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DERIVATIVES OF SECONDARY CLASSES AND
2-NORMAL BUNDLES OF FOLIATIONS

TARO ASUKE

Abstract. Derivatives of secondary characteristic classes for fo-
liations are discussed. It will be shown that one can construct
the derivatives in a parallel way to the standard construction of
secondary characteristic classes, namely, by using connections and
applying the Chern-Weil theory. Some relationship of connections
in the construction and transverse TW-connections, which is sig-
nificant in the study of deformations of the Godbillon-Vey class
and the Bott class, are also discussed.

Introduction

It is known that some secondary characteristic classes for foliations

admit continuous deformations. That is, the classes vary continuously

according to deformations of foliations. If the families are differen-

tiable, we can consider the derivatives of characteristic classes with

respect to deformation parameters. Such derivatives are studied by

Heitsch et. al. [12], [13], [14], see also [9], [4]. Secondary classes and

derivatives of them are constructed in terms of connections and deform-

ations of them so that independence of cohomology classes of choices

is to be shown. It is done for secondary classes usually by using the

Chern-Simons forms. On the other hand, it usually relies on combi-

natorial arguments for derivatives of them. In this paper, we give a

framework by which derivatives of secondary classes are treated as sec-

ondary classes for foliations and deformations. In particular, there will

appear a kind of truncated Weil algebras such as WOq and WUq. If we

restrict ourselves to the Godbillon-Vey class and the Bott class, then it
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is known that deformations are related with transverse projective struc-

tures and that transverse projective TW-connections are relevant [5].

We will discuss how connections associated with deformations of foli-

ations and transverse TW-connections are related. Roughly speaking,

there is a certain extension of the tangent bundle of ambient mani-

folds which has some parameters. There is a connection such that the

constant term of it with respect to the parameters is a deformation

of foliations, and the linear term of it is a deformation of transverse

projective structures.

1. Preliminaries

Assumption. We assume the following throughout the paper. We de-

note by M a manifold equipped with a foliation F . The foliation F
is assumed to be transversely holomorphic unless otherwise mentioned.

The arguments for real (smooth) foliations are almost parallel and eas-

ier. The term ‘smooth’ stands for the term ‘of class C∞’, even in the

transversely holomorphic case. We work in the smooth category unless

otherwise mentioned.

Let p and q be the dimension and the complex codimension of F ,

respectively. Then, a foliation chart is given by a triple (U, V ×B,φ),

where φ : U → V ×B ⊂ Rp × Cq. We usually let (x, y) be the natural

coordinates on V × B. For simplicity we identify U and V × B, and

regard (x, y) as coordinates on U .

Notation. We will frequently compare coefficients of tensors, connec-

tions, etc. in what follows. Once a chart is chosen and coefficients are

defined, the symbol ‘̂′ is used to express another chart and the co-

efficients on it. For example, if (U,φ) is a chart and if a1, . . . , aq are

coefficients of a tensor on (U,φ), then (Û , φ̂) represents a chart such

that U ∩ Û ̸= ∅ and â1, . . . , âq represent the coefficients on (Û , φ̂). The

coefficients are often considered as entries of matrices, and the mul-

tiplication rule of matrices is applied. For example, if ω1, . . . , ωq are

coefficients of a Cq-valued 1-form and if aij, where 1 ≤ i, j ≤ q, are co-

efficients of a glqC-valued 2-form, then we set ω = (ωi) = t(ω1 · · · ωq),

a = (aij) and define a ∧ ω to be a Cq-valued 3-form of which the i-th

entry is given by
∑
j

aij ∧ ωj = aij ∧ ωj. Note that we make use of the
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Einstein convention. Finally, when coefficients of tensors, etc., are ex-

pressed, the Roman indices will begin from one, while the Greek indices

will begin from zero.

Notation 1.1. Let U be an open subset of M and E a vector bundle

over M . We denote by ΓU(E) the module of the smooth sections to E

over U , even in the transversely holomorphic case. If U =M , then we

denote ΓM(E) also by Γ (E).

Definition 1.2. Let U and Û be foliation charts and φ the transition

function from U to Û . Then, under the identifications of U ∼= V × B

and Û ∼= V̂ × B̂, φ is of the form (ψ, γ). We refer γ as the transverse

component of φ.

Definition 1.3. If F is a real foliation, then we set E(F) = TF ,

namely, the subbundle of TM which consists of vectors tangent to

leaves. If F is transversely holomorphic, then we denote TM ⊗ C
by TM by abuse of notations, and define E(F) to be the complex

subbundle of TM locally spanned by E(F) and
∂

∂ȳi
, where 1 ≤ i ≤

q. In the both cases, we set Q(F) = TM/E(F). We call Q(F) the

normal bundle in the real case, and the complex normal bundle in the

transversely holomorphic case. We denote by π the projection from

TM to Q(F), and by p the one from Q(F) to M . We locally set

ei = π

(
∂

∂yi

)
, and choose (e1, . . . , eq) as a local trivialization of Q(F)

unless otherwise mentioned.

2. 2-normal bundles of foliations

The 2-tangent bundle of a manifoldM is by definition of the tangent

bundle of the tangent bundle TM [22]. We will first introduce 2-normal

bundles of foliations as an analogy.

Notation 2.1. We denote by TGLqC the tangent group of GLqC.
That is, TGLqC is the tangent bundle of GLqC equipped with the

following multiplication. Let Iq be the unit element in GLqC. We

identify TIqGLqC with the Lie algebra of the left invariant vector fields

on GLqC, and denote it by glqC. Then, we have a natural identification
TGLqC = GLqC × glqC as manifolds. If (A,B), (A′, B′) ∈ TGLqC =
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GLqC× glqC, then (A,B)(A′, B′) = (AA′, (A′)−1BA′+B′). Therefore,

TGLqC = GLqC⋉ glqC as Lie groups.

A matrix representation of TGLqC is given by

(A,B) 7→
(
A O
AB A

)
∈ GL2qC.

This representation is indeed given by the natural action of TGLqC on

TCq [22]. If we denote by tglqC the Lie algebra of TGLqC, then the

induced representation is also given by (X,Y ) 7→
(
X O
Y X

)
.

Let Q(2)(F) be the complex vector bundle of rank 2q over Q(F)

defined as follows. Let l = l(t) be a curve in Q(F). We can locally

represent l(t) as l(t) = (z(t), v(t)) ∈ U ∼= V × B. Let l(0) = (z, v)

and
dl

dt
(0) = (ż, v̇). If U, Û are foliation charts and if φ is the transi-

tion function from U to Û , then φ induces a transition function from

p−1(U) to p−1(Û) which we denote by φ̃. If we denote by γ the trans-

verse component of φ, then we have φ̃ = (φ,Dγ), namely, φ̃ ◦ l(t) =
(φ(z(t)), Dγy(t)v(t)), where z(t) = (x(t), y(t)) ∈ U ∩ Û ⊂ U , and

d(φ̃ ◦ l)
dt

(0) =
(
Dφz ż, Hγ

i
jk,y ẏ

jvk +Dγy v̇
)
,

where z = (x, y), ż = (ẋ, ẏ) and Hγijk,y =
∂2γi

∂yj∂yk
(y). We often denote

Hγijk,y by Hγijk. Note that Hγijk = Hγikj and that ẏ = π∗(ż) holds in

Q(F). We set Q(2)(F) = {(z, v; ẏ, v̇)} and define p
(2)
Q , ν : Q(2)(F) →

Q(F) by p
(2)
Q (z, v; ẏ, v̇) = (z; v) and ν(z, v; ẏ, v̇) = (z; ẏ), respectively.

It is easy to see that p
(2)
Q and ν are globally well-defined.

Definition 2.2. We call p
(2)
Q : Q(2)(F) → Q(F) the 2 -normal bun-

dle of F .

The following diagram commutes:

Q(2)(F)
ν−−−→ Q(F)

p
(2)
Q

y ypQ

Q(F) −−−→
pQ

M .
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A local description of Q(2)(F) is given as follows. If q ∈ Q(F), then q is

represented as (z, v1e1 + · · ·+ vqeq) on a foliation chart. Let v =

v1...
vq


and regard (z, v) be coordinates on π−1(U). Let (U, V × B,φ) and

(Û , V̂ ×B̂, φ̂) be foliation charts and q ∈ π−1(U)∩π−1(Û). If both (z, v)

and (ẑ, v̂) represent q, then (ẑ, v̂) = (φ(z), Dγyv), where z = (x, y).

We set ηi =
∂

∂vi
. Then, a local trivialization over π−1(U) is given by

(e1, . . . , eq, η1, . . . , ηq). If we set p21Q = pQ ◦ p(2)Q , then the transition

function from (p21Q )−1(U) to (p21Q )−1(Û) is give by

(ê1, . . . , êq, η̂1, . . . , η̂q)(φ(z),Dγyv)

(
Dγy O
Hγyv Dγy

)
= (e1, . . . , eq, η1, . . . , ηq)(z,v) ,

where (Hγyv)
i
j = Hγijk,yv

k.

Several foliations are naturally defined on Q(F) and Q(2). Let U ⊂
M be a foliation chart. If we choose (e1, . . . , eq, η1, . . . , ηq) as a local

trivialization, then (z, v) are coordinates on π−1(U), and (z, v; ẏ, v̇)

are coordinates on (p21Q )−1(U). We can define foliations of Q(F) by

locally setting FQ = {y, v are constant} and π∗F = {y is constant}.
Similarly, we can define foliations of Q(2)(F) by locally setting

F (2) = {y, v, ẏ, v̇ are constant},

F (2)
1 = {y, v, ẏ are constant},

F (2)
2 = {y, v are constant},

F (2)
3 = {y, ẏ are constant},

F (2)
4 = {y is constant}.

Note that π∗F is indeed the pull-back of F by π, and that F (2)
2 =

π(2)∗FQ, F (2)
4 = p21Q

∗F and F (2)
1 = F (2)

2 ∩ F (2)
3 . Note also that instead

of dealing with p
(2)
Q : Q(2)(F) → Q(F), we can work on ν : Q(2)(F) →

Q(F) by exchanging v and ẏ. This point of view is relevant in §5.
Finally we remark that the 2-normal bundle Q(2)(F) is closely related

to the 2-jet bundle of F which are usually denoted by J2(F).
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3. Infinitesimal deformations and 2-normal bundles

We will introduce infinitesimal deformations of foliations after Heitsch

[13] (cf. [12], [9], see also [16]).

Definition 3.1. Let U be an open subset of M . A section X ∈ ΓU

of Q(F) is said to be foliated if LYX = 0 for any section Y of E(F),

where LY denotes the Lie derivative with respect to Y . We denote by

ΘF the sheaf of germs of foliated sections of Q(F).

Let ∇b be a Bott connection on Q(F) and denote by d∇b the covari-

ant differentiation associated with ∇b. It is known that {
∧iE(F)∗ ⊗

Q(F), d∇b} is a resolution of ΘF [12], [9], [11].

Definition 3.2. An infinitesimal deformation of F is an element of

H1(M ; ΘF).

If σ is a representative of an infinitesimal deformation of F , then σ

can be locally represented as σ = eiσ
i, where (e1, . . . , eq) is the local

trivialization of Q(F) as above and σi are 1-forms such that

σ̂i = Dγij σ
j.

