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Abstract

Least square regression methods are Monte Carlo methods to solve non-liear
problems related to Markov processes and are widely used in practice. In these
methods, first we choose a system of functions to approximate value functions. So
one of questions on these methods is what kinds of systems of functions one has
to take to get a good approximation. In the present paper, we will discuss on this
problem.
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1 Introduction

Least square regression methods are Monte Carlo methods to solve non-liear problems
related to Markov processes. These methods were introduced by Longstaff-Schwartz [9]
and Tsitsiklis-Van Roy[11] and are widely used in practice. There are many works re-
lated to this methods. Concerning the applications for pricing Bermudan derivatives, the
convergence to a real price was proved by Clement-Lamberton-Protter [4] and rate of
convergence was studied by Belomestny [2]. In these methods, first we choose a system
of functions to approximate value functions. So one of questions on these methods is
what kinds of systems of functions one has to take to get a good approximation. In the
present paper, we will discuss on this problem. Related topics have been discussed by
Gobet-Lemor-Warin [5] and Bally-Pagés [1].
Let (Ω,F , P ) be a probability space,M = 1, and {Gm}Mm=0 be a filtration on (Ω,F , P ).

Let (E,B) a measurable space and m(E) be the set of Borel measurable functions on E.
Let pm : E × B → [0, 1], m = 0, . . . ,M − 1, be such that pm(x, ·) : B → [0, 1] is a
probability measure on E for any x ∈ E, and pm(·, A) : E → [0, 1] is B-measurable for
any A ∈ B. Let x0 ∈ E and fix it throughout. Let X : {0, 1, . . . ,M} × Ω → E be an
E-valued process such that X0 = x0, Xm : Ω→ E is Gm-measurable, m = 0, . . . ,M, and

P (Xm+1 ∈ A|Gm) = pm(Xm, A) a.s. A ∈ B, m = 0, . . . ,M − 1.
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So X is a Markov process starting from x0 whose transition probability is given by
pm(x, dy).
Let νm, m = 1, . . . ,M, be the probability law of Xm, m = 0, 1, . . . ,M. Then ν0 is the

probability measure concentrated in x0, and

νm+1(A) =

Z
E

pm(x,A)νm(dx), y ∈ E,m = 0, 1, . . . ,M − 1.

Let Pm : L
2(E; dνm+1)→ L2(E; dνm), m = 0, 1, . . . ,M − 1, be a linear operator given

by

(Pmf)(x) =

Z
E

pm(x, dy)f(y), f ∈ L2(E; dνm+1).

Now let fm ∈ L4(E; dνm), m = 1, 2, . . . ,M. We define f̃m, f̃
∗
m ∈ L4(E; dνm), m =

0, 1, 2, . . . ,M, inductively by th following.

f̃M = fM ,

and
f̃∗m = f̃m ∨ fm, f̃m−1 = Pm(f̃m ∨ fm), m =M,M − 1, . . . , 1.

Then it is well-known that

f̃0 = sup{E[fτ (Xτ )]; τ is a {Gm}Mm=0-stopping time with τ ∈ {1, 2, . . . ,M} a.s.}.

f̃0 is the price of a Bermudan derivative for which exercisable times are 1, . . . ,M, and
pay-off at each time is fm(Xm), m = 1, . . . ,M. Our concern is to compute f̃0 numerically.
Let V denote the set of finite dimensional vector subspaces ofm(E). For any probability

measure ν on (E,B), let V(ν) denote the subset of V such that V ∈ V(ν), if and only if
V satisfies the following two conditions.
(1) If g ∈ V, then

R
E
g(x)4ν(dx) <∞.

(2) If g ∈ V and g(x) = 0 ν − a.e.x, then g ≡ 0.
For any probability measure ν on (E,B) and V ∈ V(ν), we define λ0(V, ν) and λ1(V, ν)

by the following.

λ0(V, ν) = sup{
R
E
g(x)4ν(dx)

(
R
E
g(x)2ν(dx))2

; g ∈ V \ {0}}

λ1(V ; ν) = inf{
Z
E

(

dim VX
r=1

er(x)
2)2ν(dx); {er}dim V

r=1 is an orthonormal basis

of V as a subspace of L2(E; dν) }.
We will show in Proposition 4 that

λ1(V ; ν) 5 (dim V )2λ0(V ; ν) and λ0(V ; ν) 5 λ1(V ; ν).

Now let (X
(`)
0 , X

(`)
1 , . . . , X

(`)
M ), ` = 1, 2, . . . , be independent identically distributed

EM+1-valued random variables such that the law of (X`
0, X

`
1, . . . , X

`
M), ` = 1, 2, . . . , is

the same as the law of (X0, X1, . . . , XM) under P.
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For any m = 0, 1, . . . ,M − 1, and L = 1, we define D(L)
m : m(E)×m(E)×Ω→ [0,∞)

by

D(L)
m (g, f)(ω) = (

1

L

LX
`=1

(g(X(`)
m (ω)− f(X(`)

m+1(ω))
2)1/2, g, f ∈ m(E).

Let V
(k)
m , k = 1, 2, . . . , be a sequence of strictly increasing vector spaces in V(νm) such

that
S∞
k=1 V

(k)
m is dense in L2(E; dνm) for m = 1, . . . ,M − 1.

Now we assume that g
(L)
m : Ω → V

(L)
m , m = 0, 1, . . . ,M − 1, L = 1, 2, . . . , satisfy the

following.

Dm−1(g
(L)
m−1(ω), g

(L)
m (ω) ∨ fm)(ω) = inf{Dm−1(h, g

(L)
m (ω) ∨ fm); h ∈ V (L)m (ω)} (1)

for m = 1, 2, . . . ,M. Here we let g
(L)
M = fM .

We will show that such g
(L)
m ’s always exist.

Then we will prove the following.

Theorem 1 Suppose that λ1(V
(L)
m ; νm)/L → 0, as L → ∞ for m = 1, . . . ,M − 1. Then

there are ΩL ∈ F , L = 1, 2, . . . , and random variables ZL, L = 1, 2, . . . , such that

P (ΩL)→ 1, as L→∞,

|f̃0 − g(L)0 (ω)| 5 ZL(ω), L = 1, ω ∈ ΩL,
and

E[Z2L,ΩL]
1/2 → 0, as L→∞.

Morover, we have
E[Z2L,ΩL]

1/2

5 6
M−1X
m=1

1

L1/2
λ1(V

(L)
m , νm)

1/4(1 + λ0(V
(L)
m , νm))

1/4||Pmf̃∗m+1||L4(E;dνm)

+5
M−1X
m=1

||Pmf̃∗m+1 − π
m,V

(L)
m
Pmf̃

∗
m+1||L2(E;dνm).

Here π
m,V

(L)
m
is the orthogonal projection in L2(E, dνm) onto V

(L)
m , m = 1, . . . ,M.

So roughly speaking, g
(L)
0 → f0 in probability as L→∞ in a certain rate.

It is obvious that λ0(V ; νm) = 1 and λ1(V ; νm) = dim V for any V ∈ Vm, m =
1, 2, . . . ,M. So the above theorem raises the following question. Can one estimate λ0(V ; ν)
and ||Pmf̃ ∗m+1 − πm,V Pmf̃

∗
m+1||L2(E;dνm) for V ∈ V(νm) ? If we can do it, we may find a

sequence V
(k)
m ∈ V(νm) such that the convergence rate is good.

We give an estimate when an underlying process is a 1-dimensional Brownian motion
and V is a space of polynomials in Section 6. Also, we introduce a random systems
of piece-wise polynomials in Section 8, and we give some estimates when an underlying
process is a Hörmander type diffusion process as discussed in [7]. As far as we judge from
these estimates, a usual polynomial system is not good, and such a random system of
piece-wise polynomials is better.
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2 Preliminary results

Let Pf(E ×E) be the set of probability measures on (E ×E,B × B) whose supports are
finite subsets of E×E. Let πi : E×E, i = 1, 2, be natural projections given by π1(x, y) = x,
π2(x, y) = y, x, y ∈ E. For any ρ ∈ Pf (E×E), let S(·, ∗; ρ) : m(E)×m(E)→ R be given
by

S(g, f ; ρ) =

Z
E×E

(g(x)− f(y))2ρ(dx, dy), g, f ∈ m(E). (2)

Then we have the following.

