
UTMS 2015–2 February 23, 2015

On Lagrangian embeddings into the

complex projective spaces

by

Toru YOSHIYASU

T
UNIVERSITY OF TOKYO

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES

KOMABA, TOKYO, JAPAN



ON LAGRANGIAN EMBEDDINGS INTO THE COMPLEX

PROJECTIVE SPACES

TORU YOSHIYASU

Abstract. We prove that for any closed orientable connected 3-manifold L

and any Lagrangian immersion of the connected sum L#(S1 ×S2) either into
the complex projective 3-space CP 3 or into the product CP 1 × CP 2 of the

complex projective line and the complex projective plane, there exists a La-

grangian embedding which is homotopic to the initial Lagrangian immersion.

1. Introduction

1.1. Main result. A symplectic manifold is an even-dimensional manifold X with
a closed non-degenerate 2-form ω. A Lagrangian submanifold L of a symplectic
manifold X is a half-dimensional submanifold such that the restriction ω |L of
the symplectic structure is vanishing as a 2-form. The topological classification
of Lagrangian submanifolds in a symplectic manifold is an important problem in
symplectic topology. Given a Lagrangian immersion of an n-dimensional manifold
into a 2n-dimensional symplectic manifold, it is interesting to know whether it is
Lagrangian regularly homotopic to a Lagrangian embedding. In this paper, we show
that in some cases all Lagrangian immersions are at least homotopic to Lagrangian
embeddings as continuous maps. Our main result is the following.

Theorem 1.1. Let X be either the complex projective 3-space CP 3 or the product
CP 1×CP 2 of the complex projective line and the complex projective plane, where the
complex projective space CPn is endowed with the Fubini-Study form ωn, n = 1, 2, 3.
Then for a closed orientable connected 3-manifold L and a Lagrangian immersion
f : L#(S1 × S2) → X, there exists a Lagrangian embedding L#(S1 × S2) → X
homotopic to f .

Gromov’s h-principle for Lagrangian immersions [4] gives a necessary and suf-
ficient condition for a continuous map f from a 3-manifold L to a 6-dimensional
symplectic manifold X to be homotopic to a Lagrangian immersion. In particular,
any closed orientable 3-manifold L admits a Lagrangian immersion into a Darboux
chart. However, it is not always true that a Lagrangian immersion is homotopic to a
Lagrangian embedding. In fact, there are several necessary conditions for a closed
3-manifold L to be a Lagrangian submanifold of the complex projective 3-space
CP 3, see Seidel [7] and Biran [1]. For a closed orientable connected 3-manifold
L, the connected sum L#(S1 × S2) satisfies the necessary conditions of Seidel [7].
Indeed, the existence of a Lagrangian embedding of L#(S1 × S2) into a Darboux
chart is proved in [2].
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Theorem 1.2 (Ekholm-Eliashberg-Murphy-Smith [2]). There exists a Lagrangian
embedding L#(S1 × S2) → C3 for any closed orientable connected 3-manifold L,
where C3 is the standard symplectic space.

Theorem 1.2 was proved by applying the resolving theory of Lagrangian self-
intersections by Hamiltonian regular homotopies for certain Lagrangian immersions
developed by Eliashberg and Murphy [3]. They constructed a self-transverse La-
grangian immersion L→ C3 with exactly one double point and resolved the double
point by Polterovich’s Lagrangian surgery [5].

Remark 1.3. Lagrangian embeddings into a Darboux chart are homotopically
trivial. For a closed orientable connected 3-manifold L, if H2(L;Z) has a non-
trivial 4-torsion element then Theorem 1.1 provides a homotopically non-trivial
Lagrangian embedding of L#(S1×S2) into CP 3, and if H2(L;Z) has a non-trivial
torsion element then Theorem 1.1 provides a homotopically non-trivial Lagrangian
embedding of L#(S1 × S2) into CP 1 × CP 2. See Lemmas 3.3 and 3.7 below.