In addition, as we identify fibers of Q(F) with Cq by the trivialization,

there is a glqC-valued 1-form (ω̇i
j) such that

(3.3) dσi + ωi
j ∧ σj + ω̇i

j ∧ θj = 0,

where (θ1, . . . , θq) = (dy1, . . . , dyq) is the dual to (e1, . . . , eq) and ω =

(ωi
j) denotes the connection form of ∇b with respect to (e1, . . . , eq). By

using a partition of unity, we may assume that

ω̇i
j = (Dγ)−1i

k
̂̇ωk
l Dγ

l
j.

By abuse of notations, we set σ = (σi). Then, (3.3) is represented as

dσ + ω ∧ σ + ω̇ ∧ θ = 0.

Let (z, v; ẏ, v̇) be local coordinates for Q(2)(F). As ω is the connec-

tion form of a Bott connection, ωi
j = f i

jkdy
k holds for some functions

f i
jk. We set

ρij = f i
jkv

k,

θ(2) =

(
θ̃

σ̃

)
=

(
θ

σ − ρ θ

)
,
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ω(2) =

(
ω O

ω̇ + dρ+ [ω, ρ] ω

)
on Q(F), where [ω, ρ] = ωρ− ρω.

Lemma 3.4 (cf. [5, Theorem 1.20]). 1) If we set

D(2)γ = D(2)γ(p,v) =

(
Dγy O
Hγy v Dγy

)
,

where p = (x, y), then,

θ̂(2) = (D(2)γ)θ(2).

2) We have

(3.5) dθ(2) + ω(2) ∧ θ(2) = 0.

3) The family {ω(2)} of tglqC-valued one-forms gives rise to a con-

nection on Q(2)(F) → Q(F) which we denote by ∇(2). Con-

versely, if {ω̃} is a family of local connection forms of a connec-

tion on Q(2)(F) → Q(F), then {ι∗ω̃}, namely, the restriction

of {ω̃} to M determines an infinitesimal deformation of ω with

respect to θ.

Proof. We have

ω = (Dγ)−1(dDγ) + (Dγ)−1ω̂(Dγ),

ω̇ = (Dγ)−1 ̂̇ω(Dγ)
and f i

jk =
∂yi

∂ŷl
∂2γl

∂yj∂yk
+
∂yi

∂ŷl
f̂ l
mn

∂ŷm

∂yj
∂ŷn

∂yk
. Therefore, we have

ρij = f i
jkv

k

=

(
∂yi

∂ŷl
∂2γl

∂yj∂yk
+
∂yi

∂ŷl
f̂ l
mn

∂ŷm

∂yj
∂ŷn

∂yk

)
∂yk

∂ŷr
v̂r

= (Dγ−1)il(Hγ
l
jkv

k + ρ̂lmDγ
m
j ).

Hence we have

dρ = −(Dγ)−1(dDγ)(Dγ)−1(Hγ)v + (Dγ)−1(dHγ)v + (Dγ)−1(Hγ)dv

− (Dγ)−1(dDγ)(Dγ)−1ρ̂(Dγ) + (Dγ)−1(dρ̂)(Dγ) + (Dγ)−1ρ̂(dDγ),

ωρ = (Dγ)−1(dDγ)(Dγ)−1(Hγ)v + (Dγ)−1(dDγ)(Dγ)−1ρ̂(Dγ)

+ (Dγ)−1ω̂(Hγ)v + (Dγ)−1ω̂ρ̂(Dγ),

ρ ω = (Dγ)−1(Hγ)v(Dγ)−1(dDγ) + (Dγ)−1(Hγ)v(Dγ)−1ω̂(Dγ)
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+ (Dγ)−1ρ̂(dDγ) + (Dγ)−1ρ̂ ω̂(Dγ),

ρ θ = (Dγ)−1(Hγ)v(Dγ)−1θ̂ + (Dγ)−1ρ̂ θ̂.

Therefore,

σ̃ = σ − ρ θ

= (Dγ)−1σ̂ − (Dγ−1)(Hγ)v(Dγ)−1θ̂ − (Dγ)−1ρ̂ θ̂

= (Dγ)−1̂̃σ − (Dγ)−1(Hγ)v(Dγ)−1θ̂.

The part 1) follows from the last equalities. If we set

(D(2)γ)−1d(D(2)γ) + (D(2)γ)−1 ω̂(2)(D(2)γ) =

(
λ11 λ12
λ21 λ22

)
,

then we have

λ11 = λ22 = (Dγ)−1(dDγ) + (Dγ)−1ω̂(Dγ) = ω,

λ12 = 0,

and

(3.6)



λ21 = −(Dγ)−1(Hγ)v(Dγ)−1(dDγ)

+ (Dγ)−1(dHγ)v + (Dγ)−1(Hγ)dv

− (Dγ)−1(Hγ)v(Dγ)−1ω̂(Dγ)

+ (Dγ)−1(̂̇ω + dρ̂+ [ω̂, ρ̂])(Dγ)

+ (Dγ)−1ω̂(Hγ)v

= ω̇ + dρ+ [ω, ρ].

Consequently,
{
ω(2)

}
gives rise to a connection on Q(2)(F). This shows

the first claim of 3). On the other hand, we have

dσ̃ = dσ − d(ρ θ)

= −ω̇ ∧ θ − ω ∧ σ − dρ ∧ θ − ρ dθ

= −(ω̇ + dρ) ∧ θ − ω ∧ (σ̃ + ρ θ) + ρω ∧ θ
= −(ω̇ + dρ+ [ω, ρ]) ∧ θ − ω ∧ σ̃.

This shows the part 2). The latter part of 3) follows from the fact

that the equality (3.5) reduces to the defining condition of infinitesimal

deformations of ω. This completes the proof. □
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Remark 3.7. Lemma 3.4 implies that {θ(2)} formally defines a foliation

of Q(2)(F). Indeed, if each θ(2) is a local trivialization of T ∗Q(F), then

a foliation is defined and ω(2) defines a Bott connection.

Remark 3.8. Let

R(2) = dω(2) + ω(2) ∧ ω(2)

be the curvature form of ∇(2) with respect to θ(2). If we denote by

R = dω + ω ∧ ω the curvature form of ∇b with respect to θ, then, we

have

R(2) =

(
R O

[R, ρ] + dω̇ + [ω̇, ω] R

)
,

where [R, ρ] = Rρ−ρR and [ω̇, ω] = ω̇∧ω+ω∧ω̇. By the equality (3.5),

we have

R(2) ∧ θ(2) = 0.

There are several choices in defining ρ, θ(2) and ω(2). We will study

how they affect {ω(2)}. We denote by ρ′, θ(2)′, ω(2)′ etc., newly obtained

ones. First we fix θ, ω and σ. Suppose that {aijk} is a family of functions

such that

(3.9)

{
aijk = aikj,

aijk = (Dγ)−1i
lâ

l
mn(Dγ)

m
j (Dγ)

n
k .

Then,

ω̇′i
j = ω̇i

j + aijkθ
k.

Conversely, any infinitesimal deformation of ω with respect to σ is of

this form. Accordingly,

ω(2)′ = ω(2) +

(
O O
Aθ O

)
,

where (Aθ)ij = aijkθ
k. We can replace ω in a similar way, namely, let

{bijk} be a family of functions such that

(3.10)

{
bijk = bikj,

bijk = (Dγ)−1i
l b̂

l
mn(Dγ)

m
j (Dγ)

n
k .

If we set (Bθ)ij = bijkθ
k, then the connection form of a Bott connection

is of the form ω + Bθ and vice versa. Let ω′ = ω + Bθ and ∇′ be the

connection defined by ω′. Then, the ‘identity map’ fromH∗(
∧iE(F)∗⊗

Q(F), d∇) to H∗(
∧iE(F)∗ ⊗ Q(F), d∇′) given by [σ] 7→ [σ] gives an
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isomorphism. Indeed, if σ is an infinitesimal deformation, then the

infinitesimal deformation ω̇′ of ω′ with respect to σ is given by

ω̇′ = ω̇ +Bσ,

where (Bσ)ij = bijkσ
k. Accordingly,

ρ′ = ρ+Bv,

θ(2)′ = θ(2) −
(

0

Bθv

)
,

ω(2)′ = ω(2) +

(
Bθ O
Bσ Bθ

)
+

(
O O

d(Bv) + [Bθ, ρ] + [ω,Bv] + [Bθ,Bv] O

)
,

where (Bθv)i = bijkθ
jvk. Next, we modify σ. Let σ′ be anther repre-

sentative of the infinitesimal deformation [σ] ∈ H1(M ; ΘF). Then,

(3.11) σ′i = σi + df i + ωi
jf

j + gijθ
j

holds for a family of functions {fi} such that f̂ i = (Dγ)ijf
j and a

family of functions {gij} such that ĝij = (Dγ)ikg
k
l (Dγ)

−1l
j (we again

make use of a partition of unity in order to assume that eig
i
jθ

j is globally

well-defined). An infinitesimal deformation of ω with respect to σ′ is

given by

(3.12) ω̇′i
j = ω̇i

j + Ωi
ljf

l + (dg + [ω, g])ij,

where ωi
j = Γi

jkdy
k and Ωi

jk = dΓi
jk + Γi

mlΓ
m
jkdy

l so that Ωi
jk ∧ dyk =

(dω + ω ∧ ω)ij. Therefore, θ(2) and ω(2) are replaced by

θ(2)′ = θ(2) +

(
0

df + ωf + gθ

)
ω(2)′ = ω(2) +

(
O O

Ωf + dg + [ω, g] O

)
.

Finally, we can replace θ by θ′ = (Dζ)θ, where ζ is a local biholo-

morphic diffeomorphism. Then, the connection form of a Bott connec-

tion, say ∇′, is given by

ω′ = −(dDζ)(Dζ)−1 + (Dζ)ω(Dζ)−1.

In this case, the mappingDζ : H∗(
∧iE(F)∗⊗Q(F), d∇) → H∗(

∧iE(F)∗⊗
Q(F), d∇′) given by [σ] 7→ [(Dζ)σ] is an isomorphism. Indeed, we have

d((Dζ)σ) + ω′ ∧ ((Dζ)σ) + (Dζ)ω̇(Dζ)−1 ∧ ((Dζ)θ) = 0.
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We also see that an infinitesimal deformation of ω′ with respect to σ′

is given by (Dζ)ω̇(Dζ)−1. We have

ρ′ = −Hζv(Dζ)−1 + (Dζ)ρ(Dζ)−1,

θ(2)′ = (Dζ)θ(2) +

(
0

(Hζv)dy

)
,

ω(2)′ = −(dD(2)ζ)(D(2)ζ)−1 + (D(2)ζ)ω(2)(D(2)ζ)−1,(3.13)

where

ρ′ij = − ∂2ŷi

∂yl∂ym
∂yl

∂ŷj
vm +

∂ŷi

∂yl
f l
mn

∂ym

∂ŷj
vn,

((Hζv)dy)i =
∂2ŷi

∂yl∂ym
vldym.

The equality (3.13) is shown by essentially the same calculations to

show (3.6).

Lemma 3.14 (cf. [5, Theorem 1.20]). Let eHj = ej−ηiρij = ej−ηif i
jkv

k.

If we set ρ = (ρij) and F =

(
Iq O
−ρ Iq

)
, then we have the following.

1) (êH1 , . . . , ê
H
q , η̂1, . . . , η̂q)

(
Dγ O
O Dγ

)
= (eH1 , . . . , e

H
q , η1, . . . , ηq).

2) The connection form of ∇(2) with respect to (eH1 , . . . , e
H
q , η1, . . . , ηq)

is given by

(
ω O
ω̇ ω

)
.

3) F−1θ(2) =

(
θ
σ

)
.

