε(u
ε, ϕ;T ) = 0 holds for all ϕ ∈ C1

0 (ST ) and v = Mεu
ε is independent

of ε in the variational formulation (6.1). Then, v satisfies

(6.13) 〈∂•v, gϕ〉T +

∫ T

0

∫
Γ(t)

(∂•g + g divΓ(t)VΓ)v ϕ dHn−1 dt

+

∫ T

0

∫
Γ(t)

g(∇Γ(t)v + vV TΓ ) · ∇Γ(t)ϕdHn−1 dt = 0

for all ϕ ∈ C1
0 (ST ). In addition we assume that v is sufficiently smooth. Since

vector fields gvV TΓ and g∇Γ(t)v are tangent to Γ(t) for each t ∈ [0, T ], we can apply
the integration by parts formula (5.41) to obtain

〈∂•v, gϕ〉T

+

∫ T

0

∫
Γ(t)

{
(∂•g + g divΓ(t)VΓ)v − divΓ(t)

[
g(∇Γ(t)v + vV TΓ )

]}
ϕdHn−1 dt

= 0.

Since this equality holds for all ϕ ∈ C1
0 (ST ), we conclude that v satisfies

∂•(gv) + (g divΓ(t)VΓ)v − divΓ(t)

[
g(∇Γ(t)v + vV TΓ )

]
= 0 on ST .

This is the limit equation of (Hε). To justify the above argument, we employ a
variational framework introduced by Olshanskii, Reusken, and Xu [18].
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Definition 6.6. Let v0 ∈ L2(Γ0). A function v ∈ WT is said to be a variational
solution to the initial value problem{

∂•(gv) + (g divΓ(t)VΓ)v − divΓ(t)

[
g(∇Γ(t)v + vV TΓ )

]
= 0 on ST ,

v(0) = v0 on Γ0,
(H0)

if v satisfies (6.13) for all ϕ ∈ HT and v(0) = v0 in L2(Γ0).

Remark 6.7. By Lemma 4.4, the trace operator v 7→ v(t) is well-defined as a
bounded linear operator from WT into L2(Γ(t)) for every t ∈ [0, T ]. Thus the
condition v(0) = v0 in L2(Γ0) makes sense.

Remark 6.8. Suppose that v ∈ WT is a variational solution to (H0). Then, we
have v ∈ Wτ for each τ ∈ [0, T ], since Wτ is continuously embedded into WT .
Moreover, by taking test functions ϕ from C1

0 (Sτ ) we observe that v is a variational
solution to (H0) with T replaced by τ .

We first prove the uniqueness of a variational solution to the initial value problem
(H0).

Lemma 6.9. For each v0 ∈ L2(Γ0), there is at most one variational solution to
(H0).

Proof. Since (H0) is linear, it is sufficient to show that if v ∈ WT is a variational
solution to (H0) with zero initial data, then v = 0.

Let v be a variational solution to (H0) with v(0) = 0 in L2(Γ0). For each
τ ∈ [0, T ], we substitute g−1v ∈ Hτ for ϕ in (6.13) with T replaced by τ and
compute as in the proof of Lemma 6.4 (replace Mεu

ε by v and omit Iε(u
ε, ϕ; τ)).

Then we have

‖v(τ)‖2L2(Γ(τ)) +

∫ τ

0

‖∇Γ(t)v(t)‖2L2(Γ(t)) dt ≤ ‖v(0)‖2L2(Γ0) + c

∫ τ

0

‖v(t)‖2L2(Γ(t)) dt.

Since v(0) = 0 in L2(Γ0), the above inequality yields

‖v(τ)‖2L2(Γ(t)) ≤
∫ τ

0

‖v(t)‖2L2(Γ(t)) dt.

Hence by Gronwall’s inequality we obtain v(τ) = 0 for all τ ∈ [0, T ]. �

Now let us show that {Mεu
ε}ε converges weakly in WT and that the limit is a

unique variational solution to the initial value problem (H0).

