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DERIVATIVES OF SECONDARY CLASSES AND
2-NORMAL BUNDLES OF FOLIATIONS

TARO ASUKE

ABSTRACT. Derivatives of secondary characteristic classes for fo-
liations are discussed. It will be shown that one can construct
the derivatives in a parallel way to the standard construction of
secondary characteristic classes, namely, by using connections and
applying the Chern-Weil theory. Some relationship of connections
in the construction and transverse TW-connections, which is sig-
nificant in the study of deformations of the Godbillon-Vey class
and the Bott class, are also discussed.

INTRODUCTION

It is known that some secondary characteristic classes for foliations
admit continuous deformations. That is, the classes vary continuously
according to deformations of foliations. If the families are differen-
tiable, we can consider the derivatives of characteristic classes with
respect to deformation parameters. Such derivatives are studied by
Heitsch et. al. [12], [13], [14], see also [9], [4]. Secondary classes and
derivatives of them are constructed in terms of connections and deform-
ations of them so that independence of cohomology classes of choices
is to be shown. It is done for secondary classes usually by using the
Chern-Simons forms. On the other hand, it usually relies on combi-
natorial arguments for derivatives of them. In this paper, we give a
framework by which derivatives of secondary classes are treated as sec-
ondary classes for foliations and deformations. In particular, there will
appear a kind of truncated Weil algebras such as WO, and WU,. If we
restrict ourselves to the Godbillon-Vey class and the Bott class, then it
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is known that deformations are related with transverse projective struc-
tures and that transverse projective TW-connections are relevant [5].
We will discuss how connections associated with deformations of foli-
ations and transverse T'W-connections are related. Roughly speaking,
there is a certain extension of the tangent bundle of ambient mani-
folds which has some parameters. There is a connection such that the
constant term of it with respect to the parameters is a deformation
of foliations, and the linear term of it is a deformation of transverse
projective structures.

1. PRELIMINARIES

Assumption. We assume the following throughout the paper. We de-
note by M a manifold equipped with a foliation F. The foliation F
15 assumed to be transversely holomorphic unless otherwise mentioned.
The arguments for real (smooth) foliations are almost parallel and eas-
ter. The term ‘smooth’ stands for the term ‘of class C*°’, even in the
transversely holomorphic case. We work in the smooth category unless
otherwise mentioned.

Let p and ¢ be the dimension and the complex codimension of F,
respectively. Then, a foliation chart is given by a triple (U,V x B, y),
where p: U — V x B C RP x C4. We usually let (x,y) be the natural
coordinates on V' x B. For simplicity we identify U and V x B, and
regard (x,y) as coordinates on U.

Notation. We will frequently compare coefficients of tensors, connec-
tions, etc. in what follows. Once a chart is chosen and coefficients are
defined, the symbol ‘™’ is used to express another chart and the co-
efficients on it. For example, if (U, ¢) is a chart and if a4,...,q, are
coefficients of a tensor on (U, ), then (U,$) represents a chart such
that UNU # @ and @y, . .., a, represent the coefficients on ((7, ©). The
coefficients are often considered as entries of matrices, and the mul-
tiplication rule of matrices is applied. For example, if w!, ..., w? are
coefficients of a C?-valued 1-form and if aé-, where 1 < 4,5 < g, are co-
efficients of a gl,C-valued 2-form, then we set w = (w') = “(w' -+ w?),
a = (a) and define a A w to be a Ci-valued 3-form of which the i-th

J
entry is given by ) aj Aw’ = aj Aw’. Note that we make use of the
J
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Einstein convention. Finally, when coefficients of tensors, etc., are ex-
pressed, the Roman indices will begin from one, while the Greek indices
will begin from zero.

Notation 1.1. Let U be an open subset of M and E a vector bundle
over M. We denote by I (E) the module of the smooth sections to £
over U, even in the transversely holomorphic case. If U = M, then we

denote I'y/(F) also by I'(FE).

Definition 1.2. Let U and U be foliation charts and © the transition
function from U to U. Then, under the identifications of U =V x B
and U =V x E, ¢ is of the form (¢,7). We refer v as the transverse
component of .

Definition 1.3. If F is a real foliation, then we set E(F) = TF,
namely, the subbundle of T'M which consists of vectors tangent to
leaves. 1If F is transversely holomorphic, then we denote TM & C
by TM by abuse of notations, and define E(F) to be the complex

0
subbundle of T'M locally spanned by E(F) and prt where 1 < ¢ <
yZ

q. In the both cases, we set Q(F) = TM/E(F). We call Q(F) the
normal bundle in the real case, and the complex normal bundle in the
transversely holomorphic case. We denote by 7 the projection from

TM to Q(F), and by p the one from Q(F) to M. We locally set
e = (%), and choose (e, ..., e,) as a local trivialization of Q(F)

unless otherwise mentioned.

2. 2-NORMAL BUNDLES OF FOLIATIONS

The 2-tangent bundle of a manifold M is by definition of the tangent
bundle of the tangent bundle 7'M [22]. We will first introduce 2-normal
bundles of foliations as an analogy.

Notation 2.1. We denote by T'GL,C the tangent group of GL,C.
That is, TGL,C is the tangent bundle of GL,C equipped with the
following multiplication. Let I, be the unit element in GL,C. We
identify T7, GL,C with the Lie algebra of the left invariant vector fields
on GL,C, and denote it by gl,C. Then, we have a natural identification
TGL,C = GL,C x gl,C as manifolds. If (4, B),(4",B") € TGL,C =
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GL,C x gl,C, then (A, B)(A", B') = (AA’,(A")"'BA’ + B’). Therefore,
TGL,C = GL,C x gl C as Lie groups.

A matrix representation of TGL,C is given by

(A B) > ( A i) € GLy,C.
This representation is indeed given by the natural action of TGL,C on
TC? [22]. If we denote by tgl,C the Lie algebra of TGL,C, then the

Y X
Let Q®(F) be the complex vector bundle of rank 2¢q over Q(F)
defined as follows. Let [ = [(t) be a curve in Q(F). We can locally
represent [(t) as I(t) = (2(t),v(t)) € U =V x B. Let I(0) = (z,v)

and a(O) = (2,0). If U,U are foliation charts and if ¢ is the transi-

tion function from U to U , then ¢ induces a transition function from
p~H(U) to p~(U) which we denote by 3. If we denote by 7 the trans-
verse component of ¢, then we have ¢ = (¢, D), namely, p o [(t) =
(o(2(t)), Dyyayv(t)), where z(t) = (z(t),y(t)) e UN U c U, and
d(pol)
dt

induced representation is also given by (X,Y) — (X O).

32 ’}/i

| | | Oyl Oy
H~jy.,, by Hvj,.. Note that Hvj, = Hv; and that y = 7.(2) holds in
Q(F). We set Q?(F) = {(z,v;9,0)} and define p§,v: Q?(F) —
Q(F) by pg)(z,v;y,i)) = (z;v) and v(z,v;9,0) = (2;9), respectively.
It is easy to see that pg) and v are globally well-defined.

where z = (z,y), 2 = (&,79) and H”y;ik’y = (y). We often denote

Definition 2.2. We call pg): QP (F) — Q(F) the 2-normal bun-
dle of F.

The following diagram commutes:

Q) — Q(F)

2] [

QF) —— M.

bQ



DERIVATIVES OF SECONDARY CLASSES AND 2-NORMAL BUNDLES 5

A local description of Q) (F) is given as follows. If ¢ € Q(F), then q is

Ul

represented as (z,v'e; + - - - 4+ vle,) on a foliation chart. Let v =
v

and regard (z,v) be coordinates on 7~ 1(U). Let (U, V x B,p) and
(U,V x B, ) be foliation charts and ¢ € 7= (U)Na 1 (U). If both (z, v)
and (Z,0) represent ¢, then (Z,7) = (¢(z), Dyv), where z = (z,y).
We set n; = e Then, a local trivialization over 7=1(U) is given by

rUZ
(€1, s gy M1y vy mg). If we set pélA: pg © pg), then the transition
function from (pg )~ (U) to (pg) "(U) is give by

-~ ~ - ~ D~, O

(617 o .. 7eq7 ,'717 P )nq>(<p(2),D’YyU) (nyyv Dryy)

=(€1,..-,€q M1, .- ’nQ)(z,v) ,

where (Hy,v)s = Hyjy 0"

Several foliations are naturally defined on Q(F) and Q®. Let U C
M be a foliation chart. If we choose (ei,...,eqm,...,n,) as a local
trivialization, then (z,v) are coordinates on 7~ '(U), and (z,v;9,0)
are coordinates on (pg) " (U). We can define foliations of Q(F) by
locally setting Fo = {y,v are constant} and 7*F = {y is constant}.
Similarly, we can define foliations of Q) (F) by locally setting

F@ = {y, v,7,0 are constant},
F& = {y, v,y are constant},
FP = {y, v are constant},
F? = {y,y are constant},
ff) = {y is constant}.