Proof. If we set ρ = (ρij) and F =

(
Iq O
−ρ Iq

)
, then we have

(êH1 , . . . , ê
H
q , η̂1, . . . , η̂q)

(
Dγ O
O Dγ

)
= (ê1, . . . , êq, η̂1, . . . , η̂q)

(
I O
−ρ̂ I

)(
Dγ O
O Dγ

)
= (e1, . . . , eq, η̂1, . . . , η̂q)

(
(Dγ)−1 O

−(Dγ)−1(Hγv)(Dγ)−1 (Dγ)−1

)(
Dγ O

−ρ̂(Dγ) Dγ

)
= (eH1 , . . . , e

H
q , η̂1, . . . , η̂q)

(
I O
ρ I

)(
I O

−(Dγ)−1(Hγv)− (Dγ)−1ρ̂(Dγ) I

)
= (eH1 , . . . , e

H
q , η̂1, . . . , η̂q)

(
I O

ρ− (Dγ)−1(Hγv)− (Dγ)−1ρ̂(Dγ) I

)
.
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Since ρ = (Dγ)−1(dDγ)v + (Dγ)−1ρ̂(Dγ), we have

ρ− (Dγ)−1(Hγv)− (Dγ)−1ρ̂(Dγ) = 0.

Next, we have (eH1 , . . . , e
H
q , η1, . . . , ηq) = (e1, . . . , eq, η1, . . . , ηq)F and

F−1dF + F−1ω(2)F =

(
O O

−dρ O

)
+

(
ω O

ρω + ω̇ + dρ+ [ω, ρ]− ωρ ω

)
=

(
ω O
ω̇ ω

)
. □

The vectors eHi are versions of horizontal lifts of ei in the sense of [22,

Chapter 2], see also [5, §1]. Finally we again remark that we can

exchange v and ẏ in the construction.

4. Deformations of the Godbillon-Vey class and

Relation to projective structures

If we discuss only the Godbillon-Vey and Bott classes, the construc-

tion can be largely simplified. The following vector bundle is relevant.

We set Jγ = detDγ. Note that

trDγ−1i
lHγ

l
jk = Dγ−1i

lHγ
l
ik =

∂ log Jγ

∂yk
.

We set trDγ−1Hγ =
(
trDγ−1i

lHγ
l
j1 . . . trDγ−1i

lHγ
l
jq

)
.

Definition 4.1 (cf. Definition 2.2). Let K
(2)
F

−1 be a vector bundle over

K−1
F defined as follows. Let U be a foliation chart and e = e1 ∧ · · · ∧ eq

be a local trivialization of K−1
F , where ei = π

(
∂

∂yi

)
. We set K

(2)
F

−1 =

{(z, w; ẏ, ẇ)}, where

(ẑ, ŵ; ̂̇y, ̂̇w) = (φ(z), Jγyw;Dγyẏ, Jγy tr(Dγ
−1
y Hγyẏ)w + Jγyẇ).

The projection to K−1
F , denoted by p(2), is defined by p(2)(z, w; ẏ, ẇ) =

(z, w). We denote by ν the mapping from K
(2)
F

−1 to Q(F) defined by

ν(z, w; ẏ, ẇ) = (z, ẏ). Then, ν : K
(2)
F

−1 → Q(F) is a vector bundle.

The following diagram commutes:

K
(2)
F

−1
p(2)

−−−→ K−1
F

ν

y yp

Q(F) −−−→
pQ

M ,
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where p is the natural projection.

Remark 4.2. One might notice that p(2) : K
(2)
F

−1 → K−1
F is quite similar

to pQ ◦ p : Q(F̃) → M , where p : Q(F̃) → Q(F) is a certain vector

bundle appeared in [5]. This is later discussed.

First we study ν : K
(2)
F

−1 → Q(F). This bundle is related to p
(2)
Q : Q(2)(F) →

Q(F) as follows. If we set

Lγ =

(
Jγ 0

Jγ tr(Dγ−1Hγẏ) Jγ

)
,

then the transition function is given by Lγ. Let∇ be a Bott connection

on Q(F) and {ω} the family of connection forms as in the previous

sections. We represent ωi
j = f i

jkdy
k and set ρij = f i

jkẏ
k. Recall that

σ̃ = σ−ρ θ and ω(2) =

(
ω O

ω̇ + dρ+ [ω, ρ] ω

)
. We set ω = trω, ω̇ = tr ω̇

and ρ = tr ρ. If we represent ω = fkdy
k, then fk = f i

ik and ρ = fiẏ
i.

Let (e1, . . . , eq, η1, . . . , ηq) be the local trivialization of Q(2)(F) as in §2.
We set

δ =
1

q
(η1 ∧ e2 ∧ · · · ∧ eq + e1 ∧ η2 ∧ e3 ∧ · · · ∧ eq

+ · · ·+ e1 ∧ · · · ∧ eq−1 ∧ ηq),
θ = θ1 ∧ · · · ∧ θq,
σ̃ = σ̃1 ∧ θ2 ∧ · · · ∧ θq + θ1 ∧ σ̃2 ∧ θ3 ∧ · · · ∧ θq

+ θ1 ∧ · · · ∧ θq−1 ∧ σ̃q,

θ(2) =

(
θ

σ̃

)
,

ω(2) =

(
ω 0

ω̇ + dρ ω

)
.

Let A be the vector space spanned by

ηi ∧ e1 ∧ · · · ∧ êi ∧ · · · ∧ eq − (−1)i−jηj ∧ e1 ∧ · · · ∧ êj ∧ · · · ∧ eq,
ηi ∧ e1 ∧ · · · ∧ êj ∧ · · · ∧ eq,

ηi ∧ ηj ∧ e1 ∧ · · · ∧ êi ∧ · · · ∧ êj ∧ · · · ∧ eq,

where i ̸= j and ‘̂’ means omission. Let V be the vector space spanned

by e and δ modulo A. Then, (e δ) gives a local trivialization of K
(2)
F

−1.
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Indeed, if we denote by Aγ = JγDγ−1 the adjugate matrix of Dγ, then

we have

γ∗e = γ∗(e1 ∧ · · · ∧ eq)

= (detDγ)ê1 ∧ · · · ∧ êq + (tr(AγHγẏ))δ̂

= Jγê+ Jγ tr(Dγ−1Hγẏ)δ̂,

γ∗δ = Jγδ̂.

Thus (e, δ) can be identified with

(
e,

∂

∂w

)
. We have the following

Lemma 4.3 (cf. Lemma 3.4 and [5, Theorem 1.20]). We have

1) θ̂
(2)

= (Lγ)θ(2).

2) dθ(2) + ω(2) ∧ θ(2) = 0.

3) ω(2) = (Lγ)−1(dLγ) + (Lγ)−1ω̂(2)(Lγ), namely, {ω(2)} gives rise

to a connection on K(2)(F)−1 which we denote by ∇(2).

Proof. First, the coefficients of σ̃k ∧ θ2 ∧ · · · ∧ θq in ̂̃σ are equal to

(Dγ)klG
l
1, whereG

l
1 denotes the (l, 1)-cofactor ofDγ. Therefore, we havễσ = tr((Aγ)(Hγv))θ + (detDγ)σ̃.

The part 1) follows from the above equality. The part 2) follows from

the following one, namely,

dσ̃

= d

q∑
k=1

(
θ1 ∧ · · · ∧ σ̃k ∧ · · · ∧ θq

)
= −

q∑
k=1

∑
j<k

(−1)j−1
(
θ1 ∧ · · · ∧ θj−1 ∧ ωj

l ∧ θ
l ∧ θj+1 ∧ · · · ∧ σ̃k ∧ · · · ∧ θq

)
−

q∑
k=1

q∑
l=1

(−1)k−1
(
θ1 ∧ · · · ∧ θk−1 ∧ (ω̇ + dρ+ [ω, ρ])kl ∧ θl ∧ θk+1 ∧ · · · ∧ θq

)
−

q∑
k=1

q∑
l=1

(−1)k−1
(
θ1 ∧ · · · ∧ θk−1 ∧ ωk

l ∧ σ̃l ∧ θk+1 ∧ · · · ∧ θq
)

−
q∑

k=1

∑
k<j

q∑
l=1

(−1)j−1
(
θ1 ∧ · · · ∧ σ̃k ∧ · · · ∧ θj−1 ∧ ωj

l ∧ θ
l ∧ θj+1 ∧ · · · ∧ · · · ∧ θq

)
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= −
q∑

k=1

∑
j<k

(−1)j−1
(
θ1 ∧ · · · ∧ θj−1 ∧ ωj

j ∧ θj ∧ θj+1 ∧ · · · ∧ σ̃k ∧ · · · ∧ θq
)

−
q∑

k=1

∑
j<k

(−1)j−1
(
θ1 ∧ · · · ∧ θj−1 ∧ ωj

k ∧ θ
k ∧ θj+1 ∧ · · · ∧ σ̃k ∧ · · · ∧ θq

)
−

q∑
k=1

(−1)k−1
(
θ1 ∧ · · · ∧ θk−1 ∧ (ω̇ + dρ+ [ω, ρ])kk ∧ θk ∧ θk+1 ∧ · · · ∧ θq

)
−

q∑
k=1

q∑
l=1

(−1)k−1
(
θ1 ∧ · · · ∧ θk−1 ∧ ωk

l ∧ σ̃l ∧ θk+1 ∧ · · · ∧ θq
)

−
q∑

k=1

∑
k<j

(−1)j−1
(
θ1 ∧ · · · ∧ σ̃k ∧ · · · ∧ θj−1 ∧ ωj

j ∧ θj ∧ θj+1 ∧ · · · ∧ θq
)

−
q∑

k=1

∑
k<j

(−1)j−1
(
θ1 ∧ · · · ∧ σ̃k ∧ · · · ∧ θj−1 ∧ ωj

k ∧ θ
k ∧ θj+1 ∧ · · · ∧ θq

)
= −

q∑
k=1

∑
j ̸=k

ωj
j ∧
(
θ1 ∧ · · · ∧ σ̃k ∧ · · · ∧ θq

)
+

q∑
k=1

∑
j ̸=k

(−1)j−1
(
θ1 ∧ · · · ∧ θj−1 ∧ ωj

k ∧ σ̃
k ∧ θj+1 ∧ · · · ∧ θq

)
− (ω̇ + dρ) ∧

(
θ1 ∧ · · · ∧ θq

)
−

q∑
k=1

(−1)k−1
(
θ1 ∧ · · · ∧ θk−1 ∧ ωk

k ∧ σ̃k ∧ θk+1 ∧ · · · ∧ θq
)

−
q∑

k=1

∑
l ̸=k

(−1)k−1
(
θ1 ∧ · · · ∧ θk−1 ∧ ωk

l ∧ σ̃l ∧ θk+1 ∧ · · · ∧ θq
)

= −ω ∧ σ̃ − (ω̇ + dρ) ∧ θ.

Finally, we have

ω = (detDγ)−1(d detDγ) + ω̂,

and

ω̇ + dρ

= ̂̇ω + d

((
(detDγ)−1∂ detDγ

∂yi
+ f̂j(Dγ)

j
i

)
(Dγ)−1i

j v̂
j

)
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= ̂̇ω + dρ̂+ d

(
(detDγ)−1∂ detDγ

∂yi
vi
)

= ̂̇ω + dρ̂− (detDγ)−2(d detDγ)
∂ detDγ

∂yi
vi + (detDγ)−1d

(
∂ detDγ

∂yi
vi
)
.