Theorem 6.10. Let uε0 ∈ L2(Ωε(0)) and uε ∈ L2
H1(ε) be a unique variational

solution to (Hε) given by Theorem 3.4. Suppose that the following two conditions
are satisfied.

(a) There exist constants c > 0 and γ ∈ (0, 1/2) such that ‖uε0‖L2(Ωε(0)) ≤ cε−γ
for all ε > 0.

(b) There exists v0 ∈ L2(Γ0) such that {Mεu
ε
0}ε converges weakly to v0 in

L2(Γ0) as ε→ 0.

Then {Mεu
ε}ε converges weakly in WT as ε→ 0. Moreover, the weak limit v ∈WT

of {Mεu
ε}ε is a unique variational solution to (H0) with initial data v0.
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Proof. (1) By the condition (b), {Mεu
ε
0}ε is bounded in L2(Γ0). From this fact,

the inequality (6.12), and the condition (a) it follows that

‖Mεu
ε‖WT

≤ c
(
‖Mεu

ε
0‖L2(Γ0) + ε1/2‖uε0‖L2(Ωε(0))

)
≤ c(1 + ε−γ+1/2) ≤ c(6.14)

with some constant c > 0 independent of ε. Here the last inequality follows from
the condition γ ∈ (0, 1/2). Hence {Mεu

ε}ε is bounded in the Hilbert space WT and
there exist v ∈WT and a sequence {εn}n of positive numbers with limn→∞ εn = 0
such that {Mεnu

εn}n converges weakly to v in WT as n→∞.
Let us show that v is a unique variational solution to (H0) with initial data v0.

First we show that v satisfies the variational formulation (6.13) for all ϕ ∈ HT . To
this end, we return to the variational formulation (6.1) of Mεnu

εn :

(6.15) 〈∂•Mεnu
εn , gϕ〉T +

∫ T

0

∫
Γ(t)

(∂•g + g divΓ(t)VΓ)(Mεnu
εn)ϕdHn−1 dt

+

∫ T

0

∫
Γ(t)

g{∇Γ(t)Mεnu
εn + (Mεnu

εn)V TΓ } · ∇Γ(t)ϕdHn−1 dt

= Iεn(uεn , ϕ;T ).

Let n→∞ in (6.15). Since {Mεnu
εn}n converges weakly to v in WT as n→∞ and

g, VΓ are bounded on ST along with their derivatives, the left-hand side of (6.15)
converges to

〈∂•v, gϕ〉T +

∫ T

0

∫
Γ(t)

(∂•g + g divΓ(t)VΓ)vϕ dHn−1 dt

+

∫ T

0

∫
Γ(t)

g(∇Γ(t)v + vV TΓ ) · ∇Γ(t)ϕdHn−1 dt.

On the other hand, it follows from (6.2) and (3.15) that

|Iεn(uεn , ϕ;T )| ≤ cε1/2
n

∫ T

0

‖uεn(t)‖H1(Ωεn (t))‖∇Γ(t)ϕ(t)‖L2(Γ(t)) dt

≤ cε1/2
n ‖uεn‖L2

H1(εn)
‖ϕ‖HT

≤ cε1/2
n ‖u

εn
0 ‖L2(Ωεn (0))‖ϕ‖HT

with a constant c > 0 independent of εn. This inequality and the condition (a)
imply that

|Iεn(uεn , ϕ;T )| ≤ cε−γ+1/2
n ‖ϕ‖HT

→ 0, as n→∞,(6.16)

since γ ∈ (0, 1/2) and c is independent of εn. Hence v satisfies (6.13) for all ϕ ∈ HT .
Next we show that v(0) = v0 in L2(Γ0). We take a function η ∈ C∞([0, T ])

such that η(0) = 1 and η(T ) = 0. For each ϕ0 ∈ C∞(Γ0), we set ϕ(y, t) :=
ϕ0(Φ−1(y, t))η(t) for (y, t) ∈ ST . Due to the smoothness of Φ−1, the function ϕ
is smooth on ST and thus ϕ ∈ WT . Moreover, ϕ satisfies ϕ(0) = ϕ0 on Γ0 and
ϕ(T ) = 0 on Γ(T ). Substituting g−1ϕ for ϕ in (6.13) and (6.15), we have