Note that 7*F is indeed the pull-back of F by m, and that }"2(2) =
7@ Fo, FP = pg *F and FP = FP 0 FP. Note also that instead
of dealing with pg): Q?(F) = Q(F), we can work on v: Q¥ (F) —
Q(F) by exchanging v and y. This point of view is relevant in §5.
Finally we remark that the 2-normal bundle Q® (F) is closely related
to the 2-jet bundle of F which are usually denoted by J?(F).
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3. INFINITESIMAL DEFORMATIONS AND 2-NORMAL BUNDLES

We will introduce infinitesimal deformations of foliations after Heitsch
[13] (cf. [12], [9], see also [16]).

Definition 3.1. Let U be an open subset of M. A section X € [}y
of Q(F) is said to be foliated if Ly X = 0 for any section Y of E(F),
where Ly denotes the Lie derivative with respect to Y. We denote by
OF the sheaf of germs of foliated sections of Q(F).

Let V?® be a Bott connection on Q(F) and denote by dy» the covari-
ant differentiation associated with V. Tt is known that {\"E(F)* ®
Q(F),dyv} is a resolution of ©x [12], [9], [11].

Definition 3.2. An infinitesimal deformation of F is an element of

HI(M, @]:)

If o is a representative of an infinitesimal deformation of F, then o
can be locally represented as ¢ = e;0%, where (eq,...,e,) is the local
trivialization of Q(F) as above and o' are 1-forms such that

o= DV; o’
In addition, as we identify fibers of Q(F) with C? by the trivialization,
there is a gl C-valued 1-form () such that

(3.3) do' +w) Aol + Wi NG =0,
where (0',...,07) = (dy',...,dy?) is the dual to (e,...,e,) and w =
(w}) denotes the connection form of V* with respect to (ey, ..., ;). By

using a partition of unity, we may assume that
@y = (D)~ &f Dy
By abuse of notations, we set 0 = (¢*). Then, (3.3) is represented as
do+wANo+wAd=0.
Let (z,v;9,0) be local coordinates for Q? (F). As w is the connec-
tion form of a Bott connection, w} = ]’fkdyk holds for some functions
Jix- We set

i pik
Pi = JjkU

= ()= (2 0)
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w(2) _ w @)
w+dp+ [w,p] w

on Q(F), where [w, p] = wp — pw.
Lemma 3.4 (cf. [5, Theorem 1.20]). 1) If we set

D O
2~y — D@ — Ty
D Y= D Y(pw) = (H%/U D’Yy)
where p = (z,vy), then,
G2 — (D@)e@.
2) We have
(3.5) d6® 4+ w® AP =

3) The family {w®} of tgl,C-valued one-forms gives rise to a con-
nection on Q@ (F) — Q(F) which we denote by V. Con-
versely, if {&w} is a family of local connection forms of a connec-
tion on QP (F) — Q(F), then {t*©}, namely, the restriction
of {W} to M determines an infinitesimal deformation of w with
respect to 0.

Proof. We have
= (Dy)~H(dD7) + (Dy)~'&(Dv),

= (Dv)"'@(Dy)
Oy o oyn ognoy
and fjk = 3 @ By 8y /Y]am 6 y é?y . Therefore, we have

P; = f;kv
_ (W o Oy n o 8@") 0y -
Ay oyioyk Oyt Oyd oyt ) Oy”
= (DY )(Hjo" + 5, D).
Hence we have
dp = —(Dv)~H(dDv)(Dy) " (Hy)v + (Dy) " (dHy)v + (Dy) " (H7y)dv
— (DY)~ H(dDy)(D) " p(DY) + (D)~ (dp)(Dv) + (D)~ p(dDry),
wp = (D)~ (dDA) (DY)~ (Hy)v + (Dy)~H(dDy)(Dv) " p(D7)
+ (DY) 'G(Hy)v + (Dy) " '@p(Dry),
pw = (D)~ (Hy)v(Dv)"'(dDy) + (D)~ (Hy)v(Dy)'&(D7)
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+ (D) p(dDy) + (Dy) ' p&(Dr),
p8 = (Dy)~H(Hy)v(Dy)™'0 + (Dv)~'50.
Therefore,
oc=0—pb
= (D)7'6 — (Dy ™) (Hy)v(Dy) 0 — (DY) 50
= (Dy)™'5 — (D)~ (Hy)v(Dy)~'0.
The part 1) follows from the last equalities. If we set

B N )\1 )\1
(D) (D) + (D) 520 = (3 35).

then we have

A = A3 = (D7) (dDv) + (D) "'@(Dv) = w,

Ay =0,
and
(A = —(Dy) ' (HY)v(Dy) " (dD7)
+ (D)~ H(dHy)v + (Dy) ™ (Hy)dv
(36) - (Dv)‘l(ff’y)v(Dv)”@(Dv)
+ (D)@ +dp + [@, 7)) (D)

+ (D)~ @(Hy)v
=w+dp+ [w,p].

Consequently, {w(Q)} gives rise to a connection on Q@ (F). This shows
the first claim of 3). On the other hand, we have

45 = do — d(p0)
=—wAl0—wANo—dpNO—pdb
=—(w+dp) N0 —wA(T+pb)+pwAb
=—(Ww+dp+[w,p)) N —wAG.
This shows the part 2). The latter part of 3) follows from the fact

that the equality (3.5) reduces to the defining condition of infinitesimal
deformations of w. This completes the proof. O
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Remark 3.7. Lemma 3.4 implies that {#®} formally defines a foliation
of Q@ (F). Indeed, if each 0®? is a local trivialization of T*Q(F), then
a foliation is defined and w® defines a Bott connection.

Remark 3.8. Let
R® — dw® £ w® A @

be the curvature form of V) with respect to 8. If we denote by
R = dw + w A w the curvature form of V® with respect to 6, then, we

(R, p] +dw+ [w,w] R)’

where [R, p] = Rp—pR and [w,w] = WAw+wAw. By the equality (3.5),
we have

have

R® A0 = 0.

There are several choices in defining p, 8 and w®. We will study
how they affect {w®}. We denote by p’, 8’ w?" etc., newly obtained
ones. First we fix 0, w and 0. Suppose that {aé .} 1s a family of functions
such that

ai'k = GZW
(39) { Z _ ’ —1i~l m n
A = (D7) lamn(DW)j (D)%

Then,

i -

W = w; + az0”.
Conversely, any infinitesimal deformation of w with respect to o is of
this form. Accordingly,

O O
2 —_ (2
w = w + (A9 O) ,

where (Af) = a’6*. We can replace w in a similar way, namely, let
{t%} be a family of functions such that

b, = b .
(310) { Zk N —1i 71 m n
bjk = (D) zbmn(DV)j (DY)y-

If we set (B0)} = b;ka, then the connection form of a Bott connection
is of the form w + B and vice versa. Let w' = w + Bf and V' be the
connection defined by w’. Then, the ‘identity map’ from H*(\'E(F)*®
Q(F),dv) to H*(N'E(F)* @ Q(F),dy) given by [o] — [o] gives an
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isomorphism. Indeed, if ¢ is an infinitesimal deformation, then the
infinitesimal deformation w’ of w’ with respect to o is given by

w' = w + Bo,
where (Bo); = b%,.0". Accordingly,

p' = p+ B,

0
2 — g2 _
f ¢ (BGU) ’

BO O 0 o)
@ _ @
wr=w +<Ba Be>+(d(Bv)+[Be,p]+[w,Bv}+[B@,Bv] 0)’

where (Bfv)" = bl 670", Next, we modify 0. Let o’ be anther repre-
sentative of the infinitesimal deformation [¢] € H*(M;©f). Then,
(3.11) o' = o' +df' + Wi f + gi0

holds for a family of functions {f;} such that f’ = (D7)§ f7 and a

family of functions {gi} such that gi = (Dv)jg/ (D7)~} (we again

make use of a partition of unity in order to assume that e;g36” is globally
well-defined). An infinitesimal deformation of w with respect to ¢’ is
given by

(3.12) W' = &k + QL+ (dg + [w, g])

where w! = T dy* and Q}, = dI', + I, I7dy' so that Q% A dy* =
(dw +w A w)t. Therefore, ) and w® are replaced by

0
92 — p(2) ( )
* df +wf + g0

O 0]
@)y — ,2)
wesw +<Qf+dg+[w,g] O)'

Finally, we can replace § by ¢ = (D()f, where ( is a local biholo-
morphic diffeomorphism. Then, the connection form of a Bott connec-
tion, say V', is given by
w' = —(dDC)(DC)™" + (DQw(DE) ™.
In this case, the mapping D¢: H*(\'E(F)*@Q(F),dy) — H*(N'E(F)*®
Q(F),dy) given by [o] — [(D()o] is an isomorphism. Indeed, we have
d((D¢)a) +w' A ((D¢)a) + (DCw(DC) ™ A ((DC)6) = 0.
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We also see that an infinitesimal deformation of w’ with respect to o’
is given by (D¢)w(D¢)™. We have

p'=—HCu(D¢) ™" + (D¢)p(D¢) ™,
@) _ ) 0
O = (DOI + ((H@)dy)’
(3.13) w(2)/ _ _(dD(Z)C)(D(Z)O—l + (D(2)C) w(2)(D(2)C>—17

where
i >’y oy m Iy’ Loy,
;== U F+ 57 Vs
J oytoy™ Oy oy oyJ
25

i 0%y 13 m

The equality (3.13) is shown by essentially the same calculations to
show (3.6).