Therefore the part 3) also holds. □

Let eHj be as in Lemma 3.14. Note that

δ =
1

q
(η1 ∧ eH2 ∧ · · · ∧ eHq + eH1 ∧ η2 ∧ eH3 ∧ · · · ∧ eHq

+ · · ·+ eH1 ∧ · · · ∧ eHq−1 ∧ ηq)

holds in K(2)(F)−1. We set eH = eH1 ∧ · · · ∧ eHq .

Lemma 4.4 (cf. Lemma 3.14 and [5, Theorem 1.20]). We have the

following.

1) (eH , δ) = (e, δ)

(
1 0

− tr ρ 1

)
.

2) (êH , δ̂)

(
detDγ 0

0 detDγ

)
= (eH , δ).

3) The connection form of ∇(2) with respect to (eH , δ) is given by(
ω 0
ω̇ ω

)
.

Note that d

(
ω 0
ω̇ ω

)
+

(
ω 0
ω̇ ω

)
∧
(
ω 0
ω̇ ω

)
=

(
dω 0
dω̇ dω

)
. See also

[3]. In view of Lemma 4.4, we introduce the following

Definition 4.5. Let ω̇ be a 1-form on Q(F) such that ω̇(ηi) = 0

for 1 ≤ i ≤ q. Such a 1-form is called a generalized infinitesimal

deformation of ω with respect to θ when it is regarded as a coefficient

of connection on K
(2)
F

−1. More concretely, we consider a connection of

which the connection matrix with respect to (eH δ) is given by

(
ω 0
ω̇ ω

)
.

A generalized infinitesimal deformation is an ordinary one if dω̇(ηi) =

0. As we will see, the constant and the linear parts of ω̇ with respect

to ẏ are relevant.

Next, we study p(2) : K
(2)
F

−1 → K−1
F (we refer to [5] for details of

EF , Q(F̃) and TW-connections. See also [20]). A local trivialization of
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K
(2)
F

−1 is given by (ei, δ) and the transition function is given by

(ei δ) = (êi δ̂)

(
Dγ 0

trDγ−1Hγw Jγ

)
.

We set k−1
F = {(z, w) ∈ K−1

F |w ̸= 0} and denote by k
(2)
F

−1 the

restriction of K
(2)
F

−1 to k
(2)
F

−1. Let EF be the C∗-principal bundle

associated with K−1
F . Note that k−1

F and EF are indeed the same.

On a foliation chart, we can find local coordinates on EF such as

(z, u) = (x, y, u) ∈ (Rp × Cq) × C∗. By taking the logarithm and

changing the order, we may make use of (x, log u, y) as local coord-

inates which we denote by (x, y0, yi). Let E(F̃) be the subbundle of

TEF locally spanned by
∂

∂x
and

∂

∂ȳµ
, 0 ≤ µ ≤ q (we omit

∂

∂ȳµ
in

the real case), and set Q(F̃) = TEF/E(F̃). A local trivialization of

Q(F̃) is given by

(
∂

∂y0
, ei

)
and the transition function is given by(

1 tr(Dγ−1Hγ)
0 Dγ

)
. In order to compare k

(2)
F

−1 with Q(F̃), we change

the order again and choose

(
ei,

∂

∂y0

)
as a local trivialization. Then,

the transition function is given by

D̃γ =

(
Dγ 0

tr(Dγ−1Hγ) 1

)
.

Note that
∂

∂y0
= w

∂

∂w
.

A transverse TW-connection, say ∇TW, is a linear connection on Q(F̃)

of which the connection form with respect to

(
ei,

∂

∂y0

)
is given by

−1

q + 1

(
dy0Iq dy
0 dy0

)
+

(
ν 0

L(q) + α 0

)
,

where dy = t(dy1 · · · dyq). If we change the local trivialization into a

horizontal one, namely, to (
ehi ,

∂

∂y0

)
,
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where ehi = ei − fi
∂

∂y0
, then the connection form is changed into

−1

q + 1

(
dη0Iq dη
0 dη0

)
+

(
ν 0
α 0

)
,

where η0 = dy0 + fidy
i and ηi = dyi. We further change the local

trivialization into

(
ehi ,

∂

∂w

)
. Note that ehi = ei − fiw

∂

∂w
. Then, the

connection form is changed into

−1

q + 1

(
dη0Iq

dη
w

0 dη0

)
+

(
ν 0
wα 0

)
+

(
0 0
0 −dw

w

)
.

Now let (e, δ) be the trivialization of K
(2)
F

−1 → Q(F) and recall that

(e, δ) can be identified with

(
e,

∂

∂w

)
. Therefore (eH , δ) is identified

with

(
eH ,

∂

∂w

)
. If we regard K

(2)
F

−1 a fiber bundle over M , then we

can consider

(
ehi , e

H ,
∂

∂w

)
as a local trivialization. We can represent

a point on K
(2)
F

−1 by (z, vi, w, u), where z is the projection of the point

to M and (vi, w, u) are the coefficients with respect to

(
ehi , e

H ,
∂

∂w

)
.

If ∇TW is a transverse TW-connection and ∇(2) is a connection as in

Definition 4.5, then we can ask if there are some relationship between

them. For this purpose, we need the following

Definition 4.6. Let LF be the line bundle over M locally spanned

by
∂

∂y0
. By abuse of notations, we denote their pull-backs to Q(F)

and K−1
F again by LF . Let Q(F)h be the subbundle of K

(2)
F

−1 over

Q(F) locally spanned by
{
ehj
}
, where ehj = ej − fj

∂

∂y0
. We denote by

hQ the projection from K
(2)
F

−1 to LF determined by the decomposition

K
(2)
F

−1 = Q(F)h ⊕LF . We denote by (K−1
F )H the subbundle of K

(2)
F

−1

over K−1
F locally spanned by eH . We denote by hK the projection from

K
(2)
F

−1 to LF determined by the decomposition K
(2)
F

−1 = (K−1
F )H⊕LF .

We have the following
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Theorem 4.7. Suppose that

hQ

(
∇TW

Xh

(
ehi v

i +
∂

∂w
u

))
= hK

(
∇(2)

XH

(
eHw +

∂

∂w
u

))
for any X ∈ TM and (vi, w, u), where if X = eia

i, then Xh = ehi a
i

and XH = eHi a
i. Then we have αi =

∂

∂ẏi
ω̇, that is, the linear part

of a generalized infinitesimal deformation of ω is equal to the infini-

tesimal deformation of a TW-connection. In general, the linear part

with respect to ẏi of a generalized infinitesimal deformation of ω is

an (original) infinitesimal deformation of ω̇ in the sense of [3] (even

back to [12]).

Proof. We have

hQ

(
∇TW

Xh

(
ehi v

i +
∂

∂w
u

))
=

∂

∂w
(wαi(X

h)vi + fia
iu)

=
∂

∂w
(wαi(X)vi + fia

iu),

hK

(
∇(2)

XH

(
eHw +

∂

∂w
u

))
=

∂

∂w
(ω̇(XH)w + ω(XH)u)

=
∂

∂w
(ω̇(X)w + ω(X)u).

Since fia
i = ω(X), the equality in the claim holds if and only if

αiv
i = ω̇. □

The linear term of a generalized infinitesimal deformations is a kind

of non-linear connections in the sense of [22].

In order to deal with deformations other than Godbillon-Vey class

and Bott class, we need a generalization of Theorem 4.7, which will be

discussed elsewhere.

Remark 4.8. Let θ = fidy
i be the connection form of a Bott connection,

say D, on K−1
F with respect to dy1 ∧ · · · ∧ dyq, and set η0 = dy0 + θ,

ηi = dyi. If we set ωTW to be the connection form of a TW-connection

with respect to (∇b,D), then

ωTW = − 1

q + 1

(
η0Iq η
0 η0

)
+

(
Γ 0
α 0

)
,
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where Γ is the connection form of∇b with respect to

(
∂

∂y1
, . . . ,

∂

∂yq
,
∂

∂y0

)
[5] and η = t(η1 · · · ηq). If we set θTW = t(η1 · · · ηq η0), then we have,

provided that ∇b is transversely torsion-free [5],

dθTW + ωTW ∧ θTW =


0
...
0

dθ + αi ∧ dyi

 .

Thus, slightly different from Lemmata 3.4 and 4.3, the torsion of a

TW-connection for (∇b,D) (as a linear connection) is related to the

curvature of D.

Remark 4.9. The Frobenius theorem and the torsion-freeness a Bott

connection on Q(F) are related as follows. Let (e1, . . . , eq) be a lo-

cal trivialization of Q(F) and t(θ1, . . . , θq) be the dual. If ∇b is a

Bott connection, then ∇bej =
q∑

i=1

eiω
i
j, where (ωi

j) is the connection

form of ∇b with respect to (e1, . . . , eq). If X ∈ E(F), then ∇b
Xej =

π[X, ẽj]. Therefore, dθi(X, ẽj) = X(θi(ẽj)) − ẽj(θ
i(X)) − θi([X, ẽj]) =

−θi(∇b
Xej) = −ωi

j(X). On the other hand, we have ωi
k ∧ θk(X, ẽj) =

δjkω
i
j(X), where δij denotes the Kronecker delta. Hence we have dθ +

ω ∧ θ = 0 on E(F) ⊗ TM . Thanks to the Frobenius theorem, we

have a glqC-valued 1-form, say τ = (τ ij), such that dθ + τ ∧ θ =

0. Let A = (aij) be a GLqC-valued function such that θ = Ady.

Then, (A−1dA + A−1τA) ∧ dy = 0. Therefore, if we can represent

A−1dA + A−1τA = (bij) and bij = bijkdy
k, then bijk = bikj. This is the

case if τ is the connection form of a transversely torsion-free Bott con-

nection with respect to (e1, . . . , eq).

5. Characteristic classes

We begin with invariant polynomials on TGLqR and TGLqC.

Lemma 5.1. Let I(TGLqC) be the algebra of invariant polynomials.

If X ∈ tglqC, then we represent X ∈ tglqC as X =

(
X1 O
X2 X1

)
.

1) Let f ∈ I(GLqC). If we set f̃(X) = f(X1), then f̃ ∈ I(TGLqC).
We denote f̃ again by f .
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2) If we set

b̂k(X) =

tr
k−1∑
i=0

X i
1X2X

k−i−1
1 , k > 0,

0, k = 0,

then, b̂k ∈ I(TGLqC).

Proof. If g =

(
A O
B A

)
∈ TGLqC, then

AdgX =

(
AX1A

−1 O
BX1A

−1 + AX2A
−1 − AX1A

−1BA−1 AX1A
−1

)
.

The first claim immediately follows from this. In order to show the

second claim, we first remark that
k−1∑
i=0

X i
1X2X

k−i−1
1 is the bottom-left

component of Xk. In other words, if we represent Xk =

(
Y1 O
Y2 Y1

)
,

then b̂k(X) = trY2. It follows that

b̂k(gXg
−1) = tr(BY1A

−1 + AY2A
−1 − AY1A

−1BA−1)

= tr(BY1A
−1) + tr(AY2A

−1)− tr(AY1A
−1BA−1)

= tr(BY1A
−1) + trY2 − tr(BA−1AY1A

−1)

= trY2.

Hence b̂k ∈ I(TGLqC). □

Actually we have b̂k(X) = k trX2X
k−1
1 but we prefer the expression

as above for its naturality seen as above.

The polynomial b̂k will correspond to the infinitesimal derivative of

the Chern characters. If we work on the Chern classes, a certain variant

of b̂k is useful. In order to introduce it, we recall the relation between

the Chern classes and the Chern characters.