1.2. Plan of the paper. In Section 2, we construct a local deformation of La-
grangian immersions. With the help of this local deformation, the arguments in
[3] and [2] ensure that Theorems 2.1 and 2.2 hold. Theorems 2.1 and 2.2 are h-
principles for self-transverse Lagrangian immersions into 6-dimensional compact
symplectic manifolds with the minimal or near-minimal number of double points
and with a conical point, respectively. In Sections 3.1 and 3.3, we characterize
the homotopy classes of Lagrangian immersions of closed orientable connected 3-
manifolds into CP 3 and into CP 1 × CP 2, respectively. In Sections 3.2 and 3.4,
Theorem 1.1 is proved as an application of Theorems 2.1, 2.2, Lemmas 3.3, 3.7,
and Polterovich’s Lagrangian surgery [5].
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2. Lagrangian immersions with few double points

We use the definitions introduced in [3] and [2]. Let X be a 6-dimensional
oriented manifold, L a 3-manifold, and f : L → X an immersion. We denote by
I(f) ∈ Z/2 and SI(f) ∈ Z the self-intersection number of f and the total number
of double points of f , respectively.

To prove Theorem 1.1, we use the following theorems.

Theorem 2.1. Let (X,ω) be a 6-dimensional simply connected compact symplectic
manifold, L a closed connected 3-manifold, and f0 : L → X a Lagrangian immer-
sion. Then there exists a Hamiltonian regular homotopy ft : L → X, 0 ≤ t ≤ 1,
from the Lagrangian immersion f0 to a self-transverse Lagrangian immersion f1
such that

SI(f1) =

{
1, if I(f0) = 1;

2, if I(f0) = 0.
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Theorem 2.2. Let (X,ω) be a 6-dimensional simply connected compact symplectic
manifold, L a connected 3-manifold, and f0 : L→ X a Lagrangian immersion with a
conical point p ∈ L. Suppose that the Legendrian link of f0 at p is loose. Then there
exists a Hamiltonian regular homotopy ft : L→ X, 0 ≤ t ≤ 1, from the Lagrangian
immersion f0 to a self-transverse Lagrangian immersion f1 with a conical point p
such that ft is the identity in a neighborhood of p and that SI(f1) = |I(f0)|.

Theorems 2.1 and 2.2 can be proved in a way similar to the proof of Theorems 1.1
and 3.7 of [2] for symplectic manifolds of dimension ≥ 8, by using the following
lemma instead of Lemma 4.2 of [3] in the proof of Theorem 2.2 of [3].

Lemma 2.3. Let A = [0, 1] × Sn−1 3 (x, z), n ≥ 3, be the annulus with the
coordinates (x, z). Take the dual coordinates (y, u) on the cotangent bundle T ∗A
so that the canonical Liouville form λ = y dx+ u dz. Then for any integer N ≥ 10
there exists a Lagrangian immersion ∆: A→ T ∗A with the following properties:

• ∆(A) ⊂
{
|y| ≤ 12

N , ‖u‖ ≤
12
N

}
;

• ∆ coincides with the inclusion of the zero section jA : A ↪→ T ∗A near ∂A;
• there exists a Lagrangian regular homotopy which is the identity near ∂A

and connects jA to ∆ in
{
|y| ≤ 12

N , ‖u‖ ≤
12
N

}
;

• for the ∆-image ζ of any path connecting {0} × Sn−1 to {1} × Sn−1 in A,∫
ζ
λ = 1;

• the action of any self-intersection point of ∆ is < 2
N ;

• SI(∆) = 4N2.

Proof. We follow the proof of Lemma 4.2 of [3], where ∆ was constructed by using
the plane curves γ1, γ2, and γ3. We change γ1 so that SI(∆) = 4N2 as follows.