Proposition 2 Let ρ ∈ Pf (E × E). For any f ∈ m(E) and V ∈ V, let

s∗(f ;V, ρ) = inf{S(g, f ; ρ); g ∈ V }

and
Γ(f ;V, ρ) = {g ∈ V ; S(g, f ; ρ) = s∗(f, V, ρ)}.

Then we have the following.
(1) Γ(f ;V, ρ) is not empty for any f ∈ m(E) and V ∈ V.
(2) Let V ∈ V . If f ∈ m(E) and g ∈ Γ(f ;V, ρ), thenZ

E×E
h(x)(f(y)− g(x))ρ(dx, dy) = 0 for any h ∈ V.

Moreover, if f1, f2 ∈ m(E), gi ∈ Γ(fi;V, ρ), i = 1, 2, then

S(g1 − g2, 0; ρ) 5 S(0, f1 − f2; ρ).

(3) If f ∈ m(E), g ∈ Γ(f ;V, ρ) and g̃ ∈ V, then

S(g − g̃, 0; ρ)1/2 = sup{|
Z
E×E

h(x)(f(y)− g̃(x))ρ(dx, dy)|; h ∈ V, S(h, 0; ρ) = 1}.

Proof. (1) It is easy to see that

S(g, f ; ρ) = S(0, f ; ρ) + S(g, 0; ρ)− 2S(g, 0; ρ)1/2S(0, f ; ρ)1/2, g ∈ V.

Let V0 = {g ∈ V ; S(g, 0; ρ) = 0} = {g ∈ V : g(x) = 0 for ρ -a.e. (x, y) ∈ E × E}. Then
it is easy to see that V0 is a vector subspace of V. So there is a vector subspace V1 of V
such that V0 + V1 = V and V0 ∩ V1 = {0}. It is easy to see that g ∈ V1 → S(g, f ;A) is a
continuous function from V1 to [0,∞) and that S(g, f ;A) → ∞ as g → ∞ in V1. So we
see that there is a minimum point g0 ∈ V1. Note that S(g + h, f ; ρ) = S(g, f ; ρ) for any
g ∈ V and h ∈ V0. Therefore we see that S(g0, f ; ρ) = s∗(f ;V, ρ) and that Γ(f ;V, ρ) is
not empty.
(2) Let g ∈ Γ(f ;V, ρ). The first assertion is obvious, since

0 =
d

dt
S(g + th, f ; ρ)|t=0 =

Z
E×E

h(x)(f(y)− g(x))ρ(dx, dy)

for any h ∈ V.
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Let fi ∈ m(E), gi ∈ Γ(fi;V, ρ), i = 1, 2. Then we have
S(g1 − g2, f1 − f2; ρ)

= −S(g1 − g2, 0; ρ) + S(0, f1 − f2; ρ)

−2
Z
E×E

(g1(x)− g2(x))(f1(y)− g1(x)− (f2(y)− g2(x)))ρ(dx, dy).

By the first assertion, we see that

S(0, f1 − f2; ρ) = S(g1 − g2, f1 − f2; ρ) + S(g1 − g2, 0; ρ).
So we have the second assertion.
(3) Let g ∈ Γ(f ;V, ρ) and g̃ ∈ V. Then we have

S(g̃ + h, f ; ρ) = S(g̃, f ; ρ) + S(h, 0; ρ)− 2
Z
E×E

h(x)(f(y)− g̃(x))ρ(dx, dy).

Let

c = sup{
Z
E×E

h(x)(f(y)− g̃(x))ρ(dx, dy); h ∈ V, S(h, 0; ρ) = 1} = 0.

Then we see that

s∗(f ;V, ρ) = S(g̃, f ; ρ) + inf
t=0
(t2 − 2tc) = S(g̃, f ; ρ)− c2.

Also, we have by Assertion (2)

S(g̃, f, ρ) = S(g+(g̃− g), f ; ρ) = S(g, f ; ρ)+S(g̃− g, 0 : ρ) = s∗(f ;A, V )+S(g̃− g, 0 : ρ).
So we see that c2 = S(g̃ − g, 0 : ρ). This implies our assertion.
For any m = 1, 2, . . . ,M, V ∈ V(νm), and ρ ∈ Pf (E × E), let

δm(V ; ρ) = sup{|S(h, 0; ρ)− 1|;h ∈ V,
Z
E

h(x)2νm(dx) = 1}.

Then we have the following.

Proposition 3 Let m = 1, 2, . . . ,M, V ∈ V(νm), and ρ ∈ Pf(E × E). Let {ek; k =
1, . . . , dim V } be an orthonormal basis of V. Here we regard V as a Hilbert subspace of
L2(E,B(E), dνm), and so we haveZ

E

ei(x)ej(x)νm(dx) = δij, i, j = 1, . . . , dim V.

Let A be a (dim V )× (dim V )-symmetric matrix valued function defined in E given by

A(x) = (Aij(x))
dim V
i,j=1 = (ei(x)ej(x))

dimV
i,j=1 , x ∈ E.

Then δm(V ; ρ) is equal to the operator norm of the dim V × dim V -symmetric matrix
Ā− I. Here I is the identity matrix and Ā = (Āij)dim V

i,j=1 , where

Āij =

Z
E

ei(x)ej(x)ρ(dx, dy), i, j = 1, . . . , dim V .

In particular,

δm(V ; ρ)
2 5

dim VX
i,j=1

(

Z
E

(ei(x)ej(x)− δij)ρ(dx, dy))
2.
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Proof. It is easy to see that

δm(V ; ρ) = sup{|S(
dim VX
i=1

aiei, 0; ρ)− 1|;
dimVX
i=1

a2i = 1}

= sup{|
dim VX
i,j=1

aiaj(Āij − δij)|;
dim VX
i=1

a2i = 1}.

Since Ā− I is symmetric, we see our assertion.

Proposition 4 For any probability measure ν on (E,B), and V ∈ V(ν),

λ1(V, ν) 5 (dim V )2λ0(V, ν)

and
λ0(V, ν) 5 λ1(V, ν).

Proof. Let {er}dim V
r=1 be an orthonormal basis of V. Then we see thatZ

E

(

dim VX
r=1

er(x)
2)2ν(dx) 5

Z
E

(dim V )(

dim VX
r=1

er(x)
4)ν(dx) 5 (dim V )2λ0(V, ν).

So we have the first assertion.
Let g ∈ V. Then we haveZ

E

g(x)4ν(dx) =

Z
E

(

dim VX
r=1

(g, er)L2(dν)er(x))
4ν(dx)

5
Z
E

(

dim VX
r=1

(g, er)
2
L2(dν))

2(

dim VX
r=1

er(x)
2)2ν(dx).

Note that
dim VX
r=1

(g, er)
2
L2(dν) =

Z
E

g(x)2ν(dx).

So we have the second assertion.

3 random measures

For m = 1, . . . ,M, and L = 1, let ρ
(L)
m be a random probability measure belonging to

Pf(E × E) given by

ρ(L)m (A) =
1

L
#{` ∈ {1, . . . , L}; (X(`)

m−1, X
(`)
m ) ∈ A}, A ∈ B × B.

For any m = 0, 1, . . . ,M − 1, and L = 1, we define N (L)
m : m(E)× Ω→ [0,∞) by

N (L)
m (f)(ω) = (

1

L

LX
`=1

f(X(`)
m (ω))

2)1/2.
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Then we see that

N
(L)
m−1(g) = S(g, 0; ρ

(L)
m ), g ∈ m(E), m = 1, . . . ,M.

Then we have the following.