〈∂•v, ϕ〉T +

∫ T

0

∫
Γ(t)

(g−1∂•g + divΓ(t)VΓ)v ϕ dHn−1 dt

+

∫ T

0

∫
Γ(t)

g(∇Γ(t)v + vV TΓ ) · ∇Γ(t)(g
−1ϕ) dHn−1 dt = 0
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and

〈∂•Mεnu
εn , ϕ〉T +

∫ T

0

∫
Γ(t)

(g−1∂•g + divΓ(t)VΓ)(Mεnu
εn)ϕdHn−1 dt

+

∫ T

0

∫
Γ(t)

g{∇Γ(t)Mεnu
εn + (Mεnu

εn)V TΓ } · ∇Γ(t)(g
−1ϕ) dHn−1 dt

= Iεn(uεn , g−1ϕ;T ).

Since ϕ, v, and Mεnu
εn are in WT , we can apply the identity (4.18) to get

〈∂•v, ϕ〉T = −〈∂•ϕ, v〉T −
∫

Γ0

v(0)ϕ0 dHn−1 −
∫ T

0

∫
Γ(t)

vϕdivΓ(t)VΓ dHn−1 dt

and the same identity for Mεnu
εn . Here we used the conditions ϕ(0) = ϕ0 on Γ0

and ϕ(T ) = 0 on Γ(T ). Thus we have

(6.17) − 〈∂•ϕ, v〉T +

∫ T

0

∫
Γ(t)

g−1(∂•g)vϕ dHn−1 dt

+

∫ T

0

∫
Γ(t)

g(∇Γ(t)v + vV TΓ ) · ∇Γ(t)(g
−1ϕ) dHn−1 dt =

∫
Γ0

v(0)ϕ0 dHn−1

and

(6.18) − 〈∂•ϕ,Mεnu
εn〉T +

∫ T

0

∫
Γ(t)

g−1(∂•g)(Mεnu
εn)ϕdHn−1 dt

+

∫ T

0

∫
Γ(t)

g{∇Γ(t)Mεnu
εn + (Mεnu

εn)V TΓ } · ∇Γ(t)(g
−1ϕ) dHn−1 dt

=

∫
Γ0

(Mεnu
εn
0 )ϕ0 dHn−1 + Iεn(uεn , g−1ϕ;T ).

Let n→∞ in (6.18). Since {Mεu
ε
0}ε converges weakly to v0 in L2(Γ0) as ε→ 0,

lim
n→∞

∫
Γ0

Mεnu
εn
0 ϕ0 dHn−1 =

∫
Γ0

v0 ϕ0 dHn−1.

Moreover, since {Mεnu
εn}n converges weakly to v in WT as n → ∞ and (6.16)

holds with ϕ replaced by g−1ϕ, both sides of (6.18) converge to

(6.19) − 〈∂•ϕ, v〉T +

∫ T

0

∫
Γ(t)

g−1(∂•g)v ϕ dHn−1 dt

+

∫ T

0

∫
Γ(t)

g(∇Γ(t)v + vV TΓ ) · ∇Γ(t)(g
−1ϕ) dHn−1 dt =

∫
Γ0

v0 ϕ0 dHn−1.

Comparing (6.17) and (6.19), we obtain∫
Γ0

v(0)ϕ0 dHn−1 =

∫
Γ0

v0 ϕ0 dHn−1 for all ϕ0 ∈ C∞(Γ0).

Since C∞(Γ0) is dense in L2(Γ0), it follows that v(0) = v0 in L2(Γ0). Hence v
is a unique variational solution to (H0) with initial data v0. Here the uniqueness
follows from Lemma 6.9.