Consider in R2 with the coordinates (x, y) the curves ζk : [0, 4] → R2, k =
1, . . . , N , defined by

ζk(t) =


(

1
12 −

k−1
N4 ,

(
6
N2 + 2(k−1)

N4

)
t− k−1

N4

)
if 0 ≤ t ≤ 1,((

1
6 + 2(k−1)

N4

)
t− 1

12 −
3(k−1)
N4 , 6

N2 + k−1
N4

)
if 1 ≤ t ≤ 2,(

1
4 + k−1

N4 ,−
(

6
N2 + 2k−1

N4

)
t+ 18

N2 + 5k−3
N4

)
if 2 ≤ t ≤ 3,(

−
(
1
6 + 2k−1

N4

)
t+ 3

4 + 7k−4
N4 ,− k

N4

)
if 3 ≤ t ≤ 4.

Then a product ηN = ζ1 · ζ2 · · · · · ζN : [0, 4]→ R2 satisfies∫
ηN

y dx =
1

N
+

1

6N2
+

6

N4
− 14

3N5
− 1

2N6
+

1

6N7
.

Figure 1. the curve ηN for N = 10
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We denote by Tε : R2 → R2 the affine map (x, y) 7→ (x, y+ε) and let lN : [0, 3]→
R2 be a piecewise linear embedding connecting four points

lN (0) = ηN (4) =

(
1

12
− 1

N3
,− 1

N3

)
,

lN (1) =

(
1

12
− 1

N3
,

6

N2
+

1

N3
− 1

2N4

)
,

lN (2) =

(
1

12
,

6

N2
+

1

N3
− 1

2N4

)
, and

lN (3) = TδN (ηN (0)) =

(
1

12
,

6

N2
+

2

N3

)
,

where δN = 6
N2 + 2

N3 . We further let kN : [0, 3]→ R2 be a piecewise linear embed-
ding connecting four points

kN (0) = T(N−1)δN (ηN (4)) =

(
1

12
− 1

N3
,

6

N
− 4

N2
− 3

N3

)
,

kN (1) =

(
1

12
− 1

N3
,

6

N
+

2

N2
− 2

N3
− 1

2N4

)
,

kN (2) =

(
1

4
+

1

N3
,

6

N
+

2

N2
− 2

N3
− 1

2N4

)
, and

kN (3) =

(
1

4
+

1

N3
, 0

)
.

Then we define a curve γ : [0, 1] → R2 by connecting the straight line
[
0, 1

12

]
×

{0}, N -copies ηN , TδN (ηN ), T2δN (ηN ), . . . , T(N−1)δN (ηN ) of ηN , (N − 1)-copies lN ,

TδN (lN ), T2δN (lN ), . . . , T(N−2)δN (lN ) of lN , the curve kN , and the straight line
[
1
4 +

1
N3 ,

1
3

]
× {0}. See Figure 2.

Figure 2. the curve γ for N = 3

By the construction, the curve γ satisfies the followings:

• 1− 2
N <

∫
γ
y dx < 1 + 2

N ;

• the action of any self-intersection point of γ is < 2
N ;

• SI(γ) = N2.
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Smoothing the corners of γ, we construct an immersed curve γ1 with transverse
self-intersections. We can arrange γ1 to satisfy the followings:

•
∣∣∣ ∫γ1 y dx− 1

∣∣∣< 2
N ;

• the action of any self-intersection point of γ1 is < 2
N ;

• SI(γ1) = N2;

• the curve γ1 is contained in the rectangle
{

0 ≤ x ≤ 1
3 , |y| ≤

7
N

}
.

We replace the plane curve γ1 in the proof of Lemma 4.2 of [3] with the above γ1.
Then we define γ2 and γ3, and then ∆ in a way similar to the proof of Lemma 4.2
of [3]. �

Remark 2.4. Lemma 4.2 of [3] only asserted the construction of such ∆ with
SI(∆) ∼ N3, and hence Theorem 2.2 of [3] was shown for a symplectic manifold
which is the negative completion of a compact symplectic manifold and of dimension
2n ≥ 8 in this way.