Proposition 5 Let m = 1, . . . ,M − 1, L = 1, and V ∈ V(νm). Then we have the
following.
(1) If δm(V ; ρ

(L)
m ) 5 1/2, then
1

2
N
(L)
m−1(g)

2 5
Z
E

g(x)2νm(dx) 5 2N (L)
m−1(g)

2, g ∈ V.

(2)

E[δm(V ; ρ
(L)
m )2] 5 1

L
λ1(V, νm).

In particular, we have

P (δm(V ; ρ
(L)
m ) >

1

2
) 5 4

L
λ1(V, νm).

Proof. (1) Suppose that δm(V ; ρ
(L)
m ) 5 1/2. If h ∈ V and

R
E
h(x)2νm(dx) = 1, then from

the definition we have
1

2
5 N (L)

m−1(h)
2 5 2.

So we have our assertion.
(2) Let {er}dim V

r=1 be an orthonormal basis of V. It is easy to see that

E[δm(V ; ρ
(L)
m )2] 5

dim VX
r,r0=1

E[(
1

L

LX
`=1

(er(X
`
m)er0(X

`
m)− δr,r0))

2]

=
1

L

dim VX
r,r0=1

Z
E

(er(x)er0(x)− δr,r0)
2νm(dx) 5

1

L

dim VX
r,r0=1

Z
E

er(x)
2er0(x)

2νm(dx).

=
1

L

Z
E

(

dim VX
r=1

er(x)
2)2νm(dx).

So we have the first part of our assertion . The second part is an easy consequence of
Chebyshev’s inequality.
For any m = 1, 2, . . . ,M − 1, and V ∈ V(νm), let Γ̂m,V : m(E)× Pf (E × E)→ V be

defined by the following. g = Γ̂m,V (f, ρ), f ∈ m(E), ρ ∈ Pf (E ×E), if g ∈ Γ(f, V ; ρ) andZ
E

g(x)2νm(dx) = inf{
Z
E

g̃(x)2νm(dx); g̃ ∈ Γ(f, V ; ρ)}.

Γ̂m,V is well-defined by Proposition 2 and the definition of V(νm).
Let F : E × Ω → R be B × F -measurable function. Then it is easy to see that the

mapping ω ∈ Ω → s∗(F (·,ω), V, ρ(L)m (ω)) is F -measurable. So we see that the mapping
ω ∈ Ω → Γ̂m,V (F (·,ω), ρ(L)m (ω)) is also F -measurable (see Castaing [3] for example).
For V ∈ V(νm), m = 1, . . . ,M, let πm,V : L

2(E; dνm)→ V be the orthogonal projection
onto V.
Then we have the following.
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Proposition 6 Letm = 1, . . . ,M−1, and L = 1. Then for V ∈ Vm and f ∈ L4(E,B(E), dνm+1),
we have

E[N (L)
m (πm,V Pmf − Γ̂m,V (f ; ρ(L)m ))2, δm(V, ρ

(L)
m ) 5 1

2
]

5 8

L
(λ1(V, ν)(1 + λ0(V, ν)))

1/2(

Z
E

f(y)4νm+1(dy))
1/2.

Proof. Let g = πm,V Pmf, and {er}dim V
r=1 be an orthonormal basis of V. Note that

E[er(X
1
m)(f(X

1
m+1)− g(X1

m))] =

Z
E×E

er(x)(f(y)− g(x))νm(dx)pm(x, dy)

=

Z
E

er(x)(Pmf(x)− g(x))νm(dx) = 0, r = 1, . . . , dim V.

By Proposition 2(3) we see that

E[N (L)
m (g − Γ̂m,V (f ; ρ(L)m ))2, δm(V, ρ

(L)
m ) 5 1

2
]

5 2E[sup{|
Z
E×E

h(x)(f(y)− g(x))ρ(L)m+1(dx, dy)|2; h ∈ V,
Z
E

h(x)2νm(dx) = 1}]

= 2E[sup{|
dim VX
r=1

ar

Z
E×E

er(x)(f(y)− g(x))ρ(L)m+1(dx, dy)|2;
dim VX
r=1

a2r = 1}]

= 2E[

dim VX
r=1

(

Z
E×E

er(x)(f(y)− g(x))ρ(L)m+1(dx, dy))
2]

= 2

dim VX
r=1

E[(
1

L

LX
`=1

er(X
`
m)(f(X

`
m+1)− g(X`

m)))
2]

=
2

L

dim VX
r=1

E[er(X
1
m)

2(f(X1
m+1)− g(X1

m))
2]

=
2

L

dim VX
r=1

Z
E×E

er(x)
2(f(y)− g(x))2νm(dx)pm(x, dy)

5 2

L
(

Z
E

(

dim VX
r=1

er(x)
2)2νm(dx))

1/2(

Z
E×E

(f(y)− g(x))4νm(dx)pm(x, dy))1/2.

Note thatZ
E×E

(f(y)− g(x))4νm(dx)pm(x, dy) 5 16
Z
E×E

(f(y)4 + g(x)4)νm(dx)pm(x, dy)

= 16(

Z
E

f(y)4νm+1(dy) +

Z
E

g(x)4νm(dx)).

By Proposition 4, we see thatZ
E

g(x)4νm(dx) 5 λ0(V, νm)(

Z
E

(Pmf)(x)
2νm(dx))

2 5 λ0(V, νm)

Z
E

f(y)4νm+1(dy).

So we have our assertion .
The following is obvious.
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Proposition 7 Let m = 1, . . . ,M, and L = 1. Then for any f ∈ L2(E,B(E), dνm), we
have

E[N (L)
m (f)2] =

Z
E

f(x)2νm(dx).

4 Proof of Theorem 1

Now let us think of the setting in Introduction. Let φm : E ×R→ R, m = 1, . . . ,M, be
given by

φm(x, z) = fm(x) ∨ z, x ∈ E, z ∈ R, m = 1, 2, . . . ,M.

Then we see that

|φm(x, z1)− φm(x, z2)| 5 |z1 − z2|, x ∈ E, z1, z2 ∈ R, m = 1, . . . ,M.

Note that

f̃ ∗m(x) = φm(x, f̃m(x)) and f̃m−1 = Pm−1f̃
∗
m, m = 1, . . . ,M.

Remind that V
(L)
m ∈ V(νm), L = 1, m = 1, . . . ,M. Let us take g

(L)
m : Ω → V

(L)
m ,

m =M, . . . , 0, such that
g
(L)
M (ω) = fM ,

g(L)m (ω) ∈ Γ(φm+1(·, g(L)m+1(ω)(·)), V (L)m ; ρLm(ω)), m =M − 1, . . . , 0.

Then we see that Equation (1) is satisfied. Let Z̃
(L)
m , m = 0, 1, . . . ,M − 1, be given by

Z̃(L)m

= N (L)
m (Pmf̃

∗
m+1 − π

m,V
(L)
m
Pmf̃

∗
m+1) +N

(L)
m (π

m,V
(L)
m
Pmf̃

∗
m+1 − Γ̂m,Vm,L(f̃ ∗m+1; ρLm)).

Also, let Z
(L)
m , m = 0, 1, . . . ,M − 1, be given by

Z
(L)
0 =

M−1X
k=0

Z̃
(L)
k ,

and
Z(L)m

= ||f̃m−πm,V (L)m
f̃m||L2(E,dμm)+2Nm(f̃m−πm,V (L)m

f̃m,ω)+2

M−1X
k=m

Z̃
(L)
k , m = 1, . . . ,M−1.

Finally, let

ΩL =

M−1\
m=1

{δm(V (L)m ; ρ(L)m ) 5 1

2
}.

Then we have the following.

9



Proposition 8 (1) |f̃0 − g(L)0 (ω)| 5 Z(L)0 .
(2) For any ω ∈ Ω(L),

||f̃ ∗m − (g(L)m (ω) ∨ fm)||L2(E;dνm) 5 ||f̃m − g(L)m (ω)||L2(E;dνm) 5 Z(L)m , m = 1, . . . ,M.