(2) Let us prove that {Mεu
ε}ε itself converges weakly to v in WT as ε→ 0, that

is, the equality limε→0 f(Mεu
ε) = f(v) holds for every bounded linear functional f
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on WT . To this end, we assume to the contrary that there are some bounded linear
functional f on WT , sequence {εn}n of positive numbers with limn→∞ εn = 0, and
positive constant c such that

|f(Mεnu
εn)− f(v)| ≥ c for all n ∈ N.(6.20)

Since {Mεnu
εn}n is bounded in WT by (6.14), there is a subsequence of {Mεnu

εn}n,
which is again referred to as {Mεnu

εn}n, such that it converges weakly to some
v∗ ∈WT as n→∞. However, as in the first part of the proof, we can show that v∗

is a variational solution to (H0) with initial data v0. Thus Lemma 6.9 implies that
v∗ = v and it follows that limn→∞ f(Mεnu

εn) = f(v∗) = f(v), which contradicts
with (6.20). Hence the assumption is false and we conclude that {Mεu

ε}ε itself
converges weakly to v in WT as ε→ 0. The proof is complete. �

Corollary 6.11. For every v0 ∈ L2(Γ0), there exists a unique variational solution
to (H0).

Proof. For each ε > 0, we define a function uε0 on Ωε(0) as

uε0(X) :=
v0(p(X, 0))

J(p(X, 0), 0, d(X, 0))
, X ∈ Ωε(0).

Clearly Mεu
ε
0 = v0 holds on Γ0. Moreover, by the co-area formula (5.4) and (5.2)

we have

‖uε0‖L2(Ωε(0)) =

(∫
Γ0

∫ εg1(Y,0)

εg0(Y,0)

|v0(Y )|2J(Y, 0, ρ)−1 dρ dHn−1

)1/2

≤ c
(∫

Γ0

εg(Y, 0)|v0(Y )|2 dHn−1

)1/2

≤ cε1/2‖v0‖L2(Γ0)

with a constant c > 0 independent of ε. Hence uε0 ∈ L2(Ωε(0)) and uε0, v0 satisfy the
conditions (a) and (b) of Theorem 6.10. Thus the corollary follows from Theorem
3.4 and Theorem 6.10. �

Remark 6.12. Let H := −divΓ(t)ν be the mean curvature of Γ(t). Since the

material derivative operator is formally of the form ∂• = ∂t +V NΓ ν · ∇+V TΓ · ∇Γ(t)

and the equality divΓ(t)(V
N
Γ ν) = −V NΓ H holds (see Remark 5.13 and Remark 5.15),

the limit equation (H0) is formally equivalent to

∂t(gv) + V NΓ ν · ∇(gv)− V NΓ Hgv − divΓ(t)(g∇Γ(t)v) = 0 on ST .

This equation depends on V NΓ ν and V NΓ H, which represent the geometric motion
of Γ(t). On the other hand, it is independent of the tangential velocity V TΓ , which
represents advection along Γ(t). Hence, as we mentioned in Section 1, the evolution
of the limit v given by Theorem 6.10 is not affected by advection along Γ(t), but
the geometric motion of Γ(t).

6.4. Estimates for the difference between solutions to the heat equation
and the limit equation. Let us estimate the difference between variational solu-
tions to (Hε) and (H0). For a function v on ST , let v be its extension to the normal
direction of Γ(t). Also, for a function u on Qε,T , we set

‖u‖L2(Qε,T ) :=

(∫ T

0

∫
Ωε(t)

|u|2 dx dt
)1/2

.
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Theorem 6.13. Let uε0 ∈ L2(Ωε(0)) and uε ∈ L2
H1(ε) be a unique variational

solution to (Hε). Also, let v0 ∈ L2(Γ0) and v ∈ WT be a unique variational
solution to (H0). Then, there exists a constant c > 0 independent of uε0, uε, v0, v,
and ε such that

‖uε − v‖L2(Qε,T ) ≤ c
(
‖uε0 − v0‖L2(Ωε(0)) + ε3/2‖v0‖L2(Γ0)

)
.(6.21)

In particular, if limε→0 ‖uε0 − v0‖L2(Ωε(0)) = 0, then limε→0 ‖uε − v‖L2(Qε,T ) = 0.