3. Proof of Theorem 1.1

3.1. Lagrangian immersions into CP 3. In view of Gromov’s h-principle, the
classification of Lagrangian immersions is reduced to a pure algebro-topological
problem. In this section, we characterize the homotopy classes of Lagrangian im-
mersions of closed orientable connected 3-manifolds into CP 3.

First the homotopy classes of continuous maps from a 3-manifold L to the com-
plex projective 3-space CP 3 are classified as follows. We denote by γn → CPn the
tautological line bundle and by c1(γn) its first Chern class.

Proposition 3.1. Let L be a 3-manifold. If n ≥ 2 then the map

[L,CPn]→ H2(L;Z) : [h] 7→ −h∗c1(γn)

is a bijection.

Proof. It follows from the fact that CP∞ is the Eilenberg-MacLane space K(Z, 2)
and CPn ⊂ CP∞ is the 2n-skeleton. �

We state Gromov’s h-principle for Lagrangian immersions.

Theorem 3.2 (Gromov [4]). Let (X,ω) be a 2n-dimensional symplectic manifold
and L an n-dimensional manifold. If h : L→ X is a continuous map with [h∗ω] = 0
in H2(L;R) and H : TL→ TX a Lagrangian homomorphism covering h, then there
exists a Lagrangian immersion f : L→ X which is homotopic to h. Moreover,

(1) if h is an immersion then one can choose f to be regularly homotopic to h;
(2) if h is a Lagrangian immersion on a neighborhood of a closed ball in L then

one can choose f to be equal to h on the closed ball.

The above two conditions, [h∗ω] = 0 in H2(L;R) and the existence of a La-
grangian homomorphism covering h, are simplified in the case where (X,ω) is the
complex projective 3-space CP 3 and L is a closed orientable connected 3-manifold.

Lemma 3.3. Let L be a closed orientable connected 3-manifold and h : L → CP 3

a continuous map. Then the followings are equivalent.

(1) There exists a Lagrangian immersion L→ CP 3 which is homotopic to h.
(2) h∗c1(γ3) is a 4-torsion element in H2(L;Z).
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Proof. The equality [ω3] = −c1(γ3) ∈ H2(CP 3;Z) and the naturality of coefficient
homomorphisms imply that [h∗ω3] = 0 in H2(L;R) if and only if h∗c1(γ3) is a
torsion element in H2(L;Z).

Next, we fix a 3-frame of the tangent bundle TL. Let P → CP 3 be the principal
U(3)-bundle associated to the tangent bundle TCP 3. Then we can identify a La-
grangian homomorphism H : TL→ TCP 3 covering h with a map s : L→ P which
is a lift of h. Thus there exists a Lagrangian homomorphism H : TL→ TCP 3 cov-
ering h if and only if the principal U(3)-bundle h∗P → L admits a global section.
Since dimL = 3, the obstruction for the existence of a global section L → h∗P is
only the first Chern class c1(h∗TCP 3) = h∗c1(TCP 3) = −4h∗c1(γ3). �

Remark 3.4. Using part 1) of Theorem 3.2 and taking the connected sum of
Whitney sphere, we can see that for the above pair (h,H) and a number n ∈ Z/2,
there exists a self-transverse Lagrangian immersion f : L→ CP 3 which is homotopic
to h and satisfies I(f) = n.

We state another lemma which is used in the proof of Theorem 1.1 for CP 3. It
directly follows from Theorem 2.1 and Lemma 3.3.

Lemma 3.5. Let L be a closed orientable connected 3-manifold and h : L→ CP 3 a
continuous map with 4h∗c1(γ3) = 0 in H2(L;Z). Then for an arbitrary Lagrangian
immersion f0 : L→ CP 3 which is homotopic to h, there exists a Lagrangian regular
homotopy ft : L→ CP 3, 0 ≤ t ≤ 1, such that f1 is self-transverse and

SI(f1) =

{
1, if I(f0) = 1;

2, if I(f0) = 0.