Notation 5.2. Let σi, i = 1, . . . , q, be the i-th elementary symmetric

function in x1, . . . , xq. Formally we set σ0(x1, . . . , xq) = 1. We set

τj(x1, . . . , xq) = xj1 + · · ·+ xjq for j = 1, . . . and τ0(x1, . . . , xq) = q.

The relation between σi and τj is well-known (cf. [15, 14.1 and 19.3]).
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Proposition 5.3. If we set f(t) =
q∑

i=0

σi(x1, . . . , xq) t
i, then

∞∑
j=1

(−1)jτj(x1, . . . , xq) t
j = −tdf

dt
(t)

/
f(t)

holds in R[[t]], where t0 is regarded as 1.

Proof. We have f(t) = (1 + x1t) · · · (1 + xqt). It follows that

df

dt
(t)

/
f(t) =

d log f

dt
(t) =

∞∑
j=0

(−1)jτj+1(x1, . . . , xq)t
j. □

Corollary 5.4. There is a polynomial Pj in y1, . . . , yj such that

τj = Pj(σ1, . . . , σj).

Example 5.5. The concrete form of the polynomials Pk for small k

are as follows. We regard yk = 0 if k > q.

P1(y1) = y1,

P2(y1, y2) = y21 − 2y2,

P3(y1, y2, y3) = y31 − 3y1y2 + 3y3,

P4(y1, y2, y3, y4) = y41 − 4y21y2 + 2y22 + 4y1y3 − 4y4,

P5(y1, y2, y3, y4, y5)

= y51 − 5y31y2 + 5y1y
2
2 + 5y21y3 − 5y2y3 − 5y1y4 + 5y5,

P6(y1, y2, y3, y4, y5, y6)

= y61 − 6y41y2 + 9y21y
2
2 + 6y31y3 − 12y1y2y3

− 6y21y4 + 6y1y5 − 2y32 + 6y2y4 + 3y23 − 6y6.

Theorem 5.6. Let ci be the i-th Chern class and ĉj the j-th Chern

character, then ĉj = Pj(c1, . . . , cj)/j!.

Conversely, if we set g(t) =
∞∑
j=0

(−1)j

j + 1
τj+1(x1, . . . , xq) t

j+1, then f(t) =

exp g(t). Therefore, the converse of Theorem 5.6 also holds.

Theorem 5.7. Let Qk be the polynomial in τ1, . . . , τk determined by
∞∑
k=0

Qkt
k = exp

(
∞∑
j=0

(−1)j

j + 1
τj+1t

j+1

)
.

Then, ck = Qk(ĉ1, 2ĉ2, . . . , k! ĉk).
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Example 5.8. The concrete form of the polynomials Qk for k = 1, 2, 3

are as follows.

Q1(τ1) = τ1, Q2(τ1, τ2) =
1

2

(
τ 21 − τ2

)
,

Q3(τ1, τ2, τ3) =
1

6

(
τ 31 − 3τ1τ2 + τ3

)
.

Definition 5.9. If I = {i1, . . . , ir}, then we set Il = I \ {il} and

τI = τi1 · · · τir , where τ∅ = 1. Let τ ′1, τ
′
2, . . . be formal variables and set

δτI(τ
′; τ) =

r∑
l=1

τ ′ilτIl .

We represent Qi as Qi(τ1, . . . , τi) =
∑
|I|=i

aIτI , where |I| = i1 + · · ·+ ir,

and set

bi =
∑
|I|=i

aIδτI (̂b1, 2b̂2, . . . , i! b̂i; ĉ1, 2ĉ2, . . . , i! ĉi).

Example 5.10.

b1 = b̂1, b2 = b̂1ĉ1 − b̂2 and b3 =
1

2
b̂1ĉ

2
1 − b̂1ĉ2 − b̂2ĉ1 + b̂3.

We define a subgroup TSLqC of TGLqC by TSLqC = SLqC⋉ slqC ⊂
GLqC⋉glqC and denote by tslqC the Lie algebra of TSLqC. Then, the
following is known.

Theorem 5.11 (Takiff [21], Rais-Tauvel [19, Théorème 4.5]).

I(TSLqC) = C[ĉ2, . . . , ĉq, b̂2, . . . , b̂q],

I(TSLqR) = R[ĉ2, . . . , ĉq, b̂2, . . . , b̂q].

The following is a direct consequence of Theorem 5.11.

Theorem 5.12.

I(TGLqC) = C[ĉ1, . . . , ĉq, b̂1, . . . , b̂q],

I(TGLqR) = R[ĉ1, . . . , ĉq, b̂1, . . . , b̂q].

Proof. First we show the theorem for TGLqC. We will show that

I(TGLqC) ⊂ C[ĉ1, . . . , ĉq, b̂1, . . . , b̂q] and that ĉi, b̂j are algebraically

independent. We have

tglqC = {(X, Y ) |X, Y ∈ glqC},
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and

Ad(A,B)(X, Y ) = (AXA−1, A(BX −XB + Y )A−1),

ad(X1,Y1)(X2, Y2) = ([X1, X2], [Y1, X2] + [X1, Y2]),

where (A,B) ∈ TGLqC and (X, Y ), (X1, Y1), (X2, Y2) ∈ tglqC. Let

F ∈ I(TGLqC). We may assume that F is homogeneous of degree d.

Let f be the polarization of F , i.e., the symmetric multilinear map-

ping on (tglqC)d such that F (X) = f(X, . . . , X) for X ∈ tglqC. Let

I = (Iq, O) and J = (O, Iq), where Iq denotes the unit matrix. Then

Z(TGLqC) = {tI + sJ | t, s ∈ C}. If X = (Y, Z) ∈ tglqC, then we can

decompose X as X = X ′ + tI + sJ , where X ′ ∈ tslqC, t = 1
q
trY =

1
q
ĉ1(X) and s = 1

q
trZ = 1

q
b̂1(X). Let K = {K1, . . . , Kr}, where

0 ≤ r ≤ d and each Kp is either I or J . We set fK(X
′
1, . . . , X

′
d−r) =

f(X ′
1, . . . , X

′
d−r, K1, . . . , Kr). If K = ∅, then we set fK = f∅ = f .

Note that the order of Ki’s does not affect fK1,...,Kr because f is sym-

metric. Then, fK is a symmetric, invariant polynomial on TSLqC.
Therefore, by Theorem 5.11, there is an element of I(TSLqC) of which
the polarization is equal to fK . We have

f(X1, . . . , Xd)

= f(t1I + s1J, . . . , tdI + sdJ)

+ (f(X ′
1, t2I + s2J, . . . , tdI + sdJ) + · · ·

+ f(t1I + s1J, . . . , td−1I + sd−1J,X
′
d))

+ · · ·+ f(X ′
1, . . . , X

′
d)

= t1t2 · · · tdfI,...,I
+ (s1t2 · · · tdfI,...,I,J + t1s2t3 · · · tdfI,··· ,I,J+
+ · · ·+ t1 · · · td−1sdfI,··· ,I,J)

+ · · ·+ s1 · · · sdfJ,··· ,J
+ (t2 · · · tdfI,...,I(X ′

1) + · · ·+ s2 · · · sdfJ,...,J(X ′
1))

+ (t1 · · · td−1fI,...,I(X
′
d) + · · ·+ s1 · · · sd−1fJ,...,J(X

′
d))

+ · · ·+ f∅(X
′
1, . . . , X

′
d).

As the above equality holds identically on X1, . . . , Xd, we see that

f ∈ C[ĉ2, . . . , ĉq, b̂2, . . . , b̂q][ĉ1, b̂1] = C[ĉ1, . . . , ĉq, b̂1, . . . , b̂q]. Finally, ĉi
and b̂j are algebraically independent by Lemme 3.3 of [19]. Since there
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is an obvious inclusion of I(TGLqR) into I(TGLqC), the same holds

for I(TGLqR). □

Definition 5.13. Let J,K ∈ {(j1, . . . , jq) | jr ∈ N}. We set |J | =

j1 + 2j2 + · · · + qjq and |K|′ = k2 + 2k3 + · · · + (q − 1)kq, where

K = (k1, . . . , kq). Then, we set

Iq = {cJ ∈ C[c1, . . . , cq] | |J | > q},
Iq,q = {cJ ċK ∈ C[c1, . . . , cq, ċ1, . . . , ċq] | |J |+ |K|′ > q}.

If cK ∈ Iq, then we set

δcK = k1c
k1−1
1 ċ1c2 · · · cq +k2c1ck2−1

2 ċ2c3 · · · cq + · · ·+kqc1 · · · cq−1c
kq−1
q ċq.

Finally, let DIq be the ideal of C[c1, . . . , cq, ċ1, . . . , ċq] generated by Iq,q
and {δcJ | cJ ∈ Iq}, and set

Cq[c1, . . . , cq] = C[c1, . . . , cq]/Iq,
Cq,q[c1, . . . , cq, ċ1, . . . , ċq] = C[c1, . . . , cq, ċ1, . . . , ċq]/DIq.

We define Cq[c̄1, . . . , c̄q] by replacing ci by c̄i.

We formally set ¯̇c = ˙̄c and ¯̇u = ˙̄u.

Definition 5.14. We set deg ci = deg ċi = deg ˙̄ci = 2i, deg hi =

deg ũi = deg ḣi = deg u̇i = deg ˙̄ui = 2i− 1. Let

WOq =
∧
[h1, . . . , h[q]]⊗ Rq[c1, . . . , cq],

WUq =
∧
[ũ1, ũ2, . . . , ũq]⊗ Cq[c1, . . . , cq]⊗ Cq[c̄1, . . . , c̄q],

DWOq =
∧
[ḣ1, ḣ2, . . . , ḣq] ∧

∧
[h1, h3, . . . , h[q]]⊗ Rq,q[c1, . . . , cq, ċ1, . . . , ċq],

DWUq =
∧
[u̇1, u̇2, . . . , u̇q] ∧

∧
[ ˙̄u1, ˙̄u2, . . . , ˙̄uq] ∧

∧
[ũ1, ũ2, . . . , ũq]

⊗ Cq,q[c1, . . . , cq, ċ1, . . . , ċq]⊗ Cq,q[c̄1, . . . , c̄q, ˙̄c1, . . . , ˙̄cq],

where [q] denotes the greatest odd integer less than or equal to q, and

set

dhi = ci, dḣi = ċi,

dũi = ci − c̄i, du̇i = ċi, d ˙̄ui = ˙̄ci, dci = dc̄i = dċi = d ˙̄ci = 0.

Proposition 5.15. The natural homomorphisms from H∗(WOq) to

H∗(DWOq) and from H∗(WUq) to H
∗(DWUq) are injective. More pre-

cisely, H∗(WOq) is isomorphic to {f ∈ H∗(DWOq) | f does not involve ḣi or ċj},
and H∗(WUq) is isomorphic to {f ∈ H∗(DWUq) | f does not involve u̇i, ˙̄uj, ċk or ˙̄cl}.
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Proof. As the number of ‘dots’ are well-defined on the cohomology level,

we can decompose H∗(DWOq) according to that number. It is easy to

see that H∗(WOq) is the part of H∗(DWOq) of which the number is

equal to zero. The same arguments work on WUq and DWUq. □

Example 5.16. We have

H∗(DWO1) = ⟨1, h1c1, ḣ1c1, ḣ1h1c1⟩,

where the bracket means that the cohomology is generated as a linear

space. The class h1c1 is the Godbillon-Vey class, 2ḣ1c1 is the infini-

tesimal derivative of the Godbillon-Vey class, and 2ḣ1h1c1 is the Fuks-

Lodder-Kotschick class which will be introduced in Example 5.28.