Lemma 3.14 (cf. [5, Theorem 1.20]). Let eff = e;—nip} = e;—mi fi0".

If we set p = (p) and F = ([‘1 0
1) (6{{""’6(11—1’771""’77‘1) O D")/ :(6{{,...,651,771,...777(1)'

), then we have the following.

2) The connection form of V' with respect to (ef',.. . et n1, ... ny)

. (w O)
s given by 5 ow)

3) P19 — (9)
g

Proof. If we set p = (p}) and F = (Iq 0

—p 1y
A ~H ~ . (Dvy O
(e{{,...,ef, 1,...,77q)(0 D’Y)

=(@,...,e,7 i (1 (5
Lo Collnlld) \ 5o 1)\ 0 Dy

), then we have

B R N (D)~ @) Dy
= (€1, eq, M1y, 7q) (—(Dv)l(H'yv)(Dv)l (Dv)l) (—ﬁ(DV) D~y

I O)( I O
p I)\~(Dy)"'(Hyw)—(Dy)"'p(Dy) I

@)

)

)
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Since p = (D)"Y (dDv)v + (D) *p(D~), we have
p— (D)™ (Hyv) — (D7) "' p(Dy) = 0.

Next, we have (ef',... el i, ... ,ng) = (e1,...,eqm,...,ng)F and
O O w @)

-1 1, 2 _

Frdb + Fw™F (—dp O)+(pw+w+dp+[w,p]—wp w)

_(g g)_ 0

The vectors e are versions of horizontal lifts of e; in the sense of [22,
Chapter 2], see also [5, §1]. Finally we again remark that we can
exchange v and g in the construction.

4. DEFORMATIONS OF THE GODBILLON-VEY CLASS AND
RELATION TO PROJECTIVE STRUCTURES

If we discuss only the Godbillon-Vey and Bott classes, the construc-
tion can be largely simplified. The following vector bundle is relevant.
We set Jy = det Dvy. Note that

dlog Jv
oyt~
We set tr Dy ™' Hy = (tr Dy~ Y HAL . tr Dy HAL ).

tr Dy~ '[H~Y, = Dy~ HAl, =

Definition 4.1 (cf. Definition 2.2). Let K2~! be a vector bundle over
K" defined as follows. Let U be a foliation chart and e = e; A--- Ae,

0
be a local trivialization of K}l, where ¢; = 7 <8_) We set K;_-Q)_l =
yl

{(z,w;9,w)}, where

(z, w; 9, w) = (¢(2), Jyyw; Dyyy, Jy, tl‘(D’)/y_lH’yyy')w + Jyy).
The projection to Kx', denoted by ]2(2), is defined by ]_)(2)(2, w; Y, W) =
(z,w). We denote by v the mapping from Kj(f)’l to Q(F) defined by
v(z,w;9,w) = (2,y). Then, v: K(;)’l — Q(F) is a vector bundle.

The following diagram commutes:

p@

Kg)—l K}l
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where p is the natural projection.

Remark 4.2. One might notice that p(®: Kg)_l — K7! is quite similar
to pg o p: Q(F) — M, where p: Q(F) — Q(F) is a certain vector
bundle appeared in [5]. This is later discussed.

First we study v: Kff)‘l — Q(F). This bundle is related to pg) :Q(F) —
Q(F) as follows. If we set

e

Jyte(Dy " Hyy) Jv)’
then the transition function is given by L~. Let V be a Bott connection
on Q(F) and {w} the family of connection forms as in the previous
sections. We represent wj = fi,dy* and set pi = fi,7*. Recall that

od=0—pfhand w® = ( v

w—+dp+
and p = trp. If we represent w = frdy®, then f, = fi and p = fiy'.
Let (€1,...,€471,---,7,) be the local trivialization of Q® (F) as in §2.
We set

O). Weset w =trw, w =trw
w,pl w

1
5:—(771/\62/\"-/\€q+el/\772/\63/\.../\6q
q

+oder A ANegr A1),
O=0"A- N0,
G=0" NN N+ NGEANPN--NOT
+ 0PN AT AT,

@_( w 0
“ _(wde u)’

Let A be the vector space spanned by

~

mAeL N ANGA-Neg— (=1)TnjAer A= A€ A+ Neg,
niANer N ANej N Neg,
AN ANer N ANe N Nej AN+ Ney,
where i # j and ‘7’ means omission. Let V' be the vector space spanned
by e and § modulo A. Then, (e ) gives a local trivialization of Kgf)*l.
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Indeed, if we denote by Ay = JyD~~! the adjugate matrix of D~, then
we have

Y€ = Yuler A - Aey)
= (det DY)Ey A -+ A ey + (tr(AyH~5))o
= Jve + Jytr(Dy ' Hg)é,

V40 = J’yg.

0
Thus (e, d) can be identified with (e —) We have the following

T ow
Lemma 4.3 (cf. Lemma 3.4 and [5, Theorem 1.20]). We have

1) 87 = (L1)9®.

2) dQ(Q) +w® /\Q(Q) —0.

3) w® = (Ly)"Y(dLA) + (Ly)"'@P(Ly), namely, {w®} gives rise
to a connection on K@ (F)~! which we denote by V.

Proof. First, the coefficients of 7 A #2 A --- A 67 in & are equal to

(D)FGY, where G! denotes the (I, 1)-cofactor of D~y. Therefore, we have

& = tr((Ay)(Hyv))8 + (det Dy)&.

The part 1) follows from the above equality. The part 2) follows from
the following one, namely,

do

q
:dZ(Ql/\.../\gk/\.../\@tI)

:—ZZ DO A AN W] AN N AGE A A7)

k= 1]<k

—ZZ PO A NN (WA dp A+ [w, p))f AP AGORTEA -

k=1 l=1

—ZZ VO A ANPFTEAWE AT NG A A 0)

k=1 l=1

_ZZZ DO A AGE A AT AW NG AT A A

k=1 k<j I=1

A 99)

- A7)
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:—ZZ IO A NPT AW AT AT A AGE A A 0)

k= 1]<k

—ZZ (O A APTEAWL AE AP A AT A A 0Y)

k=1 j<k

—Z V(O A AT (@ dp o+ w, p))E A OF AGFFE A A 07)

—ZZ DETO A AT A AT AT A AG)

k=1 l=1

—ZZ PO A AGEA NTEAWI NG NN A GY)
k=1 k<j

q .
> (O A ATEA - APTE AW AOE AT A A 0)
k=1

q

1

q

I
k<j
==Y > WIA(0" A ATEANEY)
k=1 j#k
I
k=1 j£k
+dp) A (O' AN 0)

DO A AT AW AT AT A 09)

< &

—Z PO A AT A WEATE AT A A 99)

—ZZ PO A AT AWEAT AT A A7)
k=1 I#k
= —wAG— (&+dp) 8.
Finally, we have

w = (det Dy)~*(ddet DY) + &



16 TARO ASUKE

~ D~ .
=w+dp+ ((det D’y)_lade—uﬂ)
s ayz
~ Odet D Odet D
— & + dp — (det Dy)~*(ddet Dy) =o' + (det D) ~'d | S
= 8y (9y1
Therefore the part 3) also holds. U

Let e be as in Lemma 3.14. Note that

1
S==(mAeyg A---nell +ell A el Ao nell
q

el A /\e L AT)
holds in K@ (F)~t. We set e =eff A--- Aell.