We first estimate the difference between Mεu
ε and v in the space WT .

Lemma 6.14. Let uε0, uε, v0, v be as in Theorem 6.13. Then, there exists a
constant c > 0 independent of uε0, uε, v0, v, and ε such that

‖Mεu
ε − v‖WT

≤ c
(
‖Mεu

ε
0 − v0‖L2(Γ0) + ε1/2‖uε0‖L2(Ωε)

)
.(6.22)

In particular, if limε→0 ‖Mεu
ε
0 − v0‖L2(Γ0) = 0 and limε→0 ε

1/2‖uε0‖L2(Ωε(0)) = 0,
then {Mεu

ε}ε converges strongly to v in WT .

Proof. For each τ ∈ [0, T ], we subtract both sides of (6.13) with T replaced by τ
from those of (6.1). Then we have

〈∂•(Mεu
ε − v), gϕ〉τ +

∫ τ

0

∫
Γ(t)

(∂•g + g divΓ(t)VΓ)(Mεu
ε − v)ϕdHn−1 dt

+

∫ τ

0

∫
Γ(t)

g{∇Γ(t)(Mεu
ε − v) + (Mεu

ε − v)V TΓ } · ∇Γ(t)ϕdHn−1 dt

= Iε(u
ε, ϕ; τ)

for all ϕ ∈ Hτ . Hence, by calculating as in the proof of Lemma 6.2, Lemma 6.4
and Lemma 6.5 (replace Mεu

ε by Mεu
ε − v), we obtain (6.22). �

Proof of Theorem 6.13. (1) First we show the inequality

‖uε − v‖L2(Qε,T ) ≤ cε1/2
(
‖Mεu

ε
0 − v0‖L2(Γ0) + ε1/2‖uε0‖L2(Ωε(0))

)
.(6.23)

To this end, we use the triangle inequality

‖uε − v‖L2(Qε,T ) ≤
∥∥∥uε −Mεuε

∥∥∥
L2(Qε,T )

+
∥∥∥Mεuε − v

∥∥∥
L2(Qε,T )

and estimate the right-hand side of the above inequality. By (5.8) and (3.15), we
have ∥∥∥uε −Mεuε

∥∥∥
L2(Qε,T )

≤ cε‖uε‖L2
H1(ε)

≤ cε‖uε0‖L2(Ωε(0))

with a constant c > 0 independent of ε. On the other hand, by (5.6) and (6.22),∥∥∥Mεuε − v
∥∥∥
L2(Qε,T )

≤ cε1/2‖Mεu
ε − v‖HT

≤ cε1/2
(
‖Mεu

ε
0 − v0‖L2(Γ0) + ε1/2‖uε0‖L2(Ωε)

)
.

Hence (6.23) follows.
(2) Next we estimate the right-hand side of (6.23). Hereafter we identify uε0 with

a function

uε0(Y, ρ) := uε0(Y + ρν(Y, 0)), Y ∈ Γ0, ρ ∈ (εg0(Y, 0), εg1(Y, 0)),
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and omit the variables Y , ρ, and t = 0 unless we need to specify them. We set

I1 :=
1

εg

∫ εg1

εg0

(uε0 − v0)J dρ, I2 :=
v0

εg

∫ εg1

εg0

(J − 1) dρ.

Then Mεu
ε
0 − v0 = I1 + I2 holds on Γ0. By Hölder’s inequality and (2.1), (5.2), we

have

|I1|2 ≤
1

εg

∫ εg1

εg0

|uε0 − v0|2J2 dρ ≤ cε−1

∫ εg1

εg0

|uε0 − v0|2J dρ.