Example 5.17. We can also determine H∗(DWU1) by using simple

spectral sequences. Let

A = ⟨f ∈ DWU1 | f does not involve ũ1⟩.

Then, A is closed under d. More concretely, if we set

B = ⟨c1c̄1, c1 ˙̄cl1, c̄1ċk1, ċk1 ˙̄cl1 | k, l ∈ N⟩,

then, we have

A = B ⊕ u̇1B ⊕ ˙̄u1B ⊕ u̇1 ˙̄u1B,

where the product is the wedge product. We have

H∗(A) = ⟨1, c1, c̄1, c1c̄1, u̇1c1, ˙̄u1c̄1, u̇1c1c̄1, ˙̄u1c1c̄1, u̇1 ˙̄u1c1c̄1⟩,
H∗(DWU1/A) = ũ1⟨1, c1, c̄1, c1c̄1, u̇1c1, ˙̄u1c̄1, u̇1c1c̄1, ˙̄u1c1c̄1, u̇1 ˙̄u1c1c̄1⟩.

We have an exact sequence of complexes

0 → A→ DW1 → DW1/A→ 0

and that of cohomologies

· · · → H∗−1(DW1/A)
∂→ H∗(A) → H∗(DW1) → H∗(DW1/A)

∂→ H∗+1(A) → · · · .
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The connecting homomorphism ∂ is indeed given by the differential d

so that we have

Hr(DWU1) =



⟨1⟩, r = 0,⟨
c1+c̄1

2

⟩
, r = 2,

⟨u̇1c1, ˙̄u1c̄1, ũ1(c1 + c̄1)⟩, r = 3,

⟨ũ1c1c̄1⟩, r = 5,

⟨u̇1 ˙̄u1c1c̄1, ũ1u̇1c1c̄1, ũ1 ˙̄u1c1c̄1⟩, r = 6,

⟨ũ1u̇1 ˙̄u1c1c̄1⟩, r = 7,

0, otherwise.

Up to multiplication of constants, c1+c̄1 is the first Chern class, ũ1(c1+

c̄1) is the imaginary part of the Bott class, ũ1c1c̄1 is the Godbillon-Vey

class, and u̇1c1, ˙̄u1c̄1 are the infinitesimal derivative of the Bott class

and its complex conjugate. The absence of the infinitesimal derivative

of the Godbillon-Vey class corresponds to the rigidity of the Godbillon-

Vey class for transversely holomorphic foliations [4]. Note also that the

infinitesimal derivative of the Chern classes are also absent. This is of

course due to the integrality (therefore the rigidity under deformations)

of the Chern classes. Finally we remark that there is no direct analogue

of the Fuks-Lodder-Kotschick class. See also Remark 5.34. Instead of

that, the classes of degree 6 and perhaps the class of degree 7 are

variants.

Let δR : WOq → DWOq and δ : WUq → DWUq be the (commutative)

derivations which satisfy δRcj = ċj and δRhi = ḣi, and δcj = ċj, δc̄j = ˙̄cj
and δũi = u̇i − ˙̄ui, respectively. It is easy to see that δR and δ are well-

defined and commute with d. Therefore, we have the following

Proposition 5.18. There are well-defined derivations δR : H
∗(WOq) →

H∗(DWOq) and δ : H
∗(WUq) → H∗(DWUq) such that

δRhi = ḣi, δRci = ċi,

δ(ũi) = u̇i − ˙̄ui, δ(ci) = ċi, δ(c̄i) = ˙̄ci.

Some of results in [13] and [4] can be summarized as follows.

Theorem 5.19. There is a well-defined bilinear pairing

DχR : H
1(M ; ΘF)×H∗(DWOq) → H∗(M ;R)
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for real codimension-q foliations, and

Dχ : H1(M ; ΘF)×H∗(DWUq) → H∗(M ;C)

for complex codimension-q transversely holomorphic foliations. If σ ∈
H1(M ; ΘF) is an infinitesimal deformation and if α ∈ H∗(WOq) (resp.

β ∈ H∗(WUq)), then DχR(σ, δ(α)) (resp. Dχ(σ, δ(β))) is the infinitesi-

mal derivative of α (resp. β) with respect to σ.

Before proving Theorem 5.19, we recall the Chern forms and Chern-

Simons forms. Let ω(2) be the connection form of a connection ∇(2) on

Q(2)(F) obtained from a Bott connection and an infinitesimal deform-

ation of F . Then, the curvature form R(2) of ω(2) is by definition

R(2) = dω(2) +
1

2
[ω(2), ω(2)] = dω(2) + ω(2) ∧ ω(2).

Definition 5.20. We define i-th Chern forms ci(R
(2)), 0 ≤ i ≤ q, by

the condition

det

(
λIq −

1

2π
√
−1

R(2)

)
=

q∑
k=0

ck(R
(2))λq−k.

Note that c0(R
(2)) = 1. In the real case, we replace 2π

√
−1 by 2π. In

general, if f is a TGLqC-invariant polynomial, then we set f(R(2)) =

f(R(2), . . . , R(2)), where we make use of the Chern convention.

It is well-known that f(R(2)) is closed.

Let ω
(2)
0 and ω

(2)
1 be connection forms. We set ω

(2)
t = (1−t)ω(2)

0 +tω
(2)
1 ,

and represent f(R
(2)
t ) = α + β ∧ dt, where α and β do not involve dt.

Definition 5.21. We define the Chern-Simons form of f by

∆f (ω
(2)
0 , ω

(2)
1 ) =

∫ 1

0

βdt.

It is well-known that d∆f (ω
(2)
0 , ω

(2)
1 ) = f(R

(2)
0 )− f(R

(2)
1 ) (see [7]).

We also need a version of the Bott vanishing theorem.

Lemma 5.22. Let I be the ideal of Ω∗(M) locally generated by

dy1, . . . , dyq, where (y1, . . . , yq) are local coordinates in the transverse

direction. If we denote by Ir the ideal of Ω∗(M) locally generated by

{α1∧· · ·∧αr |α1, . . . , αr ∈ I}, then b̂k evaluated by R(2) belongs to Ik−1.
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Proof. If we represent R(2) as R(2) =

(
R1 O
R2 R1

)
, then each entry of R1

belongs to I. On the other hand, bk(R
(2)) is a certain sum of entries of

Ri
1R2R

k−i−1
1 . □

Finally, we make use of the following

Lemma 5.23 (cf. [13, Theorem 2.16], [4, Lemma 4.3.17]). Let J =

(j1, . . . , jq) ∈ Nq. If |J | > q, then δcJ(R
(2)) = 0, where δcJ is as in

Definition 5.13.

A proof can be found as a part of the proof of [13, Theorem 2.16]

and also in [4, Lemma 4.3.17] so that we omit it.

Proof of Theorem 5.19. Let ∇b be a Bott connection on Q(F), ∇h a

unitary (resp. metric) connection on Q(F) with respect to a Hermitian

(resp. Riemannian) metric h, a family of local trivializations {θ} of

Q∗(F) and an infinitesimal deformation {σ} of {θ} which represents

an infinitesimal deformation of F . For simplicity we denote {θ} and

{σ} by θ and σ, respectively. Let ωb and ωh be connection forms of ∇b

and∇h with respect to the dual of θ, and ω̇ an infinitesimal deformation

of ωb with respect to σ. We set ω(2) =

(
ωb O
ω̇ ωb

)
, ω

(2)
0 =

(
ωb O
O ωb

)
,

R = dωb+ωb∧ωb and R(2) = dω(2)+ω(2)∧ω(2). Let D̃χ be the algebra

homomorphism from (E(F)∗ ⊗Q(F))× DWUq to Ω∗(M) determined

by the conditions that

D̃χ(ci) = ci(R),

D̃χ(c̄i) = ci(R),

D̃χ(ũi) = ∆ci(ω
b, ωh)−∆ci(ω

b, ωh),

D̃χ(ċi) = bi(R
(2)),

D̃χ( ˙̄ci) = bi(R(2)),

D̃χ(u̇i) = ∆bi(ω
(2), ω

(2)
0 ),

D̃χ( ˙̄ui) = ∆bi(ω
(2), ω

(2)
0 ).

In the real case, we define D̃χR by the conditions that

D̃χR(ci) = ci(R),

D̃χR(hi) = ∆ci(ω
b, ωh), where i is odd,
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D̃χR(ċi) = bi(R
(2)),

D̃χR(ḣi) = ∆bi(ω
(2), ω

(2)
0 ).

By the construction and Lemma 5.22, D̃χ and D̃χR are well-defined

and induce bilinear mappings on the cohomology, which we denote

by Dχ and DχR, respectively. We denote the product foliation of

M × [0, 1] by F × [0, 1], namely, the leaves of F × [0, 1] are of the

form L× [0, 1], where L is a leaf of F . Let {aijk} be as (3.9). If we set

ω
(2)
t =

(
ω O

ω̇ + tAθ ω

)
, then ω

(2)
t is the connection form of a connection,

say ∇(2)
t , on Q(2)(F) with respect to θ(2). Note that ω(2) can be also

viewed as the connection form of a connection on Q(2)(F × [0, 1]) with

respect to the pull-back of θ(2) to M × [0, 1]. Let φ be a cocycle in

DWUq. If we represent φ(∇b,∇(2)
t ) = φ1 + φ2 ∧ dt, where φ1 and

φ2 do not involve dt, and if we set φ̃ =
∫
φ2, then we have dφ̃ =

φ(∇b,∇(2)
0 )−φ(∇b,∇(2)

1 ). If we replace ω, ω̇ by ω+Bθ, ω̇+Bσ, where

B is defined by (3.10), then we set ωt = ω+ tBθ and ω̇t = ω̇+ tBσ. Let

∇b′ and∇(2)′ be the connections defined by ω+Bθ and ω̇+Bσ, then, by

repeating almost the same argument as above, we can find a primitive of

φ(∇b,∇(2))−φ(∇b′,∇(2)′). Suppose that σ is replaced by σ′ by (3.11).

By the same argument in the proof of Lemma 3.14, we see that g does

not affect φ(∇b,∇(2)). By considering σt = σ + d(tf) + ω (tf) and by

repeating again the same argument as above, we see that φ(∇b,∇(2))

and φ(∇b,∇(2)′) are cohomologous. If we replace θ by (Dζ)θ, then

φ(∇b,∇(2)) does not change by (3.13), because invariant polynomial

are considered. Finally, if we replace h by another metric, then we

can form a 1-parameter family of metrics and connections, and show

by similar arguments as above that the cohomology class remains the

same. □

Remark 5.24. A related but different construction can be found in [8].

Characteristic classes for deformations of foliations are also studied

in [6] from another viewpoint. We also remark that Theorem 5.19 is

shown by more combinatorial arguments in [13] and [4].

Remark 5.25. The differential forms b1 and c1 can be obtained from

K(2)(F)−1 and ∇(2) appeared in §4.
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Definition 5.26. The elements in the image of δ in H∗(DWOq) (resp.

H∗(DWUq)) are said to be infinitesimal derivatives of secondary classes.

If σ ∈ H1(M ; ΘF), then the image of infinitesimal derivatives under

DχR(σ, δ( · )) (resp. Dχ(σ, δ( · ))) are called the infinitesimal deriva-

tives with respect to σ.

Example 5.27. We have DW1 = DWO1. Consequently,

H∗(DW1) = H∗(DWO1) = ⟨1, h1c1, ḣ1c1, ḣ1h1c1⟩.