Lemma 4.4 (cf. Lemma 3.14 and [5, Theorem 1.20]). We have the
following.
1 0
D@9 = e 4, 1)
A (detDy 0
2) (€H,5)( 0 K det D’Y) = (eHaé)'

3) The connection form of V@ with respect to (efl,6) is given by

w 0
w w)’
Notethatdwo + w 0 /\%0 = dg 0 . See also
wow W W w ow dw dw

[3]. In view of Lemma 4.4, we introduce the following

Definition 4.5. Let w be a 1-form on Q(F) such that w(n;) = 0
for 1 < ¢ < ¢g. Such a 1-form is called a generalized infinitesimal
deformation of w with respect to € when it is regarded as a coefficient
of connection on Kg)_l. More concretely, we consider a connection of

which the connection matrix with respect to (e §) is given by (i g) .

A generalized infinitesimal deformation is an ordinary one if dw(n;) =
0. As we will see, the constant and the linear parts of w with respect
to y are relevant.

Next, we study p®: KP-1 5 K7' (we refer to [5] for details of
Er,Q(F) and TW-connections. See also [20]). A local trivialization of
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Kj(f) ~1is given by (e;,d) and the transition function is given by

PPN D~ 0
@9 =@ (42 g 1y)-

We set kz' = {(z,w) € Kz'|w # 0} and denote by kg)_l the
restriction of Kg)_l to kg)_l. Let £ be the C*-principal bundle
associated with K]f-l. Note that k:]__-l and £ are indeed the same.
On a foliation chart, we can find local coordinates on £z such as
(z,u) = (z,y,u) € (R* x C7) x C*. By taking the logarithm and
changing the order, we may make use of (z,logu,y) as local coord-
inates which we denote by (z,3°,%"). Let E(F) be the subbundle of

0
TEx locally spanned by 9 and ErTE 0 < p < ¢ (we omit Erm in
L ) Y

the real case), and set Q(F) = TEx/E(F). A local trivialization of
~ 0

Q(F) is given by W,ei and the transition function is given by
Y

_1 ~
<(1) tr(Dz)v HW)). In order to compare kg)_l with Q(F), we change

the order again and choose <ei, ) as a local trivialization. Then,

ay°
the transition function is given by

Note that

A transverse TW-connection, say VITW_ is a linear connection on Q(F)

o\ . .
8_y0) is given by

—1 (dy°’I, dy N v 0
g+1\ 0 dy L(g)+a 0)°

where dy = *(dy' --- dy?). If we change the local trivialization into a

0

of which the connection form with respect to (ei,

horizontal one, namely, to
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9
oy’
—1 (dn°I, dn L (Y 0
qg+1 0 dT]O a 0)”°

where 7° = dy® + f;dy’ and n° = dy’. We further change the local

where el = ¢; — f; then the connection form is changed into

e 0
trivialization into ( e?, =— ). Note that e? =e; — fiwa—. Then, the
w

L7 ow

connection form is changed into

—1 (d1, & v 0 0 0
q—l—l(O dn0+wa0+0—%“'

Now let (e,d) be the trivialization of K](,_?)*l — Q(F) and recall that
(e,0) can be identified with (e, g) Therefore (ef?,§) is identified
w
with <(3H7 ai) If we regard Kg)_l a fiber bundle over M, then we

w

can consider ( e?,eff —) as a local trivialization. We can represent

Y dw
a point on Kg)_l by (z,v%, w,u), where z is the projection of the point
. 0
to M and (v',w,u) are the coefficients with respect to (e?, el 8_)
w
If VIW is a transverse TW-connection and 2(2) is a connection as in
Definition 4.5, then we can ask if there are some relationship between
them. For this purpose, we need the following
Definition 4.6. Let Lz be the line bundle over M locally spanned

0
by 900" By abuse of notations, we denote their pull-backs to Q(F)
Y
and K7' again by Lz. Let Q(F)" be the subbun%le of K](f)_l over
Q(F) locally spanned by {e?}, where e? =e; — fjﬂ. We denote by
Y

hg the projection from Kf)_l to L determined by the decomposition
Kj(f)*l = Q(F)"® Lr. We denote by (K5')# the subbundle of Kj(f)*l
over K}l locally spanned by e!. We denote by hg the projection from
K? -1 to Ly determined by the decomposition K& =1 = (K1) & L.

We have the following
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Theorem 4.7. Suppose that

S0 , 9
ho (V?fy (e?v + 8_wu>) = hg (Z;L (eHw + a—wu>)
for any X € TM and (v, w,u), where if X = e;a’, then X" = ela’

and X = efla’. Then we have o; = m% that is, the linear part

of a generalized infinitesimal deformation of w s equal to the infini-
tesimal deformation of a TW-connection. In general, the linear part
with respect to ' of a generalized infinitesimal deformation of w is
an (original) infinitesimal deformation of w in the sense of [3] (even
back to [12]).

Proof. We have

-0 0 . .
™ h,i 7 - . hy, i i
hqg (VXh (eiv + awu)) 0w<waZ(X '+ fia'u)

0 ) .
= %(W%(X)Ul + fia'u),
0 0
hx (ZE?L (eHw + %u>) = %(Q(XH)UJ + w( X))
0
= 55 @X)w + w(X)u).
Since f;a' = w(X), the equality in the claim holds if and only if
vt = w. O
The linear term of a generalized infinitesimal deformations is a kind
of non-linear connections in the sense of [22].
In order to deal with deformations other than Godbillon-Vey class
and Bott class, we need a generalization of Theorem 4.7, which will be
discussed elsewhere.

Remark 4.8. Let 0 = f;dy* be the connection form of a Bott connection,
say D, on K7' with respect to dy' A -+ A dy?, and set n° = dy° + 0,
n' = dy'. If we set wTW to be the connection form of a TW-connection
with respect to (V?, D), then

1 of ' 0
™ _ Mig 1
==z (0 )+ (e o),
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0 o 0
where I' is the connection form of V® with respect to (8_y1’ cee (?_yq’ 0_3/0)
)

[5] and n = t(nt --- n?). If weset 6TV =t(n! ... n? n°) then we have,
provided that V? is transversely torsion-free [5],
0

dO™V 1 yTW A TV _ 5
do + 02 A dy
Thus, slightly different from Lemmata 3.4 and 4.3, the torsion of a
TW-connection for (V? D) (as a linear connection) is related to the
curvature of D.

Remark 4.9. The Frobenius theorem and the torsion-freeness a Bott

connection on Q(F) are related as follows. Let (eq,...,e,) be a lo-
cal trivialization of Q(F) and '(#%,...,09) be the dual. If V’ is a
Bott connection, then Vle; = ieiw;», where (w}) is the connection
i=1

form of V° with respect to (e1,...,e,). If X € E(F), then Vie; =
7[X, €;]. Therefore, d0"(X,¢;) = X (0'(¢;)) — €;(0°(X)) — 6([X,¢;]) =
—0'(V%e;) = —wi(X). On the other hand, we have wj, A 0%(X,€;) =
d7w5(X), where 0% denotes the Kronecker delta. Hence we have df +
wABO =0on E(F)®TM. Thanks to the Frobenius theorem, we
have a gl ,C-valued 1-form, say 7 = (7}), such that df + 7 A0 =
0. Let A = (a%) be a GLyC-valued function such that § = Ady.
Then, (A7'dA + A7'7A) A dy = 0. Therefore, if we can represent
AT'dA + A7'7A = (b)) and b} = bi,dy¥, then b’y = bj;. This is the
case if 7 is the connection form of a transversely torsion-free Bott con-

nection with respect to (eq,...,e,).

5. CHARACTERISTIC CLASSES

We begin with invariant polynomials on TGL,R and T'GL,C.

Lemma 5.1. Let I(T'GL,C) be the algebra of invariant polynomials.

(X1 O
If X € tgl,C, then we represent X € tgl,C as X = <X2 Xl)-

1) Let f € I(GL,C). If we set f(X) = f(Xy), then f € I(TGL,C).
We denote f again by f.
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2) If we set
tel k—i—1
~ tr Y X9 Xo X7 k>0,
bk(X) _ ;} 143243
0, k=0,
then, by, € I(TGL,C).
Proof. If g = (g Z) € TGL,C, then
Ad X = AXlA_l O
97 TABX| AT+ AXGAT - AXGATIBATY AX AT
The first claim immediately follows from this. In order to show the
k=1 ,
second claim, we first remark that > XiX,XF 1 is the bottom-left
i=0
component of X”. In other words, if we represent X" = Vi v )
2 1

then /b\k(X) = trYs. It follows that
bu(gXg™") = tr(BY1A™' + AV, A7 — AV AT BA™Y)
= tr(BY; A 4 tr(AY, A7) — tr(AY, AT BATY
= tr(BY; A7) 4 tr Yy — tr(BA AV, AT
=trYs.
Hence by, € I(TGL,C). O

Actually we have Bk(X ) = ktr Xo X! but we prefer the expression
as above for its naturality seen as above.