3.2. Proof of Theorem 1.1 for CP 3. Let L be a closed orientable connected
3-manifold and f : L#(S1 × S2) → CP 3 a Lagrangian immersion. Lemma 3.3
provides the equality 4f∗c1(γ3) = 0 in H2(L#(S1×S2);Z). By the Mayer-Vietoris

exact sequence for L#(S1×S2) = (L\
◦
D3)∪(S1×S2 \

◦
D3) where

◦
D3 is the interior

of a closed 3-disk, there is the isomorphism H2(L#(S1×S2);Z) ∼= H2(L\
◦
D3;Z)⊕

H2(S1 × S2 \
◦
D3;Z). Since the isomorphism in the Mayer-Vietoris exact sequence

is induced by the inclusions and H2(S1 × S2 \
◦
D3;Z) ∼= Z, the element f∗c1(γ3) is

of the form

f∗c1(γ3) = (h∗c1(γ3), 0) ∈ H2(L \
◦
D3;Z)⊕H2(S1 × S2 \

◦
D3;Z),

where [h] =
[
f
∣∣∣
L\

◦
D3

]
∈ [L \

◦
D3,CP 3].

In the following, we construct a self-transverse Lagrangian immersion of L into
CP 3 with exactly one double point and resolve the double point by Polterovich’s
Lagrangian surgery [5] to obtain the desired Lagrangian embedding. Since H2(L \
◦
D3;Z) ∼= H2(L;Z), we can identify [L \

◦
D3,CP 3] with [L,CP 3]. Let [ĥ] be the

element of [L,CP 3] which is the extension of [h]. We note that 4ĥ∗c1(γ3) = 0

in H2(L;Z). Applying Lemmas 3.3 and 3.5 to ĥ, we obtain a self-transverse La-

grangian immersion f1 : L→ CP 3 which is homotopic to ĥ and satisfies SI(f1) = 1.
Using Polterovich’s Lagrangian surgery [5] to resolve the double point of f1, we
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obtain a Lagrangian embedding g : L#(S1 × S2) → CP 3. We claim that g is ho-
motopic to f . Indeed, it is enough to show that g∗c1(γ3) = f∗c1(γ3), and by the
definition of h,

g∗c1(γ3) =
((
g
∣∣∣
L\

◦
D3

)∗
c1(γ3),

(
g
∣∣∣
S1×S2\

◦
D3

)∗
c1(γ3)

)
=
((
f1

∣∣∣
L\

◦
D3

)∗
c1(γ3), 0

)
= (h∗c1(γ3), 0)

= f∗c1(γ3).

The proof of Theorem 1.1 for CP 3 is completed. �

3.3. Lagrangian immersions into CP 1 × CP 2. In this section, we characterize
the homotopy classes of Lagrangian immersions of closed orientable connected 3-
manifolds into CP 1 × CP 2.

We need a classification of homotopy classes of continuous maps from a 3-
manifold L to the complex projective line CP 1. In [6], Pontrjagin proved the
following.

Theorem 3.6 (Pontrjagin [6]). Let K be a 3-dimensional complex. Then there is
a bijection

[K,CP 1] ≈
∐

z2∈H2(K;Z)

H3(K;Z)/(2z2 ^ H1(K;Z)),

where ^ denotes the cup product.

We recall the correspondence of the elements in Theorem 3.6 for a closed ori-
entable connected 3-manifold L. For an element [h] ∈ [L,CP 1], the cohomology
class z2 ∈ H2(L;Z) is equal to −h∗c1(γ1). It represents the primary obstruction
for continuous maps from a 3-manifold L to the complex projective line CP 1 to be
homotopic. The second obstruction is an element of H3(L;π3(CP 1)) ∼= H3(L;Z)
modulo 2z2 ^ H1(L;Z). For continuous maps f1 : L → CP 1 and g1 : L → CP 1

with f∗1 c1(γ1) = g∗1c1(γ1), the difference between the homotopy classes [f1] and [g1]
can be realized by the connected sum of an element of π3(CP 1) since L is connected.