Example 5.28. The class h1c
q
1 ∈ H2q+1(DWOq) is the Godbillon-

Vey class. The class (q + 1)ḣ1c
q
1 ∈ H2q+1(DWOq) is the infinitesimal

derivative of the Godbillon-Vey class. Note that (q + 1)ḣ1c
q
1 = δ(h1c

q
1)

holds in H2q+1(DWOq). There is another class which involves ḣ1, h1
and c1. Indeed,

d(ḣ1h1c
q
1) = ċ1h1c

q
1 − ḣ1c

q+1
1 = 0

in DWOq because c
q+1
1 , ċ1c

q
1 ∈ DIq. The class (q+1)ḣ1h1c

q
1 ∈ H2q+1(DWOq)

is introduced by Fuks [10], Lodder [18] and Kotschick [17], and called

the Fuks-Lodder-Kotschick class in [4].

In the transversely holomorphic case, the Bott class is defined by

u1c
q
1 if the complex normal bundle is trivial. In general, the imaginary

part of the Bott class is given by
√
−1ũ1(c

q
1 + cq−1

1 c̄1 + · · · + c̄q1) ∈
H2q+1(DWUq) if we choose R or C as coefficients of cohomology. On

the other hand, the infinitesimal derivative of the Bott class is defined

as an element of H2q+1(DWUq) or H2q+1(M ;C) even if the complex

normal bundle is non-trivial. Indeed, the infinitesimal derivative of the

Bott class is given by (q + 1)u̇1c
q
1 ∈ H2q+1(DWUq).

Therefore, the infinitesimal derivative of the imaginary part of the

Bott class will be represented by two cocycles in DWUq, namely,

λ1 = (q + 1)
√
−1(u̇1c

q
1 − ˙̄u1c̄

q
1),

λ2 =
√
−1(u̇1 − ˙̄u1)(c

q
1 + · · ·+ c̄q1)

+
√
−1

q∑
k=0

(
(q − k)ċ1c

q−k−1
1 c̄k1 + k ˙̄c1c

q−k
1 c̄k−1

1

)
.

We have the following

Lemma 5.29. The above cocycles λ1 and λ2 are cohomologous.
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Proof. Let

µ = ũ1(qu̇1c
q−1
1 + (q − 1)u̇1c

q−2
1 c̄1 + ˙̄u1c

q−1
1 + · · ·+ q ˙̄u1c

q−1
1 )

=

q∑
i=0

ũ1((q − i)u̇1c
q−i−1
1 c̄i + i ˙̄u1c

q−i
1 c̄i−1

1 ).

Since

dµ = qu̇1c
q
1 −

q∑
i=1

u̇1c
q−i
1 c̄i1 +

q−1∑
j=0

˙̄u1c
q−j
1 c̄j1 − q ˙̄u1c̄

q
1

− ũ1(qċ1c
q−1
1 + (q − 1)ċ1c

q−2
1 c̄1 + ˙̄c1c

q−1
1 + · · ·+ q ˙̄c1c̄

q−1
1 ),

we have λ2 +
√
−1dµ = λ1. □

If we assume that normal bundles of foliations are trivial, then we

can modify the construction as follows.

Definition 5.30. We set deg ci = deg ċi = deg ˙̄ci = 2i, deg hi =

deg ui = deg ūi = deg ḣi = deg u̇i = deg ˙̄ui = 2i− 1. Let

Wq =
∧
[h1, h2, . . . , hq]⊗ Rq[c1, . . . , cq],

DWq =
∧
[ḣ1, ḣ2, . . . , ḣq] ∧

∧
[h1, h2, . . . , hq]⊗ Rq,q[c1, . . . , cq, ċ1, . . . , ċq].

We set

dhi = ci, dḣi = ċi.

When we consider Wq ⊗ C and DWq ⊗ C, we denote by hi and ḣi by

ui and u̇i. We set

dui = ci, dūi = c̄i, du̇i = ċi, d ˙̄ui = ˙̄ci, dci = dc̄i = dċi = d ˙̄ci = 0.

Then, Wq ⊗ C =
∧
[u1, u2, . . . , uq]⊗ Cq[c1, . . . , cq]. We set

Wq ⊗ C =
∧
[ū1, ū2, . . . , ūq]⊗ Cq[c̄1, . . . , c̄q].

We define DWq ⊗ C in an obvious way, and set WC
q = (Wq ⊗ C) ∧

(Wq ⊗ C) and DWC
q = (DWq ⊗ C) ∧ (DWq ⊗ C).

Proposition 5.31. The natural homomorphisms H∗(Wq) → H∗(DWq)

and H∗(Wq ⊗ C) → H∗(DWq ⊗ C) are injective.

The proof is almost identical to that of Proposition 5.15.

Let δFR : Wq → DWq be the (commutative) derivation which satisfies

δFR cj = ċj and δ
F
Rhi = ḣi. We denote the complexification of δFR by δF .

It is easy to see that δFR and δF are well-defined and commute with d.

We have the following



DERIVATIVES OF SECONDARY CLASSES AND 2-NORMAL BUNDLES 33

Proposition 5.32. There are well-defined derivations δFR : H∗(Wq) →
H∗(DWq) and δ

F : H∗(Wq ⊗ C) → H∗(DWq ⊗ C) such that

δFRhi = ḣi, δ
F
R ci = ċi,

δFui = u̇i, δ
F ci = ċi.

Note that a derivation on H∗(WC
q ) with values in H∗(DWC

q ) is nat-

urally defined.

Theorem 5.33. Once a homotopy type of trivialization of the normal

bundle of F is fixed, there is a well-defined bilinear pairing

DχF
R : H

1(M ; ΘF)×H∗(DWq) → H∗(M ;R)

for real codimension-q foliations , and

DχF : H1(M ; ΘF)×H∗(DWq ⊗ C) → H∗(M ;C)

for complex codimension-q transversely holomorphic foliations with triv-

ialized complex normal bundles. If σ ∈ H1(M ; ΘF) is an infinitesimal

deformation and if α ∈ H∗(Wq), then Dχ
F
R(σ, δ

F
R (α)) or Dχ

F (σ, δF (β))

is the infinitesimal derivative of α with respect to σ.

Proof. The theorem is proven in an almost the same way as that of

Theorem 5.19. Let s be a trivialization of the normal bundle in the

homotopy type we have chosen. Let ∇b be a Bott connection on Q(F),

∇s the flat connection with respect to s, θ the trivialization of Q∗(F)

dual to s, and an infinitesimal deformation {σ} of θ which represents

an infinitesimal deformation of F . Let ωb and ωs be connection forms

of ∇b and ∇s with respect to s, and ω̇ an infinitesimal deformation

of ωb with respect to σ. We set ω(2) =

(
ωb O
ω̇ ωb

)
, ω

(2)
0 =

(
ωb O
O ωb

)
,

R = dωb + ωb ∧ ωb and R(2) = dω(2) + ω(2) ∧ ω(2). Let D̃χF be the

algebra homomorphism from (E(F)∗ ⊗Q(F))× (DWq ⊗C) to Ω∗(M)

determined by the conditions that

D̃χF (ci) = ci(R),

D̃χF (ui) = ∆ci(ω
b, ωs),

D̃χF (ċi) = bi(R
(2)),

D̃χF (u̇i) = ∆bi(ω
(2), ω

(2)
0 ).
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In the real case, we define D̃χF
R by the conditions that

D̃χF
R(ci) = ci(R),

D̃χF
R(hi) = ∆ci(ω

b, ωs),

D̃χF
R(ċi) = bi(R

(2)),

D̃χF
R(ḣi) = ∆bi(ω

(2), ω
(2)
0 ).

Then, by repeating arguments of the same kind of as in the proof of

Theorem 5.19, we can show that the mappings induced on the co-

homology are independent of choices. □

Note that a homomorphism from H∗(DWC
q ) to H

∗(M ;C) is induced
by DχF .

Remark 5.34. Example 5.11 of [4] shows that DχF indeed depends on

the homotopy type of s. It is shown by examining u̇1u1c
q
1 of a trans-

versely holomorphic foliation of which the complex normal bundle is

trivial. It is also shown that the effect of the change of trivialization

is indeed valued in C, which suggests that there are no direct ana-

logue of Fuks-Lodder-Kotschick class in the category of transversely

holomorphic foliations unless the triviality of normal bundles are not

assumed, because this fact implies that the imaginary part of the Fuks-

Lodder-Kotschick class hardly makes sense. There is indeed no direct

analogue inH∗(DWU1) calculated in Example 5.17. On the other hand,

it seems unknown in the real case if there is a family or infinitesimal

deformation of a foliation of which ḣ1h1c
q
1 is non-trivial even if q = 1.

Similarly, it is unknown if the classes u̇1 ˙̄u1c1c̄1, ũ1u̇1c1c̄1, ũ1 ˙̄u1c1c̄1 and

ũ1u̇1 ˙̄u1c1c̄1 ∈ H∗(DWU1) in Example 5.17 can be non-trivial for some

infinitesimal deformation or not (the above-mentioned example in [4]

does not work).

6. Determination of H∗(DWO2) and comparison with

H∗(DWU1)

We will first compute H∗(DWO2). This is again done by means of

spectral sequences. We have

I2 = I(c31, c1c2, c
2
2),

I2,2 = I(c31, c1c2, c
2
2, c

2
1ċ2, c2ċ2, c1ċ

2
2, c2ċ

2
2, ċ

3
2),
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DIq = I(c31, c1c2, c
2
2, c

2
1ċ2, c2ċ2, c1ċ

2
2, c2ċ

2
2, ċ

3
2, c

2
1ċ1, c1ċ2 + c2ċ1, c2ċ2)

= I(c31, c1c2, c
2
2, c

2
1ċ2, c2ċ2, c1ċ

2
2, c2ċ

2
2, ċ

3
2, c

2
1ċ1, c1ċ2 + c2ċ1),

where I(f1, . . . , fr) denotes the ideal generated by f1, . . . , fr.

Let

A = {f ∈ DWO2 | f does not involve h1},
B0 = {f ∈ A | f does not involve ḣ1 or ḣ2},
B1 = {f ∈ A | f does not involve ḣ2}.

Then, A,B0 and B1 are closed under d. As vector spaces, we have

B0 = ⟨1, c1, c21, c2, ċk1, ċ2, ċ22, ċk1 ċ2, ċk1 ċ22, c1ċk1, c2ċk1(= −c1ċk1 ċ2) | k > 0⟩,
B1 = B0 ⊕ ḣ1B0.

By examining the long exact sequence associated with 0 → B0 → B1 →
B1/B0 → 0, we see that

Hr(B1) = ⟨1, c1, c21, c2, ċ2, ċ22⟩ ⊕ ⟨ḣ1c21⟩.

Next, we examine the long exact sequence associated with 0 → B1 →
A→ A/B1 → 0. Note that H∗(A/B1) ∼= ḣ2H

∗(B1). The result is

H∗(A) = ⟨1, c1, c21, c2, ḣ1c21⟩ ⊕ ⟨ḣ2c1 + ḣ1c2, ḣ2c
2
1, ḣ2c2, ḣ2ċ

2
2, ḣ1ḣ2c

2
1⟩.