The polynomial /b\k will correspond to the infinitesimal derivative of
the Chern characters. If we work on the Chern classes, a certain variant
of gk is useful. In order to introduce it, we recall the relation between
the Chern classes and the Chern characters.

Notation 5.2. Let 0;, 1 = 1,...,q, be the i-th elementary symmetric
function in xy,...,z, Formally we set o¢(z1,...,2,) = 1. We set

(21, m) = 2] -+ a) for j=1,... and 1o(z1,...,24) = q.

The relation between o; and 7; is well-known (cf. [15, 14.1 and 19.3]).
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q

Proposition 5.3. If we set f(t) = Z (@1, ..., 2yt then
Z(—l)jTj(xl,...,xq :—t— /f
j=1

holds in R[[t]], where t° is regarded as 1.
Proof. We have f(t) = (1 4+ z1t)--- (1 + z4t). It follows that

/f dlogf( ) Z(—l)jTj+1(l’1,...,Iq>tj. ]

Jj=0

Corollary 5.4. There is a polynomial P; in yy,...,y; such that
Tj = Pj(O’l, e ,O'j).

Example 5.5. The concrete form of the polynomials Py for small k
are as follows. We regard y, = 0 if k > ¢.

Pi(y1) = v,

Py(y1,12) = ?/1 - 23/27

P3(y1,y2,Y3) = yi — 3y1y2 + 33,

Py(y1,y2, Y3, Ya) = yi — 4yiy2 + 295 + 41y — 4ya,

P5(y1, Y2,Ys3, Ya, 3/5)

= Yy — BYiy2 + 5y1y; + BYrys — Syays — Sy + 5Ys,
P (Y1, Y2, Y3, Ya, Y5, Ys)

=y — 6y1y2 + 913 + 6y7ys — 124190y
— 6yya + 6195 — 2y5 + Gyays + 3y3 — Gys.

Theorem 5.6. Let ¢; be the i-th Chern class and ¢; the j-th Chern

character, then ¢; = Pj(c1,...,¢;) /5.
: > (—1) -
Conversely, if weset g(t) = > ) Tit1(x1, ..., xg) P then f(t) =
=0

exp g(t). Therefore, the converse of Theorem 5.6 also holds.

Theorem 5.7. Let (), be the polynomial n Ty, ..., e determined by

k_ — (=1) S
Z Qrt"™ = exp e Tjt1t .

Then, ¢, = Qk(cl, 20, ..., k!ck).
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Example 5.8. The concrete form of the polynomials Q) for k =1,2,3
are as follows.

Q1(71) =T, Q2(7177'2> =

2
(Tl - TQ) )

N | —

1
Qg(Tl,TQ,Tg> = 6 (’7'i3 — 37'17'2 + 7'3) .

Definition 5.9. If I = {iy,... 4}, then we set [; = I\ {i;} and
Tr =Ty -+ Ti,, where 75 = 1. Let 7{, 75, ... be formal variables and set

T
orr(t';T) = ZT{ZTII.
=1

We represent Q; as Qi(71,...,7;) = S ayry, where |I| =iy + - + iy,
T
and set
b= a6ri(b, 20, ..., 110521, 26, .., ilG).

|I|=i
Example 5.10.
~ ~ ~ 1~ . ~ ~ ~
b1 = bl, b2 = b101 — bg and b3 = 5()10% — b102 - bQCl + b3.

We define a subgroup T'SL,C of TGL,C by T'SL,C = SL,C x s[,C C
GL,C x gl,C and denote by tsl,C the Lie algebra of T'SL,C. Then, the
following is known.

Theorem 5.11 (Takiff [21], Rais-Tauvel [19, Théoreme 4.5]).
I(TSL,C) = C[éy, ..., ¢, ba, ..., by,
I(TSL,R) = R[&y, ..., ¢, by, ..., by

The following is a direct consequence of Theorem 5.11.

b,
b,

Theorem 5.12.
I(TGL,C) = Cley, ..., ¢y, by,

by,
I(TGL,R) = R[G1,...,Cy b1, - .., by)-
Proof. First we show the theorem for T'GL,C. We will show that
I(TGL,C) C Clay,...,¢4,b1,...,b,] and that ¢;, b; are algebraically
independent. We have

tgl, C={(X,Y) | X,Y € gl ,C},
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and
Adap(X,Y) = (AXA ABX - XB+Y)A™),
ad(X17Y1)(X2,Y2) = ([X1, Xo), [Y1, Xo] + [ X7, Y2)),
where (A4, B) € TGL,C and (X,Y),(X1,Y1),(X2,Y2) € tgl,C. Let
F € I(TGL,C). We may assume that F' is homogeneous of degree d.
Let f be the polarization of F, i.e., the symmetric multilinear map-
ping on (tgl,C)? such that F(X) = f(X,...,X) for X € tg[,C. Let
I =(1,,0) and J = (O, 1,), where I, denotes the unit matrix. Then
Z(TGL,C) = {tl +sJ|t,s € C}. If X = (Y, Z) € tgl,C, then we can
decompose X as X = X' +tI + sJ, where X' € ts[,C, t = %trY =
%/c\l(X) and s = %trZ = %gl(X). Let K = {K,...,K,}, where
0 <r < d and each K, is either I or J. We set fr(X],..., X} ,) =
fXt, . X, Ky, oK) I K= o, then we set fx = fu = f.
Note that the order of K;’s does not affect fg,
metric. Then, fx is a symmetric, invariant polynomial on 7T'SL,C.
Therefore, by Theorem 5.11, there is an element of I(7'SL,C) of which
the polarization is equal to fr. We have
JAC. ST, ¢)
= f(til + 51, ... tql + sqJ)
+ (f(X1, t2l + 5o, ... tgd + s4J) + -+
+ f(tl+s1d, .. taad + s4-1J, X))
+ 4 f(XY, L XD)
=tity-tafr..
+ (s1to - tafr. 10+ tisats - tafr.. 1o+
+oeo it taasafi 1)
+-otsioosafre g
+ (tae e tafr g (XD) 4+ 5200 safs,.,0(X7))
+(tr - tao fro 0 (Xg) + - A s0- - sq-1 [, 0(X7))
+ o+ fo( XY, XD).
As the above eqllality Eolds /i\dentically on Xll; .. ,XdA, we see that
f E/(\C[’c}, oy Cqybay L bg)[C1,b1) = Cléy, ..., ¢y, b1, ..., by, Finally, ¢
and b; are algebraically independent by Lemme 3.3 of [19]. Since there

k, because f is sym-

.....

1
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is an obvious inclusion of I(T'GL,R) into I(T'GL,C), the same holds
for I(TGL,R). O

Definition 5.13. Let J. K € {(j1,---.7¢) |Jr € N}. We set |J| =
g1+ 2ja + -+ qj, and |K| = ky + 2ks + -+ + (¢ — 1)k,, where
K = (ky,...,ky). Then, we set
I, ={c; € Cley,...,cl| || > ¢},

I, ={ciéxk €Cler, ..., 1, ¢ [T+ K] > g}
If cx € I, then we set
bcg = ki Tl ercy - cg Raerc? T eges g e hger e 1qu e,
Finally, let DI, be the ideal of Clcy, ..., ¢y, ¢1, ..., ] generated by I,
and {ocy|c; € I,}, and set

Cyler, .o el =Clen, ..., ¢q)/ 1y,
(C(Lq[cl, N ,Cq,él, N ,éq] = C[Cl, N ,Cq,él, ce ,éq]/D[q.

We define C,[cy, . .., ¢,] by replacing ¢; by ¢;.