(3)

P (Ω \ ΩL) 5
M−1X
k=1

4

L
λ1(V

(L)
k , νk),

and
E[|Z(L)m |2,ΩL]1/2

5 6
M−1X
k=1

{( 1
L
λ1(V

(L)
k , νk)

1/2(1 + λ0(V
(L)
k , νk))

1/2}1/2||Pkf̃ ∗k+1||L4(E;dνk)

+5

M−1X
k=1

||Pkf̃ ∗k+1 − π
k,V

(L)
k
Pkf̃

∗
k+1||L2(E;dνk), m = 0, 1, . . . ,M − 1.

Proof. Note that
N (L)
m (f̃m − g(L)m (ω),ω)

5 N (L)
m (Pmf̃

∗
m+1 − Γ̂m,Vm,L(f̃ ∗m+1; ρLm),ω) +N (L)

m (Γ̂m,Vm,L(f̃
∗
m+1; ρ

L
m))− g(L)m (ω),ω).

By Proposition 2(2), we have

N (L)
m (Γ̂m,Vm,L(f̃

∗
m+1; ρ

L
m))− g(L)m (ω),ω)

5 N (L)
m+1(φm+1(·, f̃m+1(·))− φm+1(·, g(L)m+1(ω)(·)),ω)

5 N (L)
m+1(f̃m+1 − g(L)m+1(ω)(·),ω).

So we see that

N (L)
m (f̃m − g(L)m (ω),ω) 5

M−1X
k=m

N
(L)
k (Pkf̃

∗
k+1 − Γ̂k,Vk,L(f̃∗k+1; ρLk ),ω).

Then we have

N (L)
m (f̃m − g(L)m (ω),ω) 5

M−1X
k=m

Z̃
(L)
k .

In particular,

|f̃0 − g(L)0 (ω)| 5
M−1X
k=0

Z̃
(L)
k = Z

(L)
0 .

This implies Assertion (1).
Also, we see that if ω ∈ ΩL, then

||f̃m − g(L)m (ω)||L2(E,dμm)

5 ||f̃m − π
m,V

(L)
m
f̃m||L2(E,dμm) + ||πm,V (L)m

f̃m − g(L)m (ω)||L2(E,dμm)

10



5 ||f̃m − π
m,V

(L)
m
f̃m||L2(E,dμm) +N (L)

m (π
m,V

(L)
m
f̃m − g(L)m (ω),ω)

5 ||f̃m − π
m,V

(L)
m
f̃m||L2(E,dμm)|+ 2Nm(f̃m − π

m,V
(L)
m
f̃m,ω) + 2N

(L)
m (f̃m − g(L)m (ω),ω).

This implies Assertion (2).
The first assertion of (3) is obvious from Propositions 5. By Propositions 6 and 7, we

have
E[(Z̃(L)m )2,ΩL]

1/2

5 ||f̃m − π
m,V

(L)
m
Pmf̃m||L2(E,dμm) + 3(

1

L
(λ1(V, ν)(1 + λ0(V, ν))

1/2)1/2||f̃ ∗m+1||L4(E;dνm+1).

So we have the second assertion of (3).
Theorem 1 follows from Proposition 8 immediately.
The following is an easy consequence of Proposition 8.

Proposition 9 Asuume that λ1(V
(L)
m ; νm)/L → 0, L → ∞, m = 1, . . . ,M − 1. Let

δ ∈ (0, 1), and let

dL =

M−1X
m=0

E[(Z(L)m )2,ΩL]
1/2, L = 1,

and let Ω̃δL ∈ F , L = 1, be given by

Ω̃δ
L = ΩL ∩

M−1\
m=1

{Z(L)m 5 d1−δL }.

Then dL → 0, and P (Ω̃δ
L)→ 1, L→∞. Also, we have

||f̃m − gm(ω)||L2(E;dνm) 5 d1−δL , m = 1 . . . ,M, ω ∈ Ω̃δ
L, L = 1.

5 re-simulation

Let us be back to the situation in Introduction. Let hm ∈ L2(E; dνm), m = 1, 2, . . . ,M,
with hM = fM . Let σ a stopping time given by σ = min{k = 0, 1, . . . ,M ; fk(Xk) =
hk(Xk)}, and let

c0 = c0({hm}M−1m=1 ) = E[fσ(Xσ)].

Then we have the following.

Proposition 10 Let β = 0. Assume that there is a C0 > 0 such that

νm({|fm − f̃m| 5 ε}) 5 C0εβ, ε > 0, m = 1, 2, . . . ,M.

Then we have

|f̃0 − c0| 5 (C0 + 1)
M−1X
m=1

||f̃m − hm||1+β/(2+β)L2(E;dνm)
.
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Proof. Let ĥm, m =M,M − 1, . . . , 0, be inductively given by

ĥM = fM = hM ,

ĥm−1 = Pm−1(1{fm=hm}fm + 1{fm<hm}ĥm), m = M,M − 1, . . . , 1.

Then we see that c0 = ĥ0.
Note that

f̃m−1 = Pm−1(1{fm=f̃m}fm + 1{fm<f̃m}f̃m), m =M,M − 1, . . . , 1.

Therefore we have
f̃m−1 − ĥm−1

= Pm−1(1{fm<f̃m∧hm}(f̃m − ĥm) + 1{hm5fm<f̃m}(f̃m − fm) + 1{f̃m5fm<hm}(fm − ĥm))

= Pm−1(1{fm<hm}(f̃m − ĥm) + 1{hm5fm<f̃m}(f̃m − fm) + 1{f̃m5fm<hm}(fm − f̃m)),
and so we see that

|f̃m−1 − ĥm−1|
5 Pm−1(|f̃m − ĥm|) + Pm−1(1{|fm−f̃m|5|f̃m−hm|}|fm − f̃m|)

5 Pm−1(|f̃m − ĥm|) + Pm−1(1{|fm−f̃m|5ε}|fm − f̃m|) + Pm−1(1{ε<|f̃m−hm|}|f̃m − hm|)
So we have

||f̃m−1 − ĥm−1||L1(E;dνm−1)
5 ||f̃m − ĥm||L1(E;dνm) + ενm({|fm − f̃m| 5 ε}) + ε−1||f̃m − hm||2L2(E;dνm−1)

5 ||f̃m − ĥm||L1(E;dνm) + C0ε1+β + ε−1||f̃m − hm||2L2(E;dνm)
So letting

ε = ||f̃m − hm||2/(2+β)L2(E;dνm)
,

we have

||f̃m−1 − ĥm−1||L1(E;dνm−1) 5 ||f̃m − ĥm||L1(E;dνm) + (C0 + 1)||f̃m − hm||1+β/(2+β)L2(E;dνm)
.

Since f̃M = ĥM = hM = fM , we have our assertion.
Now let X̃n = (X̃n

0 , X̃
n
1 , . . . , X̃

n
M), n = 1, 2, . . . , be independent identically distributed

EM+1-valued random variables whose distribution is the same as (X0, X1, . . . , XM) under
P. We assume that σ{Xm; m = 0, 1, . . . ,M}, σ{X`

m, m = 0, 1, . . . ,M, ` = 1} and
σ{X̃n

m; m = 0, 1, . . . ,M, n =} are independent. Let g(L)m (ω) ∈ V (L)m , m, L = 1, as in
Introduction. Let

τn(ω) = min{m = 0; gm(ω)(X̃n
m(ω)) = fm(X̃n

m(ω))}, n = 1,

and let

c̃n0 (ω) =
1

n

nX
k=1

fτk(ω)(X̃
k
τk(ω)

(ω))

12



Then by law of large number, we have

c̃n0 (ω)→ c0({g(L)m (ω)}M−1m=1 ) a.s., n→∞.

By Proposition 8, we see that

|f̃0 − g(L)0 (ω)| 5 dL, ω ∈ ΩL.