On the other hand, (5.3) yields |I2| ≤ cε|v0|. Hence

‖Mεu
ε
0 − v0‖2L2(Γ0) ≤ c

∫
Γ0

(|I1|2 + |I2|2) dHn−1

≤ c
∫

Γ0

(
ε−1

∫ εg1

εg0

|uε0 − v0|2J dρ+ ε2|v0|
)
dHn−1

= c
(
ε−1‖uε0 − v0‖2L2(Ωε(0)) + ε2‖v0‖2L2(Γ0)

)
.

Here we used the co-area formula (5.4) in the last equality. The above inequality
is equivalent to

‖Mεu
ε
0 − v0‖L2(Γ0) ≤ c

(
ε−1/2‖uε0 − v0‖L2(Ωε(0)) + ε‖v0‖L2(Γ0)

)
.(6.24)

Moreover, by the triangle inequality and (5.6),

‖uε0‖L2(Ωε(0)) ≤ ‖uε0 − v0‖L2(Ωε(0)) + ‖v0‖L2(Ωε(0))(6.25)

≤ ‖uε0 − v0‖L2(Ωε(0)) + cε1/2‖v0‖L2(Γ0).

Finally, by applying (6.24) and (6.25) to (6.23), we obtain

‖uε − v‖L2(Qε,T ) ≤ cε1/2
(
‖Mεu

ε
0 − v0‖L2(Γ0) + ε1/2‖uε0‖L2(Ωε(0))

)
≤ cε1/2

(
(ε−1/2 + ε1/2)‖uε0 − v0‖L2(Ωε(0)) + ε‖v0‖L2(Γ0)

)
≤ c

(
‖uε0 − v0‖L2(Ωε(0)) + ε3/2‖v0‖L2(Γ0)

)
with a constant c > 0 independent of ε. Hence (6.21) holds. �

7. Appendix: Heuristic derivation of the limit equation

In this section, we give a heuristic derivation of the limit equation (1.1) from
(Hε) when Ωε(t) is of the form Ωε(t) = {x ∈ Rn | −ε < d(x, t) < ε}. In this case,
the unit outward normal vector field νε of ∂Ωε(t) and the outer normal velocity
V Nε of ∂Ωε(t) are of the form

νε(x, t) = ±ν(p(x, t), t), V Nε (x, t) = ±V NΓ (p(x, t), t), (x, t) ∈ ∂`Qε,T ,

according to d(x, t) = ±ε (double-sign corresponds). Thus we start from the heat
equation

∂tu
ε(x, t)−∆uε(x, t) = 0, (x, t) ∈ Qε,T

with the boundary condition

ν(p(x, t), t) · ∇uε(x, t) + V NΓ (p(x, t), t)uε(x, t) = 0, (x, t) ∈ ∂`Qε,T .(7.1)

To derive the limit equation, we assume that
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(1) The signed distance d(x, t) of x ∈ Ωε(t) is negligible (d(x, t) ≈ 0), although
the quantity ε−1d(x, t) is not negligible.

(2) The relation V NΓ (p(x, t), t) ≈ −∂td(x, t) holds for all (x, t) ∈ Qε,T .
(3) The boundary condition (7.1) also holds in the noncylindrical domain Qε,T .

These assumptions come from the smallness of the width 2ε of Ωε(t). Taking the
third assumption into account, we consider the two equations

∂tu
ε(x, t)−∆uε(x, t) = 0,(7.2)

ν(p(x, t), t) · ∇uε(x, t) + V NΓ (p(x, t), t)uε(x, t) = 0(7.3)

for (x, t) ∈ Qε,T . Recall that each x ∈ Ωε(t) is represented as

x = p(x, t) + d(x, t)ν(p(x, t), t), ∇d(x, t) = ν(x, t) = ν(p(x, t), t).

First, we consider the gradient of the projection p(x, t) onto Γ(t) given by

∇p =

∂1p1 . . . ∂np1

...
. . .

...
∂1pn . . . ∂npn

 for p =

p1

...
pn

 .