We formally set ¢ = ¢ and u = .
Definition 5.14. We set degc; = deg¢; = degé; = 2i, degh;, =
degw; = deg h; = deg1i; = deg; = 2i — 1. Let

WO = /\[hl,. .. h[q]] ®Rq[cl, .. ,Cq],

WU, = Altr, @g, ..., 0y @ Cyler, ... cq) @ Cylé, ..., G,

= Nlhashay oo B AN By higl @Ry glen, oy Cayéry ey Gl
DWU == /\[ul,u2, . 7iLq] A /\[?lel,fbg, e ,?Lj/q} A /\[61,?72, e ,ﬁq]
®Cq,q[cly---7anély--~7éq] ®Cq7q[51,...7Eq,C;17...,Cq],

where [g] denotes the greatest odd integer less than or equal to ¢, and
set

dhz = Gy, dhl = C;
Proposition 5.15. The natural homomorphisms from H*(WO,) to
H*(DWO,) and from H*(WU,) to H*(DWU,) are injective. More pre-

cisely, H*(WO,) is isomorphic to { f € H*(DWO,) | f does not involve h; or ¢;},
and H*(WU,) is isomorphic to { f € H*(DWU,) | f does not involve u;, u;, ¢x or ¢}
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Proof. As the number of ‘dots’ are well-defined on the cohomology level,
we can decompose H*(DWO,) according to that number. It is easy to
see that H*(WO,) is the part of H*(DWO,) of which the number is
equal to zero. The same arguments work on WU, and DWU,. O
Example 5.16. We have

H*(DWO1) = (1,h1017 ]'1101, h1h101>7

where the bracket means that the cohomology is generated as a linear
space. The class hic; is the Godbillon-Vey class, 25101 is the infini-
tesimal derivative of the Godbillon-Vey class, and 2h1 hicy is the Fuks-
Lodder-Kotschick class which will be introduced in Example 5.28.

Example 5.17. We can also determine H*(DWU;) by using simple
spectral sequences. Let
A = (f € DWU, | f does not involve uy).

Then, A is closed under d. More concretely, if we set

B = {(c1&1, 1y, e1¢F ¢ E |k, 1 € N),
then, we have

A=B®uB® B uiB,
where the product is the wedge product. We have
H*(A) = (1,¢1,¢1, 161, Uycy, Uy 1, Ui C1Cy, UpC1Cr, Up Uy C1C1 ),
H*(DWU;/A) = (1, ¢1,E1, €181, Urcy, Ui Cr, Ur €181, Ur €18, Up iy C1Cr ).

We have an exact sequence of complexes

0—A—DW; —-DW,;/A—0

and that of cohomologies

.o = HY(DW,/A) & H*(A) = H*(DW,) — H*(DW/A) 3 H*'(4A) > -+ .
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The connecting homomorphism 0 is indeed given by the differential d
so that we have

((1), r=0,
(k) .
(tyc1, Ure1, Uy (e + 1)), r=3,
H"(DWU,) = < (u1¢1¢1), r=>5,
(U Uyc1Cr, Urtiy 1 Cp, Uy liic1Cy ), T = 6,
(Tt ty¢1C1), r=71,
0, otherwise.

\
Up to multiplication of constants, ¢; +¢; is the first Chern class, @y (c; +
¢1) is the imaginary part of the Bott class, u;¢;¢ is the Godbillon-Vey
class, and 1,c1, %6, are the infinitesimal derivative of the Bott class
and its complex conjugate. The absence of the infinitesimal derivative
of the Godbillon-Vey class corresponds to the rigidity of the Godbillon-
Vey class for transversely holomorphic foliations [4]. Note also that the
infinitesimal derivative of the Chern classes are also absent. This is of
course due to the integrality (therefore the rigidity under deformations)
of the Chern classes. Finally we remark that there is no direct analogue
of the Fuks-Lodder-Kotschick class. See also Remark 5.34. Instead of
that, the classes of degree 6 and perhaps the class of degree 7 are
variants.

Let og: WO, - DWO, and §: WU, - DWU, be the (commutative)
derivations which satisfy drc; = ¢; and dgh; = h;, and dc; = ¢, 0¢; = ¢5
and 0u; = 1; — 1,, respectively. It is easy to see that dg and J are well-
defined and commute with d. Therefore, we have the following

Proposition 5.18. There are well-defined derivations og : H*(WO,) —
H*(DWO,) and 6: H*(WU,) - H*(DWU,) such that

orh; = hi, ORC; = Ci,
5@1) =Uu; — az‘, 5(@') = ¢, 5(@') =G
Some of results in [13] and [4] can be summarized as follows.

Theorem 5.19. There is a well-defined bilinear pairing

Dyg: H'(M;0z) x H*(DWO,) — H*(M;R)
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for real codimension-q foliations, and

Dx: H'(M;0z) x H*(DWU,) — H*(M;C)
for complex codimension-q transversely holomorphic foliations. If o €
HY(M;OF) is an infinitesimal deformation and if « € H*(WO,) (resp.
g€ H*(WU,)), then Dxr(o,()) (resp. Dx(o,0(B))) is the infinitesi-

mal derivative of o (resp. 5) with respect to o.

Before proving Theorem 5.19, we recall the Chern forms and Chern-
Simons forms. Let w® be the connection form of a connection V@
Q®(F) obtained from a Bott connection and an infinitesimal deform-
ation of F. Then, the curvature form R® of w® is by definition

R® = dw® 1 L@ @) = @ 4@ A @
2t ‘

Definition 5.20. We define i-th Chern forms ci(R(Q)), 0<i<gq, by
the condition

q
det <)\Iq— R<2) > en(RP)A,
7T\/

k=0
Note that ¢o(R®) = 1. In the real case, we replace 27v/—1 by 27. In
general, if f is a TGL,C-invariant polynomial, then we set f(R?®) =

f(R®, ... R®) where we make use of the Chern convention.

It is well- known that f(R®) is closed.
Let w((] and wl ) be connection forms. We set w!? = (1—t)w(()2)+tw§2),
and represent f (R§2)) = a+ B Adt, where o and 8 do not involve dt.

Definition 5.21. We define the Chern-Simons form of f by
Ag( wo ,wl / Bdt.
It is well-known that dAf(wo ) wi?) = f( 5 2y — f(RgQ)) (see [7]).

We also need a version of the Bott vanishing theorem.

Lemma 5.22. Let I be the ideal of Q*(M) locally generated by
dy',....dy?, where (y',...,y9) are local coordinates in the transverse
direction. If we denote by 1" the ideal of Q*(M) locally generated by
{a1 ANy |aq, ... o € T}, then bk evaluated by R® belongs to I*1.
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Proof. If we represent R® as R = gl }? , then each entry of Ry
2 I

belongs to I. On the other hand, b,(R?) is a certain sum of entries of

RiRy RV, O

Finally, we make use of the following

Lemma 5.23 (cf. [13, Theorem 2.16], [4, Lemma 4.3.17]). Let J =
(Ji,---,7q) € N If |J| > q, then dc;(R®) = 0, where dc; is as in
Definition 5.13.

A proof can be found as a part of the proof of [13, Theorem 2.16]
and also in [4, Lemma 4.3.17] so that we omit it.

Proof of Theorem 5.19. Let V° be a Bott connection on Q(F), V" a
unitary (resp. metric) connection on Q(F) with respect to a Hermitian
(resp. Riemannian) metric h, a family of local trivializations {6} of
Q*(F) and an infinitesimal deformation {o} of {#} which represents
an infinitesimal deformation of F. For simplicity we denote {#} and
{o} by 0 and o, respectively. Let w® and w” be connection forms of V°
and V" with respect to the dual of #, and «w an infinitesimal deformation

b b
b . (2) _ w O (2) _ w O
of w” with respect to . We set w (w wb>’ wy (O W)
R=dw’+wbAw’ and R® = dw® +w® Aw®. Let Dy be the algebra

homomorphism from (E(F)* ® Q(F)) x DWU, to Q*(M) determined
by the conditions that

In the real case, we define ZjXR by the conditions that
5XR(Ci) = ¢;(R),
Dyr(h;) = A, (WP W), where i is odd,
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5XR(éi) = bi(R(z))a
Dxg(hi) = Ay (w?,wi).

By the construction and Lemma 5.22, 5)( and BXR are well-defined
and induce bilinear mappings on the cohomology, which we denote
by Dx and Dyg, respectively. We denote the product foliation of
M x [0,1] by F x [0,1], namely, the leaves of F x [0,1] are of the
form L x [0,1], where L is a leaf of F. Let {a},} be as (3.9). If we set

w+tA0
say V¥, on Q©@ (F) with respect to 8. Note that w® can be also
viewed as the connection form of a connection on Q) (F x [0, 1]) with
respect to the pull-back of #® to M x [0,1]. Let ¢ be a cocycle in
DWU,. If we represent @(Vb,V§2)) = 1 + @2 A dt, where p; and
©o do not involve dt, and if we set § = [ o, then we have dp =
o(V°, Vé2)) — (VP v?’). If we replace w,w by w+ B, w + Bo, where
B is defined by (3.10), then we set w; = w+tB6 and w; = w+tBo. Let
V¥ and V@ be the connections defined by w+ B6 and &+ Bo, then, by
repeating almost the same argument as above, we can find a primitive of
(VP V@) — (V¥ V). Suppose that o is replaced by ¢’ by (3.11).
By the same argument in the proof of Lemma 3.14, we see that g does
not affect (V% V). By considering o; = o + d(tf) + w (tf) and by
repeating again the same argument as above, we see that p(V? V®)
and ¢(V®, V®") are cohomologous. If we replace § by (D¢)f, then
©(V?, V@) does not change by (3.13), because invariant polynomial

wiQ) = “ 8) , then wt@) is the connection form of a connection,

are considered. Finally, if we replace h by another metric, then we
can form a 1-parameter family of metrics and connections, and show
by similar arguments as above that the cohomology class remains the
same. U

Remark 5.24. A related but different construction can be found in [8].
Characteristic classes for deformations of foliations are also studied
in [6] from another viewpoint. We also remark that Theorem 5.19 is
shown by more combinatorial arguments in [13] and [4].