But Propositions 9 and 10 imply that

|f̃0 − c0({gm(ω)}M−1m=1 )| 5 Cd(1−δ)(1+β/(2+β))L , ω ∈ Ω̃δ
L,

even though β is unknown. So c̃n0 (ω) can be a better estimator of f̃0.

6 Brownian motion Case

From now on, we try to give estimates for λ0(V, ν) and ||Pmf̃∗m+1−πm,V Pmf̃ ∗m+1|| for some
examples.
Let {Bt; t = 0} be a standard Brownian motion and T > 0. Now let Vn, n = 1, be

the space of polynomials of degree less than or equal to n. Let Pt, t = 0, be the diffusion
operators for the standard Brownian motion, i.e.,

(Ptg)(x) = (
1

2πt
)1/2

Z
R

g(y) exp(−(x− y)
2

2t
)dy, g ∈ m(R).

Let ν be a probability law of BT . So we have

ν(dx) =
1√
2πT

exp(− x
2

2T
)dx.

Then we have the following.

Proposition 11 We have

lim
n→∞

1

n
log λ0(Vn, ν) = lim

n→∞
1

n
log λ1(Vn, ν) = log 9.

Also, let f : R→ [0,∞) be given by f(x) = x∨ 0, x ∈ R. Then there is a C0 > 0 such
that

||Ptf − πnPtf ||L2(dν) = C0n−3/4(1 + t/T )−n/2, n = 1.
Here πn is the orthogonal projection in L

2(R, dν) onto Vn.

Proof. Let

Hn(x; v) = exp(
x2

2v
)
dn

dxn
exp(−x

2

2v
), x ∈ RN , v > 0, n = 0.

Then we have

∞X
n=0

tn

n!
Hn(x; v) = exp(

x2

2v
) exp(−(x+ t)

2

2v
) = exp(−xt

v
− t2

2v
),

13



and ∞X
n,m=0

tn

n!
Hn(x; v)

sm

n!
Hm(x; v) = exp(−

x(t+ s)

v
− t

2 + s2

2v
).

So we have ∞X
n,m=0

tn

n!

sm

n!

Z
R

Hn(x;T )Hm(x;T )ν(dx)

= exp(
(t+ s)2

2T
− t

2 + s2

2T
) = exp(

ts

T
) =

∞X
n=0

tnsn

n!T n
,

and Z
R

Hn(x;T )Hm(x;T )ν(dx) = δnm
n!

T n
.

So we see that en(x;T ) = (T
n

n!
)1/2Hn(x;T ), n = 1, 2, . . . , is an orthonormal basis in

L2(R, dν).
Note that

∞X
n1,n2,n3,n4=0

(

4Y
i=1

tnii
ni!
)

4Y
i=1

Hni(x; v) = exp(−
x(
P4

i=1 ti)

v
−
P4

i=1 t
2
i

2v
).

and so
∞X

n1,n2,n3,n4=0

4Y
i=1

tnii
ni!

Z
R

4Y
i=1

Hni(x;T )ν(dx)

= exp(
(
P4

i=1 ti)
2

2T
−
P4

i=1 t
2
i

2T
) = exp(

1

T

X
15i<j54

titj).

So we haveZ
R

Hn(x;T )
4ν(dx) =

1

(2n)!

dn

dtn4
· · · d

n

dtn1
(
1

T 2n
(
X

15i<j54
titj)

2n))|t1=···=t4=0.

Note that X
15i<j54

titj = t1(t2 + t3 + t4) + t2(t3 + t4) + t3t4

and so we have

dn

dtn1
((

X
15i<j54

titj)
2n)|t1=0 =

(2n)!

n!
(t2 + t3 + t4)

n(t2(t3 + t4) + t3t4)
n,

dn

dtn2

dn

dtn1
((

X
15i<j54

titj)
2n)|t1=t2=0

=
(2n)!

n!

nX
k=0

µ
n

k

¶
n!

k!
(t3 + t4)

k n!

(n− k)!(t3 + t4)
k(t3t4)

n−k

14



= (2n)!

nX
k=0

µ
n

k

¶2
(t3 + t4)

2k(t3t4)
n−k.

So we have

dn

dtn4
· · · d

n

dtn1
(
X

15i<j54
titj)

2n)|t1=···=t4=0 = (2n)!(n!)2
nX
k=0

µ
n

k

¶2µ
2k

k

¶
.

Therefore we see thatZ
R

en(x;T )
4ν(dx) = (

T n

n!
)2
Z
R

Hn(x;T )
4ν(dx) =

nX
k=0

µ
n

k

¶2µ
2k

k

¶
.

Let

an = log(
n!

nn−1/2e−n
), n = 0.

Then it is well known that {an}∞n=1 is bounded.
Since

log(n!) = n log n− n− 1
2
log n+ an,

we have
1

n
log(

µ
n

k

¶2µ
2k

k

¶
) = 2

1

n
log

µ
n

k

¶
+
1

n
log

µ
2k

k

¶
= 2h(

k

n
) +

1

n
(− log n+ log(n− k) + log k + 2an − 2an−k − 2ak)

+
2k

n
log 2 +

1

n
(−1
2
log(2k) + log k + a2k − 2a2k),

where
h(x) = −(x log x+ (1− x) log(1− x)), x ∈ [0, 1].

Also,we have

max
k=0,1,...,n

1

n
log(

µ
n

k

¶2µ
2k

k

¶
) 5 1

n
log(

nX
k=0

µ
n

k

¶2µ
2k

k

¶
)

5 max
k=0,1,...,n

1

n
log(

µ
n

k

¶2µ
2k

k

¶
) +

1

n
log(n+ 1).

So we have

1

n
log(

nX
k=0

µ
n

k

¶2µ
2k

k

¶
)→ max

x∈[0,1]
(2h(x) + 2x log 2) = log 9, n→∞.

Therefore we have by Proposition 4

1

n
log(

Z
R

en(x;T )
4ν(dx))→ log 9, n→∞.

Since Z
R

en(x;T )
4ν(dx) 5 λ0(Vn, ν)

15



and

λ0(Vn, ν) 5 λ1(Vn, ν) 5 (n+ 1)
nX
k=0

Z
R

ek(x;T )
4ν(dx) 5 (n+ 1)2 max

k=0,...,n

Z
R

ek(x;T )
4ν(dx),

we see that

lim
n→∞

1

n
log λ0(Vn, ν) = lim

n→∞
1

n
log λ1(Vn, ν) = log 9.

Note that d2

dx2
f(x) = δ(x). So we have

d2

dx2
(Ptf)(x) =

1√
2πt

exp(−x
2

2t
).

Then we have ∞X
n=0

sn

n!

Z
R

Hn+2(x;T )(Ptf)(x)ν(dx)

=

∞X
n=0

sn

n!

1√
2πT

Z
R

dn+2

dxn+2
(exp(− x

2

2T
))(Ptf)(x)dx

=

∞X
n=0

sn

n!

1√
2πT

Z
R

dn

dxn
(exp(− x

2

2T
))
d2

dx2
(Ptf)(x)dx

=
1√
2πt

1√
2πT

Z
R

exp(−sx
T
− s2

2T
) exp(− x

2

2T
) exp(−x

2

2t
)dx

=
1p

2π(T + t)
exp(

tTs2

2T 2(T + t)
− s2

2T
) =

1p
2π(T + t)

exp(− s2

2(T + t)
).

So we haveZ
R

H2m+2(x;T )(Ptf)(x)ν(dx) ==
1p

2π(T + t)

(2m)!

m!
(− 1

2(T + t)
)m

and soZ
R

e2m+2(x;T )(Ptf)(x)ν(dx) = (
T 2m+2

(2m+ 2)!
)1/2

1p
2π(T + t)

(2m)!

m!
(− 1

2(T + t)
)m

=
1p

2π(T + t)
(

1

(2m+ 1)(2m+ 2)
)1/2T

(2m)me−m(2m)−1/4 exp(a2m/2)

2mmme−mm−1/2 exp(am)
(−1)m(1 + t

T
)−m.