Finally, we consider the long exact sequence associated with 0 → A→
DWO2 → DWO2/A→ 0, where H∗(DWO2/A) ∼= h1H

∗(A). We obtain

Hr(DWO2) =



⟨1⟩, r = 0,

⟨c2⟩, r = 4,

⟨h1c21, h1c2, ḣ1c21, ḣ1c2 + ḣ2c1⟩, r = 5,

⟨ḣ1h1c21⟩, r = 6,

⟨ḣ2c2⟩, r = 7,

⟨ḣ2h1c21, ḣ2h1c2, ḣ1ḣ2c21⟩, r = 8,

⟨ḣ1ḣ2h1c21⟩, r = 9,

⟨ḣ2ċ22⟩, r = 11,

⟨ḣ2h1ċ22⟩, r = 12,

0, otherwise.

Up to multiplications of constants, the class c2 is the first Pontrjagin

class, h1c
2
1 and ḣ1c

2
1 are the Godbillon-Vey class and its infinitesimal

derivative, h1c2 is one of the ‘classical’ secondary classes in H5(WO2),

and ḣ1h1c
2 is the Fuks-Lodder-Kotschick class. In general, we can
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compute H∗(DWOq) etc., by means of spectral sequences as above. It

seems however difficult to obtain a set of basis as a vector space such

as the Vey basis for H∗(WOq) or H
∗(Wq).

In what follows, we denote ci, c̄i ∈ WUq ⊂ WC
q by vi, v̄i in order to

avoid confusions. Given a transversely holomorphic foliation, we can

forget the transverse holomorphic structure [1], [2]. This corresponds

to the natural maps BΓC
q → BΓ2q and BΓ

C
q → BΓ 2q. Accordingly, we

have homomorphisms

λ : H∗(WO2q) → H∗(WUq),

λ̂ : H∗(W2q) → H∗(Wq ⊗ C).

The same can be done for H∗(DWUq) and H
∗(DWO2q). The relevant

maps are

Dλ : H∗(DWO2q) → H∗(DWUq),

Dλ̂ : H∗(DW2q) → H∗(DWC
q ).

They are defined by DGA-homomorphisms D̃λ : DWO2q → DWUq and

D̃λ̂ : DW2q → DWC
q such that

D̃λ(ci) = (
√
−1)i

i∑
k=0

(−1)kvi−kv̄k,

D̃λ(h2i+1) =
(−1)i

2

√
−1

2i+1∑
k=0

(−1)kũ2i−k+1(vk + v̄k),

D̃λ(ċi) = (
√
−1)i

i∑
k=0

(−1)k(v̇i−kv̄k + vi−k ˙̄vk),

D̃λ(ḣ2i+1) =
(−1)i

2

√
−1

2i∑
k=0

(−1)k( ˙̃u2i−k+1(vk + v̄k) + ũ2i−k+1(v̇k + ˙̄vk)),

where v0 = v̄0 = 1, v̇0 = ¯̇v = 0, and

D̃λ̂(ci) = (
√
−1)i

i∑
k=0

(−1)kvi−kv̄k,

D̃λ̂(h2i+1) =
(−1)i

2

√
−1

2i+1∑
k=0

(−1)kũ2i−k+1(vk + v̄k),
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D̃λ̂(h2i) =
(−1)i

2

2i∑
k=0

(−1)k(u2i−kv̄k + ūkv2i−k),

D̃λ̂(ċi) = (
√
−1)i

i∑
k=0

(−1)k(v̇i−kv̄k + vi−k ˙̄vk),

D̃λ̂(ḣ2i+1) =
(−1)i

2

√
−1

2i+1∑
k=0

(−1)k( ˙̃u2i−k+1(vk + v̄k) + ũ2i−k+1(v̇k + ˙̄vk)),

D̃λ̂(ḣ2i) =
(−1)i

2

2i∑
k=0

(−1)k(u̇2i−kv̄k + ˙̄ukv2i−k + u2i−k ˙̄vk + ūkv̇2i−k).

We have the following version of Lemma 3.1 of [1].

Lemma 6.1. 1) If F is a transversely holomorphic foliation, then

there is a natural homomorphism λΘ : H
∗(M ; ΘF) → H∗(M ; ΘFR),

where FR is the foliation F but the transverse holomorphic struc-

ture forgotten.

2) The homomorphisms D̃λ and D̃λ̂ induce on the cohomology the

homomorphisms Dλ and Dλ̂ such that DχR(λΘ(σ), α) = Dχ(σ,Dλ(α))

and DχF
R(λΘ(σ), α) = Dχ(σ,Dλ̂(α)).

Proof. Let ∇b be a Bott connection on Q(F). Let θ be a local trivial-

ization of Q∗(F) and ω be the connection form of ∇b with respect to

the dual of θ. A section σ = (σj) of
∧iE(F)∗⊗Q(F) is a representative

of H i(M ; ΘF) if and only if there is a glq(C)-valued 1-form µ such that

dσ + ω ∧ σ + µ ∧ θ = 0. If we choose θR = θ ⊕ θ̄ as a trivialization

of Q(FR)⊗ C ∼= Q(F)⊕Q(F), then ∇b
R = ∇b ⊕∇b is a Bott connec-

tion on Q(FR)⊗ C and ωR = ω ⊕ ω̄ is its connection form. Therefore,

σR = σ ⊕ σ̄ gives a d∇b
R
-closed form in

∧i(E(FR)
∗ ⊗C)⊗ (Q(F)⊗C).

Note that E(FR) ⊗ C = E(F) ∩ E(F). If we set µR = µ ⊕ µ̄, then

dσR+ωR∧σR+µR∧θR = 0. Similarly we can show that if σ is d∇b-exact,

then σ ⊕ σ̄ is d∇b
R
-exact. Therefore, if we set λΘ(σ) = σR, then λΘ in-

duces a homomorphism on the cohomology. Thus the part 1) is shown.

The proof of the part 2) is essentially parallel to that of [1, Lemma 3.1]

so that we give only the sketch. First we note that ci and ċi calculated

by using ∇b
R are equal to the right hand sides of defining relation of

D̃λ(ci) and D̃λ(ċi) calculated by using ∇b ⊕∇b. Then, by integrating
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the relation, we see that D̃λ gives a desired homomorphism. The proof

for D̃λ̂ can be done in a parallel way. □

The following is a corollary to Proposition 5.15.

Lemma 6.2. We have Kerλ = KerDλ̂ ∩ H∗(WO2q) and Imλ =

ImDλ ∩H∗(WUq).

If q = 1, then the mapping Dλ is given by the conditions that

h1 7→
√
−1ũ1,

c1 7→
√
−1(v1 − v̄1),

c2 7→ v1v̄1,

ḣ1 7→
√
−1(u̇1 − ˙̄u1),

ḣ2 7→ u̇1v̄1 + ˙̄u1v1,

ċ1 7→
√
−1(v̇1 − ˙̄v1),

ċ2 7→ v̇1v̄1 + ˙̄v1v1.

Therefore, we have

KerDλ = ⟨c2, h1(c21 − 2c2), ḣ1c
2
1, ḣ1c2 + ḣ2c1, ḣ2c2, ḣ2h1c

2
1, ḣ2h1c2,

ḣ1ḣ2h1c
2
1, ḣ2ċ

2
2, ḣ1ḣ2c

2
1, ḣ2h1ċ

2
2⟩,

ImDλ = ⟨1, ũ1v1v̄1, (u̇1 − ˙̄u1)ũ1v1v̄1⟩.

We have c2, h1(c
2
1 − 2c2) ∈ Kerλ and 1, ũ1v1v̄1 ∈ Imλ. Note that

2
√
−1ũ1v1v̄1 is the Godbillon-Vey class and that

(u̇1 − ˙̄u1)v1v̄1 + ũ1v̇1v̄1 + ũ1v1 ˙̄v1

= −d(ũ1(u̇1(2v1 + v̄1) + ˙̄u1(2v̄1 + v1))).

In general, the Godbillon-Vey class is equal to (2q)!
q!q!

√
−1ũ1v

q
1v̄

q
1, and

(u̇1 − ˙̄u1)v
q
1v̄

q
1 + qũ1v

q−1
1 v̇1v̄

q
1 + qũ1v

q
1v̄

q−1
1

˙̄v1

= −d(ũ1vq−1
1 v̄q−1

1 (u̇1((q + 1)v1 + qv̄1) + ˙̄u1((q + 1)v̄1 + qv1))).

This gives another proof of the rigidity of the Godbillon-Vey class in

the category of transversely holomorphic foliations.
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We next study the mapping Dλ̂ : H∗(DW2) → H∗(DW1 ⊗ C). We

can show by similar arguments as above that

Hr(DW2) =



⟨1⟩, r = 0,

⟨h1c21, h1c2, ḣ1c21, ḣ1c2 + ḣ2c1⟩, r = 5,

⟨ḣ1h1c21⟩, r = 6,

⟨h2c2, ḣ2c2⟩, r = 7,

⟨ḣ2h1c21, ḣ2h1c2, ḣ1ḣ2c21,
h1h2c

2
1, h1h2c2, ḣ1h2c

2
1, h2(ḣ1c2 + ḣ2c1)⟩, r = 8,

⟨ḣ1ḣ2h1c21, ḣ1h1h2c21⟩, r = 9,

⟨ḣ2h2c2⟩, r = 10,

⟨ḣ2ċ22, ḣ2h1h2c21, ḣ2h1h2c2, ḣ1ḣ2h2c21⟩, r = 11,

⟨ḣ2h1ċ22, ḣ1ḣ2h1h2c21⟩, r = 12,

⟨ḣ2h2ċ22⟩, r = 14,

⟨ḣ2h1h2ċ22⟩, r = 15,

0, otherwise.

The mapping Dλ̂ is given by the conditions that

h1 7→
√
−1(u1 − ū1),

h2 7→
1

2
(u1v̄1 + ū1v1),

c1 7→
√
−1(v1 − v̄1),

c2 7→ v1v̄1,

ḣ1 7→
√
−1(u̇1 − ˙̄u1),

ḣ2 7→ u̇1v̄1 + ˙̄u1v1,

ċ1 7→
√
−1(v̇1 − ˙̄v1),

ċ2 7→ v̇1v̄1 + ˙̄v1v1.

Therefore,

KerDλ̂

= ⟨h1(c21 − 2c2), ḣ1c
2
1, ḣ1c2 + ḣ2c1, h2c2, ḣ2c2, ḣ2h1c

2
1, ḣ2h1c2, ḣ1ḣ2c

2
1,

h1h2c
2
1, h1h2c2, ḣ1h2c

2
1, h2(ḣ1c2 + ḣ2c1), ḣ1ḣ2h1c

2
1, ḣ1h1h2c

2
1,

ḣ2h2c2, ḣ2ċ
2
2, ḣ2h1h2c

2
1, ḣ2h1h2c2, ḣ1ḣ2h2c

2
1,

ḣ2h1ċ
2
2, ḣ1ḣ2h1h2c

2
1, ḣ2h2ċ

2
2, ḣ2h1h2ċ

2
2⟩,
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ImDλ̂

= ⟨1, (u1 − ū1)v1v̄1, (u̇1 − ˙̄u1)(u1 − ū1)v1v̄1⟩.

As we mentioned in Remark 5.34, we know that the class u̇1u1v1 can be

non-trivial. The class does not belong to ImDλ̂, which implies that the

non-triviality is not derived from deformations of real foliations. On the

other hand, the image of the Fuks-Lodder-Kotschick class 3ḣ1h1c
2
1 is

equal to −6(u̇1− ˙̄u1)(u1− ū1)v1v̄1 which is non-trivial in H∗(DW1⊗C)
and H∗(DWU1). However, we do not know any example of which

(u̇1 − ˙̄u1)(u1 − ū1)v1v̄1 is non-trivial.
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