By differentiating both sides of x = p(x, t) + d(x, t)ν(x, t) and using ∇d(x, t) =
ν(x, t), we have

In = ∇p(x, t) + ν(x, t)⊗ ν(x, t) + d(x, t)∇ν(x, t).

According to the assumption (1), the above equality reads

∇p(x, t) ≈ In − ν(x, t)⊗ ν(x, t) = In − ν(p(x, t), t)⊗ ν(p(x, t), t).(7.4)

Now let us define a function v : ST × (−1, 1)→ R as

v(y, t, r) := uε(y + εrν(y, t), t), (y, t) ∈ ST , r ∈ (−1, 1).

Then uε is represented by v as

uε(x, t) = v(p(x, t), t, ε−1d(x, t)), (x, t) ∈ Qε,T .(7.5)

From the chain rule of differentiation, we have

∇uε(x, t) = [∇p(x, t)]T∇v(p(x, t), t, ε−1d(x, t))

+ ε−1∂rv(p(x, t), t, ε−1d(x, t))∇d(x, t).

By (7.4) and ∇d(x, t) = ν(p(x, t), t), this equality reads

(7.6) ∇uε(x, t) ≈ ∇Γ(t)v(p(x, t), t, ε−1d(x, t))

+ ε−1∂rv(p(x, t), t, ε−1d(x, t))ν(p(x, t), t).

Here we abused the definition of the tangential gradient of functions on ST . Apply-
ing (7.6) to (7.3) and observing that ν(p(x, t), t) · ∇Γ(t)v(p(x, t), t, ε−1d(x, t)) = 0,
we obtain

ε−1∂rv(p(x, t), t, ε−1d(x, t)) ≈ −V NΓ (p(x, t), t)v(p(x, t), t, ε−1d(x, t))(7.7)

and thus (7.6) becomes

(7.8) ∇uε(x, t) ≈ ∇Γ(t)v(p(x, t), t, ε−1d(x, t))

− V NΓ (p(x, t), t)v(p(x, t), t, ε−1d(x, t))ν(p(x, t), t).
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Next we compute ∆uε = div∇uε. For a vector field F on Ωε(t) with each fixed
t ∈ [0, T ],

divF (x) = trace[∇F (x)]

= trace[{In − ν(x, t)⊗ ν(x, t)}∇F (x)] + trace[ν(x, t)⊗ ν(x, t)∇F (x)]

= divΓ(t)F (x) + ν(x, t) · ∂νF (x)

holds since ν ⊗ ν is a projection matrix onto the ν-direction. Hence we have

div
(
∇Γ(t)v(p(x, t), t, ε−1d(x, t))

)
= divΓ(t)

(
∇Γ(t)v(p(x, t), t, ε−1d(x, t))

)
+ ν(x, t) · ∂ν

(
∇Γ(t)v(p(x, t), t, ε−1d(x, t))

)
.

Moreover, since p(x + hν(x, t), t) = p(x, t) and d(x + hν(x, t), t) = d(x, t) + h for
sufficiently small h ∈ R, it follows that

∇Γ(t)v(p(x+ hν(x, t), t), t, ε−1d(x+ hν(x, t), t)) =

∇Γ(t)v(p(x, t), t, ε−1d(x, t) + ε−1h)

and thus

∂ν
(
∇Γ(t)v(p(x, t), t, ε−1d(x, t))

)
= ε−1∂r∇Γ(t)v(p(x, t), t, ε−1d(x, t))

by the formula ∂νf(x) = limh→0{f(x+hν(x, t))−f(x)}/h for functions f on Ωε(t)
with fixed t ∈ [0, T ]. Hence we obtain

div
(
∇Γ(t)v(p(x, t), t, ε−1d(x, t))

)
=

divΓ(t)

(
∇Γ(t)v(p(x, t), t, ε−1d(x, t))

)
+ ε−1∂r∇Γ(t)v(p(x, t), t, ε−1d(x, t)).