So we see that

lim
m→∞

m3/4(1 +
t

T
)m|
Z
R

e2m+2(x;T )Ptf(x)ν(dx)|

exists and is positive. Since we see that

|
Z
R

e2m+2(x;T )Ptf(x)ν(dx)|2 5 ||Ptf − π2mPtf ||2L2(dν),

we have our assertion.
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7 A remark on Hörmander type diffusion processes

Let N, d = 1. Let W0 = {w ∈ C([0,∞);Rd); w(0) = 0}, F be the Borel algebra over W0

and μ be the Wiener measure on (W0,F). Let Bi : [0,∞) ×W0 → R, i = 1, . . . , d, be
given by Bi(t, w) = wi(t), (t, w) ∈ [0,∞)×W0. Then {(B1(t), . . . , Bd(t); t ∈ [0,∞)} is a
d-dimensional Brownian motion under μ. Let B0(t) = t, t ∈ [0,∞). Let V0, V1, . . . , Vd ∈
C∞b (R

N ;RN ). Here C∞b (R
N ;Rn) denotes the space ofRn-valued smooth functions defined

in RN whose derivatives of any order are bounded. We regard elements in C∞b (R
N ;RN)

as vector fields on RN .
Now let X(t, x), t ∈ [0,∞), x ∈ RN , be the solution to the Stratonovich stochastic

integral equation

X(t, x) = x+

dX
i=0

Z t

0

Vi(X(s, x)) ◦ dBi(s). (3)

Then there is a unique solution to this equation. Moreover we may assume that X(t, x) is
continuous in t and smooth in x and X(t, ·) : RN → RN , t ∈ [0,∞), is a diffeomorphism
with probability one.
Let A = {∅} ∪ S∞k=1{0, 1, . . . , d}k and for α ∈ A, let |α| = 0 if α = ∅, let |α| = k

if α = (α1, . . . ,αk) ∈ {0, 1, . . . , d}k, and let k α k = |α| + card{1 5 i 5 |α|; αi = 0}.
Let A∗ and A∗∗ denote A \ {∅} and A \ {∅, 0}, respectively. Also, for each m = 1, A∗∗5m,
{α ∈ A∗∗; k α k5 m}.
We define vector fields V[α], α ∈ A, inductively by

V[∅] = 0, V[i] = Vi, i = 0, 1, . . . , d,

V[α∗i] = [V[α], Vi], i = 0, 1, . . . , d.

Here α ∗ i = (α1, . . . ,αk, i) for α = (α1, . . . ,αk) and i = 0, 1, . . . , d.
We say that a system {Vi; i = 0, 1, . . . , d} of vector fields satisfies the following condi-

tion (UFG).
(UFG) There are an integer `0 and ϕα,β ∈ C∞b (RN), α ∈ A∗∗, β ∈ A∗∗5`0, satisfying the
following.

V[α] =
X

β∈A∗∗5`0

ϕα,βV[β], α ∈ A∗∗.

Let A(x) = (Aij(x))i,j=1,...,N , t > 0, x ∈ RN , be a N ×N symmetric matrix given by

Aij(x) =
X

α∈A∗∗5`0

V i[α](x)V
j
[α](x), i, j = 1, . . . , N.

Let h(x) = detA(x), x ∈ RN , and E = {x ∈ RN ; h(x) > 0}. By Kusuoka-Stroock [8], we
see that if x ∈ E, the distribution law of X(t, x) under μ has a smooth density function
p(t, x, ·) : RN → [0,∞) for t > 0.
By Kusuoka-Morimoto [7] Propositions 3, 8 and 9, we see the following.

Proposition 12 For any p > 1 and T > 0, there is a C ∈ (0,∞) such thatZ
E

p(t, x, y)h(y)−pdy 5 Ch(x)−p, x ∈ E, t ∈ (0, T ].
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Proposition 13 For any T > 0, there are C ∈ (0,∞) and δ0 > 0 such that

p(t, x, y) 5 Ct−(N+1)`0/2h(x)−2(N+1)`0 exp(−2δ0
t
|y − x|2), t ∈ (0, T ], x, y ∈ E,

and

p(t, x, y) 5 Ct−(N+1)`0/2h(y)−2(N+1)`0 exp(−2δ0
t
|y − x|2), t ∈ (0, T ], x, y ∈ E.

Proposition 14 Let δ ∈ (0, 1/N), α,β ∈ ZN=0 and T > 0. Then there are C ∈ (0,∞)
such that

|∂αx∂βy p(t, x, y)| 5 Ct−(|α|+|β|+1)`0/2h(x)−2(|α|+|β|+1)`0p(t, x, y)1−δ, x, y ∈ E, t ∈ (0, T ],

and

|∂αx∂βy p(t, x, y)| 5 Ct−(|α|+|β|+1)`0/2h(y)−2(|α|+|β|+1)`0p(t, x, y)1−δ, x, y ∈ E, t ∈ (0, T ].

Then we have the following.

Proposition 15 For any m = 1 and T > 0, there is a C ∈ (0,∞) such that

p(t, x, y) 5 Ct−N`0h(x)−(4N`0+m+1)h(y)m, x, y ∈ E, t ∈ (0, T ].

Proof. Note that for any ε > 0 we have

| ∂
∂yi
(p(t, x, y)(ε+ h(y))−m)|N+1

5 2N+1| ∂
∂yi
p(t, x, y))|N+1(ε+ h(y))−m(N+1)

+2N+1mN+1p(t, x, y)N+1(ε+ h(y))−(m+1)(N+1)| ∂h
∂yi
(y)|N+1.

By Proposition 12 and 13, we see that

sup{tN(N+1)`0/2h(x)2N(N+1)`0+m(N+1)
Z
RN

|p(t, x, y)(ε+ h(y))−m|N+1dy;

t ∈ [0, T ], x ∈ E, ε > 0} <∞.
Also letting δ = 1/(N + 1) in Proposition 14, we see by Proposition 12 that

sup{t(N−1)(N+1)`0h(x)4(N−1)(N+1)`0+(m+1)(N+1)
NX
i=1

Z
RN

| ∂
∂yi
(p(t, x, y)(ε+ h(y))−m))|N+1dy;

t ∈ [0, T ], x ∈ E, ε > 0} <∞.
These and Sobolev’s inequality imply that there is a C > 0 such that

tN`0h(x)4N`0+m+1p(t, x, y)(ε+ h(y))−m 5 C, x ∈ E, y ∈ RN , t ∈ (0, T ], ε > 0.
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This proves our assertion.
Let Pt, t = 0, be a diffusion operator defined in C∞b (RN ) given by

(Ptf)(x) = E[f(X(t, x))], f ∈ C∞b (RN ).

Then we see that

(Ptf)(x) =

Z
E

p(t, x, y)f(y)dy, x ∈ E.

Then we have the following.

Proposition 16 For any T > 0 and α ∈ ZN=0, there is a C ∈ (0,∞) such that

| ∂
α

∂xα
(Ptf)(x)| 5 Ct−(|α|+N+2)`0/2h(x)−2(|α|+N+2)`0(Pt(|f |2)(x))1/2

for any t ∈ (0, T ], x ∈ E and f ∈ C∞b (RN ).

Proof. By Proposition 14, we see that there is a C1 ∈ (0,∞) such that for any f ∈ C∞b (RN)

| ∂
α

∂xα
(Ptf)(x)| 5

Z
E

|∂
αp

∂xα
(t, x, y)||f(y)|dy

5 C1t−(|α|+1)`0/2h(x)−2(|α|+1)`0
Z
E

p(t, x, y)2N/(2N+1)|f(y)|dy

5 C1t−(|α|+1)`0/2h(x)−2(|α|+1)`0|
Z
E

f(y)2p(t, x, y)dy|1/2|
Z
E

p(t, x, y)(2N−1)/(4N+2)dy|1/2.