Remark 5.25. The differential forms b; and ¢; can be obtained from
K®(F)~! and V® appeared in §4.
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Definition 5.26. The elements in the image of § in H*(DWO,) (resp.
H*(DWU,)) are said to be infinitesimal derivatives of secondary classes.
If o € H'(M;Opx), then the image of infinitesimal derivatives under
Dxgr(c,0( - )) (resp. Dx(o,d( - ))) are called the infinitesimal deriva-
tives with respect to o.

Example 5.27. We have DW; = DWO;. Consequently,
H*(DW,) = H*(DWO,) = (1, hyey, huer, byhyey).

Example 5.28. The class hicf € H**(DWO,) is the Godbillon-
Vey class. The class (¢ + 1)hy¢! € H*H(DWO,) is the infinitesimal
derivative of the Godbillon-Vey class. Note that (g + 1)h1c? = §(hic?)
holds in H**1(DWO,). There is another class which involves h;, hy
and c;. Indeed,

d(hih¢?) = érhyc? — byt =0
in DWO, because ¢!, ¢1¢! € DI,. The class (g+1)h hic! € H*T(DWO,)
is introduced by Fuks [10], Lodder [18] and Kotschick [17], and called
the Fuks-Lodder-Kotschick class in [4].

In the transversely holomorphic case, the Bott class is defined by
uyc if the complex normal bundle is trivial. In general, the imaginary
part of the Bott class is given by v/—1uy(c? + ¢4 'é, +--- + &) €
H*(DWU,) if we choose R or C as coefficients of cohomology. On
the other hand, the infinitesimal derivative of the Bott class is defined
as an element of H**(DWU,) or H?*"(M;C) even if the complex
normal bundle is non-trivial. Indeed, the infinitesimal derivative of the
Bott class is given by (¢ + 1)i,cf € H*7™(DWU,).

Therefore, the infinitesimal derivative of the imaginary part of the
Bott class will be represented by two cocycles in DWU,, namely,

)\1 = (q + ].)\/ —1(U10({ — ﬂlaf),
Ay = V—=1(t — ) (c] + -+ )
q
+ \/—_12 <(q — k)er R E 4 k:c;lc‘{*kélf’l) .
k=0
We have the following

Lemma 5.29. The above cocycles A1 and Ay are cohomologous.
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Proof. Let

1 1

p= T (qincd " + (g — Dinel e + el + -+ qiined )

1
q

ﬂl((q — i)ulc‘fﬂ;léd -+ iﬁlc({iiéi_ly

@
I
o

Since
q g—1
— 7, i PR ] 5 =4
dp = quic] — g el 'e] + g urcf el — quycd
i=1 =0

—Uy(gerc] ™ + (g = Dercd e + Gl + -+ g,

we have Ay + v —1du = \1. OJ

If we assume that normal bundles of foliations are trivial, then we
can modify the construction as follows.
Definition 5.30. We set degc; = degé; = dege; = 21, degh; =
degu; = degi; = deg h; = deg; = degii; = 21 — 1. Let

Wq = /\[hl, hQ, ceey hq] ® Rq[cl, Ce ,Cq],
DWq = /\[ill, ilg, cey hq] AN /\[hl, hQ, e ,hq} ® R%q[Cl, e ,Cq, él, e ,éq].
We set
When we consider W, ® C and DW, ® C, we denote by h; and h; by
u; and u;. We set
Then, W, ® C = Afug, ug, ..., uy @ Cjley, ..., ¢cq]. We set

W, ®@ C = Alty, ta, ..., 4] ® Cyléy, ..., ¢l

We define DW, ® C in an obvious way, and set Wi = (W, @ C) A
(W, ® C) and DW, = (DW, ® C) A (DW, ® C).
Proposition 5.31. The natural homomorphisms H*(W,) — H*(DW,)
and H*(W, ® C) - H*(DW, ® C) are injective.

The proof is almost identical to that of Proposition 5.15.

Let 0% : W, — DW,, be the (commutative) derivation which satisfies
0L c; = ¢; and 6L h; = h;. We denote the complexification of 6% by 6.
It is easy to see that 6% and 6" are well-defined and commute with d.
We have the following



DERIVATIVES OF SECONDARY CLASSES AND 2-NORMAL BUNDLES 33

Proposition 5.32. There are well-defined derivations 6% : H*(W,) —
H*(DW,) and 6*: H*(W,® C) — H*(DW, ® C) such that
O hi = hi, 0fci = ¢,

Note that a derivation on H*(W) with values in H *(DW;C) is nat-
urally defined.

Theorem 5.33. Once a homotopy type of trivialization of the normal
bundle of F s fized, there is a well-defined bilinear pairing

Dxg: HY(M;©05) x H*(DW,) — H*(M;R)
for real codimension-q foliations , and
Dx": H'(M;05) x H*(DW, ® C) — H*(M;C)

for complex codimension-q transversely holomorphic foliations with triv-
ialized complex normal bundles. If o0 € H'(M;©Ox) is an infinitesimal
deformation and if a« € H*(W,), then Dx& (o, 0% () or DxF (0,67 (5))
1s the infinitesimal derivative of o with respect to o.

Proof. The theorem is proven in an almost the same way as that of
Theorem 5.19. Let s be a trivialization of the normal bundle in the
homotopy type we have chosen. Let V°® be a Bott connection on Q(F),
V? the flat connection with respect to s, 6 the trivialization of Q*(F)
dual to s, and an infinitesimal deformation {o} of # which represents
an infinitesimal deformation of F. Let w’ and w® be connection forms
of V? and V* with respect to s, and w an infinitesimal deformation

b b
of w® with respect to 0. We set w® = ((’:) 5))’ wéQ) = (% 3,),

R = dw’ + w® Awb and R® = dw® + w® A w®. Let Dx¥ be the
algebra homomorphism from (E(F)*® Q(F)) x (DW, ® C) to Q*(M)
determined by the conditions that

Dy"(c;) = ci(R),

DX (u;) = A, (W, w*),
DX (¢;) = bi(RP),
D" (1) = D, (w?, 0.
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In the real case, we define 15X§ by the conditions that
Dxf (i) = ci(R),
Dxg (hi) = A (&, 0%),
Dxi () = bi(R®),
D (hi) = Ao, (0, 05”).

Then, by repeating arguments of the same kind of as in the proof of
Theorem 5.19, we can show that the mappings induced on the co-
homology are independent of choices. U

Note that a homomorphism from H*(DWS) to H*(M;C) is induced
by DxF.

Remark 5.34. Example 5.11 of [4] shows that Dy indeed depends on
the homotopy type of s. It is shown by examining uju;c{ of a trans-
versely holomorphic foliation of which the complex normal bundle is
trivial. It is also shown that the effect of the change of trivialization
is indeed valued in C, which suggests that there are no direct ana-
logue of Fuks-Lodder-Kotschick class in the category of transversely
holomorphic foliations unless the triviality of normal bundles are not
assumed, because this fact implies that the imaginary part of the Fuks-
Lodder-Kotschick class hardly makes sense. There is indeed no direct
analogue in H*(DWUj ) calculated in Example 5.17. On the other hand,
it seems unknown in the real case if there is a family or infinitesimal
deformation of a foliation of which hlhlc‘f is non-trivial even if ¢ = 1.
Similarly, it is unknown if the classes 11tic1C1, Uit ciCr, Ut c1E; and
uuitycé; € H*(DWUy) in Example 5.17 can be non-trivial for some
infinitesimal deformation or not (the above-mentioned example in [4]
does not work).