As in Section 3.1, we simplify the two conditions in Theorem 3.2.

Lemma 3.7. Let L be a closed orientable connected 3-manifold and h = (h1, h2) : L
→ CP 1 × CP 2 a continuous map. Then the followings are equivalent.

(1) There exists a Lagrangian immersion L→ CP 1 ×CP 2 which is homotopic
to h.

(2) h∗1c1(γ1) and h∗2c1(γ2) are torsion elements in H2(L;Z).

Proof. Using the equalities [ωn] = −c1(γn) in H2(CPn;Z) for a positive integer n,
c1(TCP 1) = −2c1(γ1), and c1(TCP 2) = −3c1(γ2), the proof can be done in a way
similar to the proof of Lemma 3.3. �

Remark 3.8. As with Remark 3.4, the following statement holds. For the above
pair (h,H) and a number n ∈ Z/2, one can choose a self-transverse Lagrangian
immersion f : L→ CP 1 × CP 2 which is homotopic to h and satisfies I(f) = n.

We state another lemma which is used in the proof of Theorem 1.1 for the product
CP 1 × CP 2. It directly follows from Theorem 2.1 and Lemma 3.7.
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Lemma 3.9. Let h : L → CP 1 × CP 2 be a continuous map of a closed orientable
connected 3-manifold L. Suppose that h∗1c1(γ1) and h∗2c1(γ2) are torsion elements in
H2(L;Z). Then for an arbitrary Lagrangian immersion f0 : L→ CP 1×CP 2 which
is homotopic to h, there exists a Lagrangian regular homotopy ft : L→ CP 1×CP 2,
0 ≤ t ≤ 1, such that f1 is self-transverse and

SI(f1) =

{
1, if I(f0) = 1;

2, if I(f0) = 0.

3.4. Proof of Theorem 1.1 for CP 1 × CP 2. Let L be a closed orientable con-
nected 3-manifold and f = (f1, f2) : L#(S1 × S2) → CP 1 × CP 2 a Lagrangian
immersion. By Lemma 3.7, the cohomology classes f∗1 c1(γ1) and f∗2 c1(γ2) are tor-
sion elements in H2(L#(S1×S2);Z). As in the proof of Theorem 1.1 for CP 3, the
cohomology classes f∗j c1(γj) are of the forms

f∗j c1(γj) = (h∗jc1(γj), 0) ∈ H2(L \
◦
D3;Z)⊕H2(S1 × S2 \

◦
D3;Z),

where hj = fj

∣∣∣
L\

◦
D3

: L \
◦
D3 → CP j and j ∈ {1, 2}. We take a continuous map

h̃ = (h̃1, h̃2) : L→ CP 1 × CP 2 such that h̃∗jc1(γj) = h∗jc1(γj) via the isomorphism

H2(L;Z) ∼= H2(L \
◦
D3;Z), j ∈ {1, 2}, as follows. In view of Proposition 3.1

and the isomorphism H2(L;Z) ∼= H2(L \
◦
D3;Z), the cohomology class h∗2c1(γ2) ∈

H2(L\
◦
D3;Z) determines the unique element in [L,CP 2]. Choosing a representative

h̃2 of the homotopy class, we have h̃∗2c1(γ2) = h∗2c1(γ2). Using Theorem 3.6 and the

isomorphism H2(L;Z) ∼= H2(L \
◦
D3;Z), we can take a continuous map h̃1 : L →

CP 1 with h̃∗1c1(γ1) = h∗1c1(γ1) in a similar way. We note that the equality is

equivalent to that the maps h1 and h̃1 are homotopic on the 2-skeleton of L.
We construct a self-transverse Lagrangian immersion of L into CP 1×CP 2 with

exactly one double point. The continuous map h̃ = (h̃1, h̃2) : L → CP 1 × CP 2

satisfies the second condition of Lemma 3.7. Thus there exists a self-transverse
Lagrangian immersion f̃0 : L → CP 1 × CP 2 which is homotopic to h̃ and satisfies
I(f̃0) = 1. Applying Lemma 3.9 to f̃0, we obtain a self-transverse Lagrangian

immersion f̃1 : L → CP 1 × CP 2 which is homotopic to h̃ and satisfies SI(f̃1) = 1.