Similarly we have

div
(
V NΓ (p(x, t), t)v(p(x, t), t, ε−1d(x, t))ν(p(x, t), t)

)
= divΓ(t)

(
V NΓ (p(x, t), t)v(p(x, t), t, ε−1d(x, t))ν(p(x, t), t)

)
+ ν(x, t) · {ε−1V NΓ (p(x, t), t)∂rv(p(x, t), t, ε−1d(x, t))ν(p(x, t), t)}

≈ divΓ(t)

(
V NΓ (p(x, t), t)v(p(x, t), t, ε−1d(x, t))ν(p(x, t), t)

)
− {V NΓ (p(x, t), t)}2 v(p(x, t), t, ε−1d(x, t)).

Here the last approximation follows from ν(x, t) = ν(p(x, t), t) and (7.7). Hence,
by (7.8),

(7.9) ∆uε(x, t) ≈ divΓ(t)

(
∇Γ(t)v(p(x, t), t, ε−1d(x, t))

)
+ ε−1∂r∇Γ(t)v(p(x, t), t, ε−1d(x, t))

− divΓ(t)

(
V NΓ (p(x, t), t)v(p(x, t), t, ε−1d(x, t))ν(p(x, t), t)

)
+ {V NΓ (p(x, t), t)}2 v(p(x, t), t, ε−1d(x, t)).

On the other hand, we differentiate both sides of (7.5) with respect to t to get

∂tu
ε(x, t) = ∂tp(x, t) · ∇v(p(x, t), t, ε−1d(x, t))

+ ∂tv(p(x, t), t, ε−1d(x, t)) + ε−1∂td(x, t)∂rv(p(x, t), t, ε−1d(x, t)).

To this equality we apply (7.7) and

∂tp(x, t) = −∂td(x, t)ν(x, t)− d(x, t)∂tν(x, t) ≈ V NΓ (p(x, t), t)ν(p(x, t), t),
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where the last approximation follows from the assumptions (1), (2), and ν(x, t) =
ν(p(x, t), t). Then we have

(7.10) ∂tu
ε(x, t) ≈ V NΓ (p(x, t), t)ν(p(x, t), t) · ∇v(p(x, t), t, ε−1d(x, t))

+ ∂tv(p(x, t), t, ε−1d(x, t)) + {V NΓ (p(x, t), t)}2 v(p(x, t), t, ε−1d(x, t)).

Substituting (7.9) and (7.10) for the equation (7.2), we obtain

∂tv(p(x, t), t, ε−1d(x, t)) + V NΓ (p(x, t), t)ν(p(x, t), t) · ∇v(p(x, t), t, ε−1d(x, t))

+ divΓ(t)

(
V NΓ (p(x, t), t)v(p(x, t), t, ε−1d(x, t))ν(p(x, t), t)

)
− divΓ(t)

(
∇Γ(t)v(p(x, t), t, ε−1d(x, t))

)
− ε−1∂r∇Γ(t)v(p(x, t), t, ε−1d(x, t)) = 0.

Now let us make an additional assumption: the function v(y, t, r) is independent of
the variable r. Then, the above equation reads

∂tv(y, t) + V NΓ (y, t)ν(y, t) · ∇v(y, t) + divΓ(t)

(
V NΓ (y, t)v(y, t)ν(y, t)

)
− divΓ(t)

(
∇Γ(t)v(y, t)

)
= 0

with y = p(x, t) ∈ Γ(t). Finally we observe that

divΓ(t)(V
N
Γ vν) = ∇Γ(t)(V

N
Γ v) · ν + V NΓ v divΓ(t)ν = 0 + V NΓ v · (−H) = −V NΓ Hv,

where H = −divΓ(t)ν is the mean curvature of Γ(t), to obtain

∂tv(y, t) + V NΓ (y, t)ν(y, t) · ∇v(y, t)− V NΓ (y, t)H(y, t)v(y, t)−∆Γ(t)v(y, t) = 0

for (y, t) ∈ ST . This is the limit equation (1.1) we mentioned in Section 1.
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