6. DETERMINATION OF H*(DWO3;) AND COMPARISON WITH
H*(DWU,)
We will first compute H*(DWO,). This is again done by means of
spectral sequences. We have
L =1(c, cicy,c3),

3 2 2. . -2 2 .3
12,2 = [(Cl, C1C2, Cy, C1Cg, C2Ca, C1Cy, C2Cy, 02),
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DIq = I(C?, C1Co, C%, C%C'Q, CQéQ, clc'g, CQC.%, Cg, C%él, Clég + Czél, Cgég)
= I(c}, cica, €3, Ciéa, Cala, €165, Caly, C5, €Y1, €102 + Caér),

where I(f1,..., f.) denotes the ideal generated by fi,..., f..
Let

A ={f € DWOy| f does not involve h;},
By = {f € A| f does not involve hy or hy},
By = {f € A| f does not involve hy}.
Then, A, By and B; are closed under d. As vector spaces, we have
By = (1,c1,¢2 ¢, ¥ 9,62, g, cRé2 créh, cock (= —ciéfey) |k > 0),
By = By @ inBy.

By examining the long exact sequence associated with 0 — By — By —
By/By — 0, we see that

HT(Bl) <1 6170%70276276@ <h16%>

Next, we examine the long exact sequence associated with 0 — By —
A — A/B; — 0. Note that H*(A/B;) = hoH*(By). The result is

H*(A) = <1, 1, C%, C2, hw%) S¥) <h261 + 51027 hch, 5202, hQéi, hJLQC%)-

Finally, we consider the long exact sequence associated with 0 — A —
DWO,; — DWOy/A — 0, where H*(DWO,/A) = hi H*(A). We obtain

(), o,

(c2), r =4,

(hict, hica, h1017 hica + h201> r=>5,

(hyhyc?), r=6
Hr(DWOy) = § (el =1,

<h hic3, h2h162, h1h2c1> r=8,

<h h2h101> —

(hac3), r =11,

<h2h102> r =12,

0, otherwise.

\
Up to multiplications of constants, the class ¢y is the first Pontrjagin
class, hic? and hyc? are the Godbillon-Vey class and its infinitesimal
derivative, hicy is one of the ‘classical’ secondary classes in H?(WO,),
and h1h102 is the Fuks-Lodder-Kotschick class. In general, we can
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compute H*(DWO,) etc., by means of spectral sequences as above. It
seems however difficult to obtain a set of basis as a vector space such

as the Vey basis for H*(WO,) or H*(W,).

In what follows, we denote ¢;,¢; € WU, C W;C by v;, v; in order to
avoid confusions. Given a transversely holomorphic foliation, we can
forget the transverse holomorphic structure [1], [2]. This corresponds
to the natural maps BI- — Bly, and BT? — BTIy,. Accordingly, we
have homomorphisms

At H*(WOy,) — H*(WU,),
X H*(Way,) — H (W, ® C).
The same can be done for H*(DWU,) and H*(DWO,,). The relevant
maps are
DX: H*(DWOy,) - H*(DWU,),
DX: H*(DWy,) — H*(DWY).
They are defined by DGA-homomorphisms DX: DWO,, — DWU, and
DX: DWy, — DWS such that

DX(ei) = (V=1)" Y (=1 0,4,

_ 1y 2i+1 N
DA(acer) = VTS () (v + 50),
k=0
- k
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_1)2‘

5;\\<h2i) = ( 9

(—1)* (ugi_kOk + Upvai_t),

(]

DA(é) = (V=1)" S (=1)* (0 0k + vi_xy),

Dhassn) = TS (1) (G (0 + T) + s (05 + ),

_1)i

DX(ha;) = ( 5

Z(—l)k(ﬂzi—k@k + UpVi g+ Ui KUk + UpV2i k).
k=0
We have the following version of Lemma 3.1 of [1].

Lemma 6.1. 1) If F is a transversely holomorphic foliation, then
there is a natural homomorphism A\o: H*(M;©r) — H*(M;Ox,),
where Fg is the foliation F but the transverse holomorphic struc-
ture forgotten.
2) The homomorphisms DX and DX induce on the cohomology the
homomorphisms DX and DX such that Dxr(Xe(0),a) = Dx(o, DA(a))
and DxE(Xe(0),a) = Dx(o, DX(av)).

Proof. Let V® be a Bott connection on Q(F). Let 6 be a local trivial-
ization of Q*(F) and w be the connection form of V? with respect to
the dual of f. A section o = (07) of \'E(F)*®@Q(F) is a representative
of H'(M;©p) if and only if there is a gl (C)-valued 1-form p such that
do+wANo+puNb0 =0. If we choose g = 6 @ 6 as a trivialization
of Q(Fr) ® C = Q(F) ® Q(F), then Vi = V> @ VP is a Bott connec-
tion on Q(Fr) ® C and wg = w & w is its connection form. Therefore,
or =0 @ 7 gives a dys-closed form in N(E(Fr)* ®C) ® (Q(F) ® C).
Note that E(Fg) ® C = E(F) N E(F). If we set ug = pu @ Ji, then
dog+wr Aor+pur AOr = 0. Similarly we can show that if o is dyv-exact,
then o @ & is dys-exact. Therefore, if we set Ag(0) = o, then Mg in-
duces a homomorphism on the cohomology. Thus the part 1) is shown.
The proof of the part 2) is essentially parallel to that of [1, Lemma 3.1]
so that we give only the sketch. First we note that ¢; and ¢; calculated
by using V% are equal to the right hand sides of defining relation of
l~))\(ci) and 5)\(@) calculated by using V? @ VP. Then, by integrating
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the relation, we see that DA gives a desired homomorphism. The proof
for DA can be done in a parallel way. O

The following is a corollary to Proposition 5.15.

Lemma 6.2. We have Ker A = Ker DA N H*(WOy,) and Im\ =
Im DA N H*(WU,).

If ¢ =1, then the mapping DA is given by the conditions that
hy — V=10,
c1 = \/—_1(1)1 — 1),
Co > V1V,
hy = /=1y — 1),
hg > i,y + Ty,
e V= 1(0) — vy),
Co > 1101 + D107

Therefore, we have
Ker DX = (ca, hi(c — 2¢3), hic?, hico + hacy, hoca, hohic?, hahycs,
hihghyc2, hoc2, hyhocd, hohyé2),
Im DX = (1, uyv 0y, (U — Uy )Uyv101).

We have ¢y, hi(c? — 2¢;) € Ker A and 1,u;v,9, € ImA. Note that
2v/—1uyv10; is the Godbillon-Vey class and that

(4 — U )v101 + U010y + Uy Uy
= —d(uy (01 (201 + 1) + w1 (201 + v1))).
In general, the Godbillon-Vey class is equal to %\/—_1&11)?@%, and
(1 — U )ofof + quyof o0 + quoiol o
= —d(@o! ot (i (g + on + qon) + (g + 101+ qur))).

This gives another proof of the rigidity of the Godbillon-Vey class in
the category of transversely holomorphic foliations.
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We next study the mapping DA: H*(DW3) — H*(DW; ® C). We

can show by similar arguments as above that
( <1>7 r = 0,
hic2, hycy, hic?, hicy + hacy), r=>5,
hlhlc%>, r =0,
haca, hgcz), r=1,
hahy @2, hohyca, hihac?,

hihac2, hihaca, hihac?, hy(hycy + hgcl)>, r==3,

{
{
{
{

H"(DW3) = { (hihohic3, hihyhac?), r=9,
(hahaca), r =10,
(hac3, hahihac?, hohyhaca, hihohac?), r =11,
<h2h10§, h1h2h1h20%>, r=12,
(hohac?), r =14,
(hahihac3), r =15,
0, otherwise.

\

The mapping D) is given by the conditions that
hi = V—=1(u; — ),
ho %(ulﬁl + uyvy),
e = V—=1(vy — 1y),
Co = U1y,
hy s V/—1(ty — Tiy),
hy = 0y + oy,
¢ = V= 1(0y — 1),
Gy > U101 + U0y
Therefore,
Ker DA
= (" (2 — 2¢3), b, hacy + hocy, hoca, hoca, hohi ¢, hohica, hihac?,
hihacd, hihaca, hihac?, ha(Rica + hoct), hahahicl, hihihacl,
hohaca, ha3, hahyhac?, hohyhaca, hihohoc?,
hohi¢2, hihahihact, hahal3, hahihaé3),
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Im DA
= (1, (w1 — W)v101, (4 — ) (ug — Uy )v101).

As we mentioned in Remark 5.34, we know that the class uu v, can be
non-trivial. The class does not belong to Im D\, which implies that the
non-triviality is not derived from deformations of real foliations. On the
other hand, the image of the Fuks-Lodder-Kotschick class Shlhlcf is
equal to —6(1; — 1y )(uy — 11 )v, 07 which is non-trivial in H*(DW; ® C)
and H*(DWU;). However, we do not know any example of which
(ty — 1) (u1 — Uy )10y is non-trivial.
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