Moreover, the proof of Theorem 1.1 of [2] shows that there exists a point p ∈ f̃1(L)
and a Darboux chart around p, symplectomorphic to the 6-ball Bε of radius ε
with the standard symplectic structure, such that the self-intersection point x of f̃1

belongs to Bε/2 and φ = f̃1(L) ∩ ∂Bε is a loose Legendrian sphere in the 5-sphere
∂Bε with the standard contact structure.

We construct a Lagrangian embedding of L#(S1 × S2) into CP 1 × CP 2 which
is homotopic to f . Using Polterovich’s Lagrangian surgery [5] to resolve the double

point x of f̃1 = (f̃11 , f̃
1
2 ), we obtain a Lagrangian embedding g = (g1, g2) : L#(S1×

S2) → CP 1 × CP 2. Since g∗2c1(γ2) = f∗2 c1(γ2), g2 is homotopic to f2. We also
have g∗1c1(γ1) = f∗1 c1(γ1). By Theorem 3.6, the difference between the homotopy
classes [g1] and [f1] in [L#(S1 × S2),CP 1] can be realized by the connected sum
of an element of π3(CP 1). Therefore, there exists a continuous map a : S3 → CP 1

such that g1#a is homotopic to f1. We may assume that the disk in L#(S1 × S2)
which is removed for the connected sum g1#a does not intersect g−1(Bε). We
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consider a continuous map g#a = (g1#a, g2) : L#(S1 × S2) → CP 1 × CP 2. Since
g#a satisfies the assumption of Lemma 3.7, there exists a self-transverse Lagrangian
immersion ga : L#(S1×S2)→ CP 1×CP 2 such that I(ga) = 0 and ga is homotopic

to g#a relative to (g#a)−1(Bε) = g−1(Bε). Since f̃1 |g−1(Bε) can be glued to
ga |L#(S1×S2)\g−1(Bε), we obtain a self-transverse Lagrangian immersion g̃a : L →
CP 1 × CP 2 of I(g̃a) = 1. In the Darboux chart Bε, the Lagrangian immersion

g̃a coincides with f̃1. Hence, we can replace g̃a(L) ∩ Bε/2 by the Lagrangian cone

over the loose Legendrian knot φ. Then we have a Lagrangian immersion g̃0 : L→
CP 1 × CP 2 with a conical point q such that the Legendrian link at q is loose and
I(g̃0) = 0. Applying Theorem 2.2 to g̃0, we obtain a Lagrangian regular homotopy
g̃t : L→ CP 1×CP 2, t ∈ [0, 1], that is the identity in a neighborhood of the conical
point q and that connects g̃0 to a self-transverse Lagrangian immersion g̃1 with a
conical point q and with SI(g̃1) = I(g̃0) = 0.

Rescaling g̃a(L)∩Bε/2 and replacing the Lagrangian cone over the loose Legen-
drian knot φ by the rescaled g̃a(L) ∩ Bε/2, we obtain a self-transverse Lagrangian

immersion g̃2 : L→ CP 1 × CP 2 with SI(g̃2) = 1. Finally, again resolving the dou-
ble point x of g̃2 by Polterovich’s Lagrangian surgery [5], we obtain a Lagrangian
embedding g1 : L#(S1 × S2) → CP 1 × CP 2 homotopic to ga relative to a small
neighborhood of the point q. In particular, g1 is homotopic to f . The proof of
Theorem 1.1 for CP 1 × CP 2 is completed. �
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