By Proposition 13, we see that there is a C2 > 0 such thatZ
E

p(t, x, y)(2N−1)/(4N+2)dy 5 C2t−(N+1)`0/4h(x)−(N+1)`0 , x ∈ E, t ∈ (0, T ].

So we have our assertion.
The following is an easy consequence of Proposition 14.

Proposition 17 For any β ∈ (0, 1/N) and T > 0, there is a C > 0 such that

| ∂
∂yi
(p(t, x, y)β)| 5 Ct−`0h(x)−4`0 , x ∈ E, t ∈ (0, T ].

8 A random system of piece-wise polynomials

Let ν be a probability measure on RN .
For any m = 2, let

D
(m)
~k

=
NY
i=1

[
(2(ki − 1)−m)

m
logm,

(2ki −m)
m

logm), ~k = (k1, . . . , kN ) ∈ {1, . . . ,m}N .

Let Dm = {D(m)
~k
; ~k ∈ {1, . . . ,m}N}. Then we have SDm = [− logm, logm)N .
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Let X1, X2, . . . , i.i.d. random variables defined on a probability space (Ω,F , P ) whose
distributions are ν. Let Dm,n(ω), m, n =, ω ∈ Ω, be a random sub-family of Dm given by

Dm,n(ω) = {D ∈ Dm; there is a k ∈ {1, . . . , n} such that Xk(ω) ∈ D }.

Let Pr, r = 0, 1, 2, . . . , be the set of polynomials on RN of degree less than or equal to
r. Now let Vn,m,r(ω), m, n = 2, r = 0, ω ∈ Ω, be a finite dimensional vector subspace
of m(RN ) hulled by f1D, f ∈ Pr, D ∈ Dm,n(ω). It is obvious that dim Vn,m,r(ω) 5
Nm(N + 1)r.
Now let us use the notation in the previous section. Let X(t, x), t ∈ [0,∞), x ∈ RN ,

be the solution to the SDE (3) and we assume the (UFG) condition holds. Let x0 ∈ RN

such that h(x0) > 0, and so x0 ∈ E. Let T0 > 0 and ρ(x) = p(T0, x0, x), x ∈ RN . We
think of the case that ν(dx) = ρ(x)dx.
Then we have the following.

Theorem 18 Let r = 0, δ > 0, γ > 0, and T > 0, and let nm, m =, 2, . . . , be integers
satisfying mN+γ 5 nm < 2mN+γ . Then there are Ωm ∈ F , m = 1, 2, . . . , and C ∈ (0,∞)
satisfying the following.
(1) P (Ωm)→ 1, m→∞.
(2) For any ω ∈ Ωm,

inf
x∈D

ρ(x) = 1

2
sup
x∈D

ρ(x),

and
ν(D) = C−1m−(2N+γ+δ)

for any D ∈ Dm,nm(ω) and m = 2.
(3) For any ω ∈ Ωm, λ0(Vm,nm,r, ν) 5 Cm2N+γ+δ.
(4) For any ω ∈ Ωm, f ∈ C∞b (RN) and t ∈ (0, T ],

||Ptf − πVm,nm,rPtf ||L2(dν)

5 C(t−(r+2N+3)`0m−(r+1)+δ +m−γ/4+δ)(
Z
RN

f(y)4p(T0 + t, x0, y)dy)
1/4.

Here πVm,n,r is the orthogonal projection in L
2(E; dν) onto Vm,n,r(ω).

We make some preparations to prove Theorem 18.

Proposition 19 For any r = 0, there is a Cr > 0 such that

(

Z
(−ε,ε)N

f(y)4 dy)1/4 5 Crε−N/4(
Z
(−ε,ε)N

f(y)2 dy)1/2

for any ε > 0 and f ∈ Pr.

Proof. Let us fix n = 0. Since Pr is a finite dimensional vector space, any norms on Pr
are equivalent. So we see that there is a Cr > 0 such that

(

Z
(−1,1)N

|f(x)|4 dx)1/4 5 Cr(
Z
(−1,1)N

|f(x)|2 dx)1/2, f ∈ Pr.
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Then we see that

(

Z
(−ε,ε)N

f(x)4 dx)1/4 = εN/4(

Z
(−1,1)N

f(εx)4 dx)1/4

5 CrεN/4(
Z
(−1,1)N

f(εx)2 dx)1/2 = Crε
−N/4(

Z
(−ε,ε)N

f(x)2 dx)1/2.

This implies our assertion.
For any Borel subset A in RN and n, let Nn(A) be Nn(A) =

Pn
k=1 1A(Xi).

Let γ > 0 and δ ∈ (0, γ/2), and fix them. Let γ0 = N+γ−δ/3 and γ1 = 2N+γ+δ/3.
Now let D(0)m and D(1)m be subsets of Dm, m = 1, given by

D(0)m = {D ∈ Dm; ν(D) = m−γ0},

and
D(1)m = {D ∈ Dm; ν(D) = m−γ1}.

Then it is obvious that D(0)m ⊂ D(1)m .
Then we have the following.

Proposition 20 (1) Let Ω0,m,n, m = 2, n = 1, be the set of ω ∈ Ω such that D(0)m ⊂
Dm,n(ω). Then we have

P (Ω \ Ω0,m,n) 5 mN exp(−nm−(N+γ)mδ/3), n = 1, m = 2.

(2) Let Ω1,m,n, m = 2, n = 1, be the set of ω ∈ Ω such that Dm,n(ω) ⊂ D(1)
m . Then there

is an m1 = 1 such that

P (Ω \ Ω1,m,n) 5 (2 log 2)nm−(N+γ)m−δ/3 n = 1, m = m1.

Proof. Since (1− 1/x)x, x ∈ (1,∞) is increasing in x, we see that
1

4
5 (1− 1

x
)x 5 e−1, x = 2.

For D ∈ Dm we have

P (Nn(D) = 0) = (1− ν(D))n = ((1− ν(D))1/ν(D))nν(D).

Thus we see that
P (Nn(D) = 0) 5 exp(−nν(D))

for any D ∈ Dm, and
2−2nν(D) 5 P (Nn(D) = 0)

for any D ∈ Dm with ν(D) ∈ [0, 1/2]. So we see that for any D ∈ Dm with ν(D) ∈ [0, 1/2],

P (Nn(D) = 1) 5 1− exp(−(2 log 2)nν(D)) 5 (2 log 2)nν(D).

Note that
ν(D) 5 (2m−1 logm)N sup

x∈RN

ρ(x).
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So there is an m1 = 1 such that ν(D) 5 1/2 for D ∈ Dm, m = m1.
Therefore we see that

P (Ω \ Ω0,m,n) 5
X

D∈D(0)m

P (Nn(D) = 0) 5 mN exp(−nm−γ0),

and

P (Ω \ Ω1,m,n) 5
X

D∈Dm\D(0)m

P (Nn(D) = 1) 5 (2 log 2)nmN−γ1 m = m1.

So we have our assertions.

Proposition 21 There is an m2 = 1 satisfying the following.
If D ∈ D(1)m , then

inf
x∈D

ρ(x) = 1

2
sup
x∈D

ρ(x) = m−(N+γ+2δ/3), m = m2.

Proof. Assume that D ∈ D(1)m . Let x1 ∈ D̄ be a maximal point of ρ(x), x ∈ D̄. Then we see
that ρ(x1) = (2 logm)Nm−N−γ−δ/3. Appliing Proposition 17 for β = 1/(2(N +γ+δ/3)) >
0, we see that there is a C0 > 0 such that

|ρ(x)β − ρ(y)β| 5 C0|x− y|, x, y ∈ RN .

So we see that

|ρ(x)β − ρ(x1)
β| 5 C0

2N logm

m
. x ∈ D,

and so

ρ(x)β = ρ(x1)
β − C0

2N logm

m

= (1
2
ρ(x1))

β + (1− 2−β)(2 logm)−Nβm−1/2 − C0
2N logm

m

So we see that if m is sufficiently large

inf
x∈D

ρ(x) = 1

2
sup
x∈D

ρ(x) = m−(N+γ+2δ/3).

Thus we have our assertion.

Proposition 22 There is an m3 = 1 satisfying the following. If ω ∈ Ω1,n,m and m = m3,
then

λ0(Vm,n,r(ω); ν) 5 m2N+γ+δ.

Proof. Let m2 = 1 be as in Proposition 21. Suppose that ω ∈ Ω1,n,m and m = m2. Then

Dm,n(ω) ⊂ D(1)m .
Let f ∈ Vm,n,r(ω). Then there are fD ∈ Pr, D ∈ Dm.n(ω), such that

f =
X

D∈Dm.n(ω)
fD1D.
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Then we see thatZ
RN

f(x)4ν(dx) =
X

D∈Dm.n(ω)

Z
D

fD(x)
4ν(dx) 5

X
D∈Dm.n(ω)

sup
x∈D

ρ(x)

Z
D

fD(x)
4dx

5 2
X

D∈Dm.n(ω)
inf
x∈D

ρ(x)C4r (2m
−1 logm)−N(

Z
D

fD(x)
2dx)2

5 2
X

D∈Dm.n(ω)

1

infx∈D ρ(x)
C4r (2m

−1 logm)−N (

Z
D

fD(x)
2ν(dx))2

5 m2N+γ+δ(2N+1C4rm
−δ/3(logm)−N)(

Z
RN

f(x)2ν(dx))2.

This implies our assertion.

Proposition 23 For any r = 0, there is a C ∈ (0,∞) satisfying the following.

inf{(
Z
(−ε,ε)N

|f(x)− g(x)|2dx)1/2; g ∈ Pr}

5 Cεr+1
X

α∈ZN=0,r+15|α|5r+N+1
(

Z
(−ε,ε)N

|∂
αf

∂xα
(x)|2dx)1/2

for any f ∈ C∞(RN ) and ε ∈ (0, 1].

Proof. By Sobolev’s inequality, we see that there is a C0 > such that

sup
x∈(−1,1)N

|f(x)| 5 C0
X

α∈ZN=0,|α|5N
(

Z
(−1,1)N

|∂
αf

∂xα
(x)|2dx)1/2, f ∈ C∞(RN ).

So we see that

sup
x∈(−ε,ε)N

|f(x)| 5 C0
X

α∈ZN=0,|α|5N
|
Z
(−1,1)N

| ∂
α

∂xα
(f(εx))|2dx)1/2

5 C0
X

α∈ZN=0,|α|5N
ε|α|−N/2(

Z
(−ε,ε)N

|∂
αf

∂xα
(x)|2dx)1/2.

For any f ∈ C∞(RN ),

|f(x)−
X

α∈ZN=0,|α|5r

1

α!

∂αf

∂xα
(0)xα| 5

Z t

0

(1− t)r
r!

| d
r+1

dtr+1
f(tx)|dt

5 |x|r+1
X

α∈ZN=0,|α|=r+1
sup
t∈[0,1]

|∂
αf

∂xα
(tx)|,

23



and so we have

inf{(
Z
(−ε,ε)N

|f(x)− g(x)|2dx)1/2; g ∈ Pr} 5 (2Nε)r+1+N/2
X

α∈ZN=0,|α|=r+1
sup

x∈(−ε,ε)N
|∂

αf

∂xα
(x)|

5 εr+1C0(2N)
r+1+N/2

X
α,β∈ZN=0,|α|=r+1,|β|5N

(

Z
((−ε,ε)N

|∂
α+βf

∂xα+β
(x)|2dx)1/2.

This implies our assertion

Proposition 24 For any T > 0 there is an m4 = 1 such that for any D ∈ D(1)m , m = m4,

inf{
Z
D

|Ptf(x)− g(x)|2ν(dx); g ∈ Pr}

5 m−2(r+1)+2δ/3t−(r+2N+3)`0/2
Z
D

Pt(|f |2)(x)ν(dx), t ∈ (0, T ], f ∈ C∞b (RN ).

Proof. Let m2 = 1 be as in Proposition 21. Then

ρ(x) = m−(N+γ+2δ/3), x ∈ D, D ∈ D(1)m
for any m = m2. By Proposition 15, there is a C0 > 0 such that

h(x) = C0m−δ/(8(r+2N+3)`0), x ∈ D, D ∈ D(1)m , m = m2.

Then by Proposition 16 we see that there is a C1 > 0 such thatX
α∈ZN=0,r+15|α|5N+r+1

| ∂
α

∂xα
Ptf(x)| 5 C1mδ/4t−(r+2N+3)`0/2(Pt(|f |2)(x))1/2,

for any x ∈ D, D ∈ D(1)m , m = m2, and f ∈ C∞b (RN). Then by Propositions 23 we see

that there is a C2 > 0 such that for D ∈ D(1)m , m = m2,

inf{(
Z
D

|Ptf(x)− g(x)|2ν(dx))1/2; g ∈ Pr}

5 (sup
x∈D

ρ(x))1/2 inf{(
Z
D

|Ptf(x)− g(x)|2dx)1/2; g ∈ Pr}

5 2( inf
x∈D

ρ(x))1/2C2(2m
−1 logm)r+1

X
α∈ZN=0,r+15|α|5r+N

(

Z
D

| ∂
α

∂xα
Ptf(x)|2dx)1/2

5 2C2(2m−1 logm)r+1C1mδ/4t−(r+2N+3)`0/2(

Z
D

(Pt(|f |2))(x)ν(dx))1/2.

So we have our assertion.

Proposition 25 Let A0,m =
SD(0)m . Then there is an m5 = 1 such that

ν(RN \ A0,m) 5 m−γ+δ, m = m5.
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Proof. We see by Proposition 13 that

ν(RN \ A0,m) = ν([− logm, logm)N \ A0,m) + ν(RN \ [− logm, logm)N )

=
X

D∈Dm\D(0)m

ν(D) +

Z
RN\[− logm,logm)N )

p(T0, x0, x)dx

5 mN−γ0 + CT−(N+1)`0/20 h(x0)
−2(N+1)`0

Z
RN\[− logm,logm)N )

exp(−2δ0|x− x0|
2

T0
)dx.

This implies our assertion.

Proposition 26 Let r = 0, and T > 0. There is an m6 = 2 satisfying the following. For
any ω ∈ Ω0,m,n, m = m6, n = 1,

||Ptf − πVm,n,rPtf ||L2(dν)

5 (t−(r+2N+3)`0/2m−(r+1)+δ/2 +m−γ/4+δ/2)(
Z
RN

f(y)4p(T0 + t, x0, y)dy)
1/4

for any t ∈ (0, T ], and f ∈ C∞b (RN ).

Proof. Let m4,m5 = 2 be as in Propositions 24 and 25. Let ω ∈ Ω0,m,n, and m =
m4 ∨m5. Then we see that Dm,n(ω) ⊃ D(0)m and so we see that

inf{
Z
RN

|Ptf(x)− g(x)|2ν(dx); g ∈ Pr}

=
X

D∈Dm,n(ω)
inf{

Z
D

|(Ptf)(x)− g(x)|2ν(dx); g ∈ Pr}+
Z
RN\SDm,n(ω) |Ptf(x)|

2ν(dx)

5
X

D∈Dm,n(ω)
m−2(r+1)+2δ/3t−(r+2N+3)`0

Z
D

Pt(|f |2)(x)ν(dx)

+ν(RN \ A0,m)1/2(
Z
RN

|Ptf(x)|4ν(dx))1/2

5 m−2(r+1)+2δ/3t−(r+2N+3)`0
Z
RN

f(y)2p(T0 + t, x0, y)dy

+m−(γ−δ)/2(

Z
RN

f(y)4p(T0 + t, x0, y)dy)
1/2.

So this and Proposition 25 imply our assertion.
Now we have Theorem 18 from Propositions 20, 21, 22 and 26, letting Ωm = Ω0,m,nm ∩

Ω1,m,nm .
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